文档库 最新最全的文档下载
当前位置:文档库 › 圆锥曲线的弦长公式及其推导过程复习进程

圆锥曲线的弦长公式及其推导过程复习进程

圆锥曲线的弦长公式及其推导过程复习进程
圆锥曲线的弦长公式及其推导过程复习进程

圆锥曲线的弦长公式及其推导过程

关于直线与圆锥曲线相交求弦长,通用方法是将直线b

kx

y+

=代入曲线方程,化为关于x的一元二次方程,设出交点坐标()(),

,

,

,

2

2

1

1

y

x

B

y

x

A利用韦达定理及弦长公式

]

4

)

)[(

1(

2

1

2

2

1

2x

x

x

x

k-

+

+求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.

一、椭圆的焦点弦长

若椭圆方程为)0

(1

2

2

2

2

>

>

=

+b

a

b

y

a

x

,半焦距为c>0,焦点)0,

(

),

0,

(

2

1

c

F

c

F-,设过

1

F 的直线l的倾斜角为l,α交椭圆于两点()(),

,

,

,

2

2

1

1

y

x

B

y

x

A求弦长AB.

解:连结B

F

A

F

2

2

,,设y

B

F

x

A

F=

=

1

1

,,由椭圆定义得y

a

B

F

x

a

A

F-

=

-

=2

,

2

2

2

,由余弦定理得2

2

2)

2(

cos

2

2

)

2(x

a

c

x

c

x-

=

?

?

-

+α,整理可得

α

cos

2

?

-

=

c

a

b

x,同理可求

α

cos

2

?

+

=

c

a

b

y,则

α

α

α2

2

2

2

2

2

cos

2

cos

cos c

a

ab

c

a

b

c

a

b

y

x

AB

-

=

?

+

+

?

-

=

+

=;

同理可求得焦点在y轴上的过焦点弦长为

α2

2

2

2

sin

2

c

a

ab

AB

-

=(a为长半轴,b为短半轴,c为半焦距).

结论:椭圆过焦点弦长公式:

?

?

?

??

?

?

?

-

?

-

=

).

(

sin

2

),

(

cos

2

2

2

2

2

2

2

2

2

轴上

焦点在

轴上

焦点在

y

c

a

ab

x

c

a

ab

AB

α

α

二、双曲线的焦点弦长

设双曲线(),0,0122

22>>=-b a b

y a x 其中两焦点坐标为)0,(),0,(21c F c F -,过F 1的直线l 的

倾斜角为α,交双曲线于两点()(),,,,2211y x B y x A 求弦长|AB|.

解: (1)当a

b

a b arctan arctan

-<<πα时,(如图2)

直线l 与双曲线的两个交点A 、B 在同一支上,连B F A F 22,,设,,11y B F x A F ==,由双曲线定义可得a y B F a x A F 2,222+=+=,由余弦定理可得

222222)2()cos(22)2(,)2(cos 22)2(a y c y c y a x c x c x +=-??-++=??-+απα

整理可得α

cos 2?+=c a b x ,αcos 2

?-=c a b y ,则可求得弦长

;cos 2cos cos 2222

22α

ααc a ab c a b c a b y x AB -=?-+?+=+=

(2)时或当παπα<<-<≤a

b

a b arctan arctan 0,如图3,

直线l 与双曲线交点()()2211,,,y x B y x A 在两支上,连F 2A,F 2B,设,,11y B F x A F ==

则a

y

B

F

a

x

A

F2

,

2

2

2

-

=

+

=,由余弦定理可得

2

2

2)

2

(

cos

2

2

)

2(a

x

c

x

c

x+

=

?

?

-

+α,2

2

2)

2

(

cos

2

2

)

2(a

y

c

y

c

y-

=

?

?

-

+α,

整理可得,则

,

cos

,

cos

2

2

a

c

b

y

a

c

b

x

-

?

=

+

?

=

α

α

.

cos

2

cos

cos2

2

2

2

2

2

a

c

ab

a

c

b

a

c

b

x

y

AB

-

?

=

+

?

-

-

?

=

-

=

α

α

α

因此焦点在x轴的焦点弦长为

?

?

?

??

?

?

<

<

-

<

-

-

<

<

-

=

).

arctan

arctan

0(

cos

2

),

arctan

(arctan

cos

2

2

2

2

2

2

2

2

2

π

α

π

α

α

π

α

α

a

b

a

b

a

c

ab

a

b

a

b

c

a

ab

AB

同理可得焦点在y轴上的焦点弦长公式

?

?

?

??

?

?

-

<

<

-

<

<

-

<

-

=

).

arctan

(arctan

sin

2

),

arctan

arctan

0(

sin

2

2

2

2

2

2

2

2

2

a

b

a

b

a

c

ab

a

b

a

b

c

a

ab

AB

π

α

α

π

α

π

α

α

其中a为实半轴,b为虚半轴,c为半焦距,α为AB的倾斜角.

三、抛物线的焦点弦长

若抛物线)0

(

2

2>

=p

px

y与过焦点)0,

2

(

p

F的直线l相交于两点()()2

2

1

1

,

,

,y

x

B

y

x

A,若l的倾斜角为α,求弦长|AB|.(图4)

解:过A、B两点分别向x轴作垂线AA

1

、BB

1

,A

1

、B

1

为垂足,y

FB

x

FA=

=,

设,则点A的横坐标为α

cos

2

?

+x

p,点B横坐标为α

cos

2

?

-y

p

,由抛物线定

,

2

cos

2

,

2

cos

2

y

p

y

p

x

p

x

p

=

+

?

-

=

+

?

α

义知,

cos

1

,

cos

α+

=

-

=

p

y

p

x

,

sin

2

cos

1

2

cos

1

cos

12

α

α

α

p

p

p

p

y

x=

-

=

+

+

-

=

+

圆锥曲线全部公式及概念

圆锥曲线 1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ =??=? 离心率c e a == 准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2 b a . 2.椭圆22 221(0)x y a b a b +=>>焦半径公式及两焦半径与焦距构成三角形的面积: 21()a PF e x a ex c =+=+,22()a PF e x a ex c =-=-;1221tan 2 F PF F PF S b ?∠=. 3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200221x y b ?+>. 4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线 的距离(焦准距)2p c = 通径的一半(焦参数):2 b a 焦半径公式21|()|||a PF e x a ex c =+=+,2 2|()|||a PF e x a ex c =-=-, 两焦半径与焦距构成三角形的面积122 1cot 2 F PF F PF S b ?∠=. 5.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 6.双曲线的方程与渐近线方程的关系: (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 7.抛物线px y 22 =的焦半径公式: 抛物线2 2(0)y px p =>焦半径02p CF x =+. 过焦点弦长p x x p x p x CD ++=+++=212122. 8.抛物线px y 22=上的动点可设为P ),2(2 y p y 或2 (2,2)P pt pt P (,)x y ,其中 22y px =. 9.二次函数22 24()24b ac b y ax bx c a x a a -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a --=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切. 11.直线与圆锥曲线相交的弦长公式: AB = 1212||||AB x x y y ==-=-

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

二次曲线中的万能弦长公式

二次曲线中的万能弦长公式 王忠全 我们把圆、椭圆、双曲线、抛物线称为二次曲线,用设而不求的方法,可得到其弦长公式。 设直线方程为:y=kx+b (特殊情况要讨论k 的存在性),二次曲线为f (x ,y )=0,把直线方程代入二次曲线方程,可化为ax 2+by 2+c=0,(或ay 2+by+c=0),设直线和二次曲线的两交点为A (x 1,y ),B (x ,y ) 那么:x 1,x 2是方程ax +by +c=0的两个解,有 x 1+x 2=-a b ,x 1x 2=a c , ()()||k 1x x 4)(k 1))(k (1)()(||2 21221222122212212 21221a x x x x b kx b kx x x y y x x AB ? +=-+?+=-+=--++-=-+-= 同理:若化为关于y 的方程ay 2+by+c=0,则|AB|= | |112a k ?+. 例、已知过点M (-3,-3)的直线m 被圆x 2+y 2+4y-21=0所截得的弦长为45,求直线m 的方程。 解析:设直线方程m:y+3=k(x+3), 即y=kx+3k-3,代入x 2+y 2+4y-21=0,得x 2+k 2x 2+9k 2+9+6k 2x-6kx-18k-21+4kx+12k-12=0, 即(1+k 2)x 2+(6k 2-2k)x+9k 2-6k-24=0,那么 032,092,2,210 232016162416808096246454196246454|1|96246024364243612122222222342342=+-=++=-==--=--+=+-=++-=++-++-+-+y x y x k k k k ,k k ,k k k ,,k k k k k k k k k k k k 或所求直线方程为得两边平方即

圆锥曲线知识点整理

高二数学圆锥曲线知识整理 解析几何的基本问题之一:如何求曲线(点的轨迹)方程。它一般分为两类基本题型:一是已知轨迹类型求其方程,常用待定系数法,如求直线及圆的方程就是典型例题;二是未知轨迹类型,此时除了用代入法、交轨法、参数法等求轨迹的方法外,通常设法利用已知轨迹的定义解题,化归为求已知轨迹类型的轨迹方程。因此在求动点轨迹方程的过程中,一是寻找与动点坐标有关的方程(等量关系),侧重于数的运算,一是寻找与动点有关的几何条件,侧重于形,重视图形几何性质的运用。 在基本轨迹中,除了直线、圆外,还有三种圆锥曲线:椭圆、双曲线、抛物线。 1、三种圆锥曲线的研究 (1)统一定义,三种圆锥曲线均可看成是这样的点集:? ?????>=0e ,e d |PF ||P ,其中 F 为定点,d 为P 到定直线的距离,如图。 因为三者有统一定义,所以,它们的一些性质,研究它们的一些方法都具有规律性。 当01时,点P 轨迹是双曲线;当e=1时,点P 轨迹是抛物线。 (2)椭圆及双曲线几何定义:椭圆:{P||PF 1|+|PF 2|=2a ,2a>|F 1F 2|>0,F 1、F 2为定点},双曲线{P|||PF 1|-|PF 2||=2a ,|F 1F 2|>2a>0,F 1,F 2为定点}。 (3)圆锥曲线的几何性质:几何性质是圆锥曲线内在的,固有的性质,不因为位置的改变而改变。 定性:焦点在与准线垂直的对称轴上 椭圆及双曲线中:中心为两焦点中点,两准线关于中心对称;椭圆及双曲线关于长轴、短轴或实轴、虚轴成轴对称,关于中心成中心对称。 (4)圆锥曲线的标准方程及解析量(随坐标改变而变) 举焦点在x 轴上的方程如下: 椭 圆 双 曲 线 抛 物 线 标准方程 1b y a x 2 22 2=+ (a>b>0) 1b y a x 2 22 2=- (a>0,b>0) y 2=2px (p>0) 顶 点 (±a ,0) (0,±b ) (±a ,0) (0,0) 焦 点 (±c ,0) ( 2 p ,0) 准 线 X=±c a 2 x=2 p - 中 心 (0,0) 焦半径 P(x 0,y 0)为圆锥曲线上一点,F 1、F 2分别为左、右焦点 |PF 1|=a+ex 0 |PF 2|=a-ex 0 P 在右支时: |PF 1|=a+ex 0 |PF 2|=-a+ex 0 P 在左支时: |PF 1|=-a-ex 0 |PF 2|=a-ex 0 |PF|=x 0+ 2 p

圆锥曲线的综合问题(答案版)讲课教案

圆锥曲线的综合问题 【考纲要求】 1.考查圆锥曲线中的弦长问题、直线与圆锥曲线方程的联立、根与系数的关系、整体代入 和设而不求的思想. 2.高考对圆锥曲线的综合考查主要是在解答题中进行,考查函数、方程、不等式、平面向 量等在解决问题中的综合运用. 【复习指导】 本讲复习时,应从“数”与“形”两个方面把握直线与圆锥曲线的位置关系.会判断已知直线与曲线的位置关系(或交点个数),会求直线与曲线相交的弦长、中点、最值、定值、点的轨迹、参数问题及相关的不等式与等式的证明问题. 【基础梳理】 1.直线与圆锥曲线的位置关系 判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时 为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到一个关于变量x (或 变量y )的一元方程. 即?? ?==++0 ),(0y x F c By Ax ,消去y 后得02 =++c bx ax (1)当0≠a 时,设方程02 =++c bx ax 的判别式为Δ,则Δ>0?直线与圆锥曲线C 相交;Δ=0?直线与圆锥曲线C 相切;Δ<0?直线与圆锥曲线C 无公共点. (2)当0=a ,0≠b 时,即得一个一次方程,则直线l 与圆锥曲线C 相交,且只有一个交点, 此时,若C 为双曲线,则直线l 与双曲线的渐近线的位置关系是平行;若C 为抛物线, 则直线l 与抛物线的对称轴的位置关系是平行. 2.圆锥曲线的弦长 (1)定义:直线与圆锥曲线相交有两个交点时,这条直线上以这两个交点为端点的线段叫做 圆锥曲线的弦(就是连接圆锥曲线上任意两点所得的线段),线段的长就是弦长. (2)圆锥曲线的弦长的计算 设斜率为k (k ≠0)的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB | =1+k 2 |x 1-x 2|=]4))[(1(212212x x x x k -++=a k ? ? +2 1=1+1 k 2·|y 1-y 2|. (抛物线的焦点弦长|AB |=x 1+x 2+p =2p sin 2 θ ,θ为弦AB 所在直线的倾斜角). 3、一种方法 点差法:在求解圆锥曲线并且题目中交代直线与圆锥曲线相交和被截的线段的中点坐标时,设出直线和圆锥曲线的两个交点坐标,代入圆锥曲线的方程并作差,从而求出直线的斜率,

圆锥曲线中弦长问题的解决策略

圆锥曲线中弦长问题的解决策略 张秀梅 张建强 弦长问题在高考题及模拟题中经常出现,从理论上讲,利用弦长公式 a k x x k AB /1||1||2212?+=-+=就能解决问题。但实际中,除个别简单题(本文从略) 外,直接利用弦长公式会使问题变得非常繁琐。本文试图对此进行系统的总结,给出不同类型题目的解决策略。 一、两线段相等 类型I 有相同端点的不共线线段 例1、(2204,北京西城区二模) 已知定点)4,2(--A ,过点A 做倾斜角为? 45的直线L ,交抛物线)0(22>=p px y 于A 、 B 两点,且|||||| AC BC AB 、、成等比数列 (1)求抛物线方程; (2)问(1)中抛物线上是否存在D ,使得|||| DC DB =成立?若存在,求出D 的坐标。 策略分析:由于D 、B 、C 三点不共线,要使得|||| DC DB =成立,只需取BC 中点P ,满足BC DP ⊥。 由于这种类型题目的常见性与基础性,我们再举一个例子作为练习: 例2、(2005,孝感二模) 已知)2()2(),,1(),0,(b a b a y b x a -⊥+== (1)求点P(x,y)的轨迹方程C ; (2)若直线L :b kx y +=(0≠k )与曲线C 交与AB 两点,D(0,-1),且有||||BD AD =,试求b 的取值范围。 类型II 共线线段 例3、直线L 与x 轴不垂直,与抛物线22+=x y 交于AB 两点,与椭圆2222=+y x 交于CD 两点, 与x 轴交于点M )0,(0x ,且|||| BD AC =,求0x 的取值范围。 策略分析:不妨设A ),(11y x 在B ),(22y x 下方,C ),(33y x 在D ),(44y x 下方,由于ABCD 共线,要使 ||||BD AC =,只需4213x x x x -=-,即4321x x x x ==+,结合韦达定理可得结果。 二、三线段相等 类型I 正三角形 例 4、(2003,北京春招) 已知动圆过定点P(1,0)且与定直线L :x=-1相切,点C 在L 上 (1)求动圆圆心的轨迹M 的方程;

圆锥曲线公式大全

圆锥曲线知识考点 一、直线与方程 1、倾斜角与斜率:1 21 2180<α≤0(tan x x y y --==) α 2、直线方程: ⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点) ,(),,(222211y x P x x P 其中),(2121 y y x x ≠≠: 121 121 y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b : 1x y a b += ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率B A k -=,y 轴截距为B C -) (6)k 不存在?a x b a x o =??=)的直线方程为过(轴垂直,90α 3、直线之间的关系: 222111:,:b x k y l b x k y l +=+= ⑴ 平行:{ ? ?≠=2121212 1//b b k k k k l l 且都不存在 , 2 1 2121C C B B A A ≠= ⑵ 垂直:{ ?? ⊥-=?-==2 121211 1.0 21k k k k k k l l 不存在,02121=+B B A A ⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax ⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为: 0=++n Ay Bx ⑸定点(交点)系方程:过两条直线 :,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为: 0)(2 2 2 1 1 1 =+++++C y B x A C y B x A λ 反之直线0)(2 2 2 1 1 1 =+++++C y B x A C y B x A λ中,λ取任何一切实

解圆锥曲线问题常用的八种方法与七种常规题型

解圆锥曲线问题常用的八种方法与七种常规题型 总论:常用的八种方法 1、定义法 2、韦达定理法 3、设而不求点差法 4、弦长公式法 5、数形结合法 6、参数法(点参数、K 参数、角参数) 7、代入法中的顺序 8、充分利用曲线系方程法 七种常规题型 (1)中点弦问题 (2)焦点三角形问题 (3)直线与圆锥曲线位置关系问题 (4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题 1.曲线的形状已知--------这类问题一般可用待定系数法解决。 2.曲线的形状未知-----求轨迹方程 (6) 存在两点关于直线对称问题 (7)两线段垂直问题 常用的八种方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。

2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、设而不求法 解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 02 20=+k b y a x 。(其中K 是直线AB 的斜率) (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (其中K 是直线AB 的斜率) (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. (其中K 是直线AB 的斜率) 4、弦长公式法 弦长公式:一般地,求直线与圆锥曲线相交的弦AB 长的方法是:把直线方程y kx b =+代入圆锥曲线方程中,得到型如ax bx c 2 0++=的方程,方程的两根设为x A ,x B ,判别式为△,则||||AB k x x A B =+-=12·| |12a k △ ·+,若直接用结论,能减少配方、开方等运算过程。 5、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来

圆锥曲线三种弦长问题

圆锥曲线三种弦长问题的探究 一、一般弦长计算问题: 例1、已知椭圆()22 22:10x y C a b a b +=>>,直线1:1x y l a b -=被椭圆C 截得的弦长为 且e = ,过椭圆C 2l 被椭圆C 截的弦长AB , ⑴求椭圆的方程;⑵弦AB 的长度. 思路分析:把直线2l 的方程代入椭圆方程,利用韦达定理和弦长公式求解. 解析:⑴由1l 被椭圆C 截得的弦长为2 2 8a b +=,………① 又e =,即2223c a =,所以22 3a b =………………………….② 联立①②得2 2 6,2a b ==,所以所求的椭圆的方程为22 162 x y +=. ⑵∴椭圆的右焦点()2,0F ,∴2l 的方程为:)2y x =-, 代入椭圆C 的方程,化简得,2 51860x x -+= 由韦达定理知,1212186 ,55 x x x x +== 从而12x x -= = , 由弦长公式,得12AB x =-== , 即弦AB 点评:本题抓住1l 的特点简便地得出方程①,再根据e 得方程②,从而求得待定系数22,a b ,得出椭圆的方程,解决直线与圆锥曲线的弦长问题时,常用韦达定理与弦长公式。 二、中点弦长问题: 例2、过点()4,1P 作抛物线2 8y x =的弦AB ,恰被点P 平分,求AB 的所在直线方程及弦 AB 的长度。 思路分析:因为所求弦通过定点P ,所以弦AB 所在直线方程关键是求出斜率k ,有P 是弦 的中点,所以可用作差或韦达定理求得,然后套用弦长公式可求解弦长. 解法1:设以P 为中点的弦AB 端点坐标为()()1122,,,A x y B x y , 则有22 11228,8y x y x ==,两式相减,得()()()1212128y y y y x x -+=-

圆锥曲线.03圆锥曲线的弦长面积问题.知识讲解和练习

2014年一轮复习圆锥曲线的弦长面积问题

内容明细内容 要求层次 了解理解掌握圆锥曲线 椭圆的定义与标准方程√ 椭圆的简单几何意义√ 抛物线的定义及其标准方程√ 抛物线的简单几何意义√ 双曲线的定义及标准方程√ 双曲线的简单几何性质√ 直线与圆锥曲线的位置关系√ 题型一:弦长问题 设圆锥曲线C∶() ,0 f x y=与直线:l y kx b =+相交于() 11 , A x y,() 22 , B x y两点, 则弦长AB为: () 222 121212 1141x AB k x x k x x x x k a ? =+-=++-=+ () 121212 222 111 1141y AB y y y y y y k k k a ? =+-=++-=+ 或 题型二:面积问题 1.三角形面积问题 直线AB方程:y kx m =+00 2 1 kx y m d PH k -+ == + 00 2 2 11 1 22a1 x ABP kx y m S AB d k k ? ?-+ =?=+? + 自检自查必考点 圆锥曲线 2014年高考怎么考 H O y x P B A

2. 焦点三角形的面积 直线AB 过焦点21,F ABF ?的面积为 1 1212121 2y ABF c S F F y y c y y a ??=?-=-= F 2 F 1 O y x B A 3. 平行四边形的面积 直线AB 为1y kx m =+,直线CD 为2y kx m =+ 122 1m m d CH k -== + 2222 12121211()41x AB k x x k x x x x k a ?=+-=++-=+ 12 122 2 11x x ABCD m m m m S AB d k a a k ??--=?=+? = + 题型三:范围问题 首选均值不等式或对勾函数,其实用二次函数配方法,最后选导数思想 均值不等式 222(,)a b ab a b R +≥∈ 变式:2 2(,);( )(,)2 a b a b ab a b R ab a b R ++++≥∈≤∈ 作用:当两个正数的积为定值时求出这两个正数的和的最小值; 当两个正数的和为定值时求出这两个正数的积的最大值 注意:应用均值不等式求解最值时,应注意“一”正“二”定“三”相等 圆锥曲线经常用到的均值不等式形式: (1)222 64 64t S t t t = =++(注意分0,0,0t t t =><三种情况讨论) (2)22 422 2121212 333196123696 k AB t k k k =+=+≤+++?+++ 当且仅当22 1 9k k = 时,等号成立

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:12 22 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆)0(12 22 2 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆 )0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 2002 01 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:12 22 2=+ b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2 cot 2θ ?b . ?-=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

专题5 圆锥曲线中的弦长问题(解析版)-2021年高考数学圆锥曲线中必考知识专练

1 专题5:圆锥曲线中的弦长问题(解析版) 一、单选题 1.椭圆2 214 x y +=的两个焦点为1F 、2F ,过1F 作垂直于x 轴的直线与椭圆相交,一 个交点为P ,则2PF =( ) A . 3 B .3 C . 72 D .4 【答案】C 【解析】 试题分析:,所以当时, ,而 , 所以 ,故选C. 考点:椭圆的性质 2.直线l 过抛物线22y x =的焦点F ,且l 与该抛物线交于不同的两点()11,A x y , ()22,B x y .若12 3x x +=,则弦AB 的长是( ) A .4 B .5 C .6 D .8 【答案】A 【分析】 由题意得1p =,再结合抛物线的定义即可求解. 【详解】 由题意得1p =, 由抛物线的定义知:121231422 p p AB AF BF x x x x p =+=+++=++=+=, 故选:A 【点睛】 本题主要考查了抛物线的几何性质,考查抛物线的定义,属于基础题. 3.焦点为F 的抛物线2:4C y x =的对称轴与准线交于点E ,点P 在抛物线C 上,在 EFP △中,sin 2EFP FEP ∠=∠,则||EP 的值是( ) A .2 B .4 C .2 D .1 【答案】A

试卷第 2页,总18页 【分析】 过点P 作PH 垂直于准线于点H ,由双曲线的定义得cos PF PH m FEP ==∠,在 EFP △中利用正弦定理可求出FEP ∠,带入所给等式即可推出2 EFP π ∠= ,即可求 得PE 的值. 【详解】 如图所示,过点P 作PH 垂直于准线于点H , 设PE m =,则cos PF PH m FEP ==∠, 在EFP △中,由正弦定理知 sin sin PF PE PEF EFP =∠∠,即 cos sin 2sin m FEP FEP FEP ∠=∠∠, 所以2 cos 2 FEP ∠= ,又()0,FEP π∠∈,所以4FEP π∠=, 则sin 21EFP FEP ∠= ∠=,又()0,EFP π∠∈,所以2 EFP π ∠= , 在直角EFP △中,2EF =,4 FEP π ∠=,所以22PE =故选:A 【点睛】 本题考查抛物线的定义与几何性质、正弦定理解三角形,属于中档题. 4.椭圆()22 22:10x y C a b a b +=>>的左、右焦点分别是1F 、2F ,斜率为12的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的周长是2π,若椭圆C 的离心率为13,24 e ??∈???? ,则线段AB 的长度的取值范围是( )

圆锥曲线基本题型总结

圆锥曲线基本题型总结:提纲: 一、定义的应用: 1、定义法求标准方程: 2、涉及到曲线上的点到焦点距离的问题: 3、焦点三角形问题: 二、圆锥曲线的标准方程: 1、对方程的理解 2、求圆锥曲线方程(已经性质求方程) 3、各种圆锥曲线系的应用: 三、圆锥曲线的性质: 1、已知方程求性质: 2、求离心率的取值或取值范围 3、涉及性质的问题: 四、直线与圆锥曲线的关系: 1、位置关系的判定: 2、弦长公式的应用: 3、弦的中点问题:

4、韦达定理的应用: 一、定义的应用: 1. 定义法求标准方程: (1)由题目条件判断是什么形状,再由该形状的特征求方程:(注意细节的处 理) 1.设F1, F2 为定点,|F1F2| =6,动点M满足|MF1| + |MF2| = 6,则动点M的轨 迹是() A.椭圆 B.直线 C.圆 D.线段【注:2a>|F1 F2| 是椭圆,2a=|F1 F2|是线段】 2. 设 B - 4,0) , C4,0),且厶ABC的周长等于18,则动点A的轨迹方程为) x2 y2 y2 x2 A.25+ -9 = i y z0) B.25^9 = 1 徉0) x2 y2 y2 x2 C.^+16= 1 y z 0) D£+_9 = 1 y z 0) 【注:检验去点】 3. 已知A0, - 5)、B0,5) ,|PA| - |PB| = 2a,当a= 3 或 5 时,P点的轨迹为) A. 双曲线或一条直线 B. 双曲线或两条直线 C. 双曲线一支或一条直线

D. 双曲线一支或一条射线【注:2av|F1 F2|是双曲线,2a=|F1 F2|是射线,注意一支与两支的判断】

圆锥曲线知识点总结(供参考)

圆锥曲线的方程与性质 1.椭圆 (1)椭圆概念 平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。若M 为椭圆上任意一点,则有21||||2MF MF a +=。 椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或122 22=+b x a y (0a b >>)(焦点在y 轴 上)。 注:①以上方程中,a b 的大小0a b >>,其中2 2 2 b a c =-; ②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2 x 和2y 的分 母的大小。例如椭圆 22 1x y m n +=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。 (2)椭圆的性质 ①范围:由标准方程22 221x y a b +=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里; ②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。 所以,椭圆关于x 轴、y 轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心; ③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。在椭圆的标准方程中,令 0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。同理令0y =得x a =±,即1(,0)A a -, 2(,0)A a 是椭圆与x 轴的两个交点。 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。 同时,线段21A A 、21B B 分别叫做椭圆的长轴和短轴,它们的长分别为2a 和2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。

高考数学竞赛圆锥曲线中与焦点弦相关的问题

与焦点弦相关的问题 8.椭圆、双曲线、抛物线的焦点弦性质(定值1) 问题探究8 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线交椭圆于A ,B 两点,是否存在实常数λ,使AB FA FB λ=?u u u r u u u r u u u r 恒成立.并由此求∣AB ∣的最小值.(借用柯西不等式) 实验成果 动态课件 椭圆的焦点弦的两个焦半径倒数之和为常数 11112 ||||AF BF ep += 备用课件 双曲线的焦点弦的两个焦半径倒数之和为常数 AB 在同支 11112 ||||AF BF ep += AB 在异支 11112 | |||||AF BF ep -= 备用课件 抛物线的焦点弦的两个焦半径倒数之和为常数 112 ||||AF BF ep += 备用课件

9.椭圆、双曲线、抛物线的正交焦点弦性质(定值2) 问题探究9 已知椭圆22 143 x y +=,1F 为椭圆之左焦点,过点1F 的直线12,l l 分别交椭圆于A ,B 两点和C ,D 两点,且12l l ⊥,是否存在实常数λ,使AB CD AB CD λ+=?u u u r u u u r u u u r u u u r 恒成立.并由此求 四边形ABCD 面积的最小值和最大值. 实验成果 动态课件 椭圆互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件 双曲线互相垂直的焦点弦倒数之和为常数 ep e CD AB 2| 2|||1||12-=+ 备用课件 抛物线互相垂直的焦点弦倒数之和为常数 ep e CD AB 22||1||12 -= + 备用课件

圆锥曲线方程知识点总结

§8.圆锥曲线方程 知识要点 一、椭圆方程. 1. 椭圆方程的第一定义:为端点的线段 以无轨迹方程为椭圆21212121212121,2, 2, 2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ ⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(12 222 b a b y a x =+ . ii. 中心在原点,焦点在y 轴上:)0(12 22 2 b a b x a y =+ . ②一般方程:)0,0(122 B A By Ax =+. ③椭圆的标准方程:122 2 2=+ b y a x 的参数方程为?? ?==θ θsin cos b y a x (一象限θ应是属于20π θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±. > ②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c a y 2 ±=. ⑥离心率:)10( e a c e =. ⑦焦点半径: i. 设),(00y x P 为椭圆 )0(12222 b a b y a x =+ 上的一点,21,F F 为左、右焦点,则 》 ii.设),(00y x P 为椭圆)0(12 22 2 b a a y b x =+ 上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002 200201 x a ex x c a e pF x ex a c a x e pF -=-=+=+=归结起来为“左加右减”. 注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222 2a b c a b d -=和),(2a b c ⑶共离心率的椭圆系的方程:椭圆 )0(12 22 2 b a b y a x =+的离心率是)(22b a c a c e -== ,方程t t b y a x (2 22 2=+是大于0的参数,)0 b a 的离心率也是a c e = 我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆: 12 22 2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ?的面积为2 tan 2θ b (用 ? -=+=0201,ex a PF ex a PF ? -=+=0201,ey a PF ey a PF

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程 关于直线与圆锥曲线相交求弦长,通用方法是将直线b kx y+ =代入曲线方程,化为关于x的一元二次方程,设出交点坐标()(), , , , 2 2 1 1 y x B y x A利用韦达定理及弦长公式 ] 4 ) )[( 1( 2 1 2 2 1 2x x x x k- + +求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷. 一、椭圆的焦点弦长 若椭圆方程为)0 (1 2 2 2 2 > > = +b a b y a x ,半焦距为c>0,焦点)0, ( ), 0, ( 2 1 c F c F-,设过 1 F的直线l的倾斜角为l,α交椭圆于两点()(), , , , 2 2 1 1 y x B y x A求弦长AB. 解:连结B F A F 2 2 ,,设y B F x A F= = 1 1 ,,由椭圆定义得y a B F x a A F- = - =2 , 2 2 2 ,由余弦定理得2 2 2) 2( cos 2 2 ) 2(x a c x c x- = ? ? - +α,整理可得 α cos 2 ? - = c a b x,同理可求 得 α cos 2 ? + = c a b y,则 α α α2 2 2 2 2 2 cos 2 cos cos c a ab c a b c a b y x AB - = ? + + ? - = + =; 同理可求得焦点在y轴上的过焦点弦长为 α2 2 2 2 sin 2 c a ab AB - =(a为长半轴,b为短半轴,c为半焦距). 结论:椭圆过焦点弦长公式: ? ? ? ?? ? ? ? - ? - = ). ( sin 2 ), ( cos 2 2 2 2 2 2 2 2 2 轴上 焦点在 轴上 焦点在 y c a ab x c a ab AB α α

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结 圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数 e的点的轨迹。数学里有很多公式,为了帮助大家更好的学习数学,小编特 地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。 圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其 中x2/a2+y2/b2=1,其中a>b>0,c2=a2-b22、中心在原点,焦点在y轴上的椭圆标准 方程:y2/a2+x2/b2=1,其中a>b>0,c2=a2-b2参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准 方程:x2/a-y2/b2=1,其中a>0,b>0,c2=a2+b2.2、中心在原点,焦点在y轴上的 双曲线标准方程:y2/a2-x2/b2=1,其中a>0,b>0,c2=a2+b2.参数方程: x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt2;y=2pt(t为 参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于 0直角坐标:y=ax2+bx+c(开口方向为y轴,a≠0)x=ay2+by+c(开口方向为x轴, a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到 定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。且当 01时为双曲线。圆锥曲线公式知识点总结 圆锥曲线椭圆双曲线抛物线标准方程x2/a2+y2/b2=1(a>b>0)x2/a2- y2/b2=1(a>0,b>0)y2=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[- b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称 关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c2=a2-b2】【其中c2=a2+b2】 准线x=±a2/cx=±a2/cx=-p/2渐近线——————y=±(b/a)x—————离心率

圆锥曲线焦点弦长公式(极坐标参数方程)

圆锥曲线焦点弦长公式(极坐标方程) 圆锥曲线的焦点弦问题是高考命题的大热点,主要是在解答题中,全国文科一般为压轴题的第22题,理科和各省市一般为第21题或者第20题,几乎每一年都有考察。由于题目的综合性很高的,运算量很大,属于高难度题目,考试的得分率极低。本文介绍的焦点弦长公式是圆锥曲线(椭圆、双曲线和抛物线)的通用公式,它是解决这类问题的金钥匙,利用这个公式使得极其复杂的问题变得简单明了,中等学习程度的学生完全能够得心应手!? 定理 已知圆锥曲线(椭圆、双曲线或者抛物线)的对称轴为坐标轴(或平行于坐标轴),焦点为F ,设倾斜角为α的直线l 经过F ,且与圆锥曲线交于A 、B 两点,记圆锥曲线的离心率为e ,通径长为H ,则 (1)当焦点在x 轴上时,弦AB 的长| cos 1|||2 2αe H AB -= ; (2)当焦点在y 轴上时,弦AB 的长| sin 1|||22αe H AB -=. 推论: (1)焦点在x 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α 22cos 1||e H AB -=; 当A 、B 不在双曲线的一支上时,1 cos ||22-= αe H AB ;当圆锥曲线是抛物线时, α 2 sin ||H AB = . (2)焦点在y 轴上,当A 、B 在椭圆、抛物线或双曲线的一支上时,α 2 2sin 1||e H AB -=;当A 、B 不在双曲线的一支上时,1 sin ||22-= αe H AB ;当圆锥曲线是抛物线时, α 2 cos ||H AB = .

典题妙解 下面以部分高考题为例说明上述结论在解题中的妙用. 例1(06湖南文第21题)已知椭圆13 4221=+y x C :,抛物线px m y 22 =-)((p >0), 且1C 、2C 的公共弦AB 过椭圆1C 的右焦点. (Ⅰ)当x AB ⊥轴时,求p ,m 的值,并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ)若3 4 =p 且抛物线2C 的焦点在直线AB 上,求m 的值及直线AB 的方程. 2F O A B x y

相关文档
相关文档 最新文档