文档库 最新最全的文档下载
当前位置:文档库 › 神经网络模拟试题

神经网络模拟试题

神经网络模拟试题
神经网络模拟试题

神经网络模拟试题

段克清王力宝

一填空:

1 。神经元(即神经细胞)是由细胞体、树突、轴突和突触四部分构成.

2 。人工神经元网络按照学习方式分为有导师和无导师学习.按网络结构可分为

前馈型和反馈型.

3 。神经网络工作过程主要由工作期和学习期两个阶段组成.

4 。多层感知器中的神经元分为三大类:输入单元、输出单元和隐含单元。

5 。反馈网络历经状态转移,直到它可能找到一个平衡状态,这个平衡状态称为吸引

子。

6 。联想形式一般分为自联想和异联想两种。

7 。 Hamming距离越小表示两个矢量越接近。

8 。竞争系统一般由匹配子网络和竞争子网络构成。

9 。误差反传训练算法的主要思想是学习过程分为两个阶段:正向传播过程和反向

传播过程。

10 。ATR1网络的运行过程大体上经历了识别、比较和搜索三个阶段。

二、判断题:

1 。每个反馈型神经网络只有一个平衡态即吸引子。(×)

2 。BP算法是在导师指导下,适合于多层神经元网络的一种学习,它是建立在梯度下降

法的基础上的。(√)

3 。阈值一般不是常数,它是随着神经元的兴奋程度而变化的。(√)

4 。在Hopfield网络中,各连接权的值主要是通过网络运行得到的。(×)

5 。对于前馈网络而言,一旦网络的用途确定了,那么隐含层的数目也就确定了。(×)

6 。非稳定吸引子包含两种状态,一种有限环状态,一种是浑沌状态。(√)

7 。对于用于优化的反馈网络,我们希望系统的稳定点越多越好。(×)

8 。离散型Hopfield网络中,若权矩阵为对称阵,网络在同步工作方式下必收敛到一个

稳定状态或收敛于一个极限环。(√)

9 .竞争学习的实质是一种规律性检测器,即使基于刺激集合和哪个特征是重要的先验概

念所构造的装置,发现有用的内部特征.(√)

10 .对反馈网络而言,稳定点越多,网络的联想与识别能力越强,因此,稳定点的数目越多

联想功能越好.(×)

三、问答题:

1、用神经网络作联想记忆有什么优点?

答:<1>在完全确定了标准输入矢量及相应的标准输出矢量,那么可采用非常简单的神经网络即静态网络实现联想记忆,网络中单元间的连接时固定不变的,由矢量外积构成的连接矩阵确定,可不必再反复进行学习.

<2>无需对输入矢量进行预处理,可直接进入搜索,省去编码和解码工作而且实现联想记忆,不要先找出输入、输出的内在关系.

<3>采用并行处理方式,效率高.

2、简述Hamming神经网络的结构和功能.

答:Hamming 网络是一个双层神经网络,由第一层网(即匹配子网络)和第二层网(即竞争子网络)组成.

匹配子网络是用来计算输入模式与该网络已经学习过的各样本之间的匹配测度.竞争子网络接收从匹配子网络送来的未知模式与已存各样本的匹配测度,然后经过多次迭代运算就可以求得与输入模式相匹配的样本.

3、试述反馈式和前馈型神经元网络的联系和区别.

答:<1>前馈型神经元网络取连续或离散变量,一般不考虑输出与输入在时间上的滞后效

应,只表达输出与输入的映射关系.反馈式神经元网络可以用离散变量也可连续取值,因此,需要用动态方程来描述神经元和系统的数学模型.由于前馈型网络中不含反馈连接,因而为系统分析提供了方便.

<2>前馈型网络的学习(训练)主要采用误差修正法(如BP)算法,计算过程一般比较慢,收敛速度也比较慢.而Hopfield网络的学习主要采用Hebb规则,一般情况下计算的收敛速度很快.它与电子电路存在明显的对应关系,使得该网络易于理解和易于用硬件实现.

<3>Hopfield网络也有类似于前馈型网络的应用,例如用作联想记忆或分类,而在优化计算方面的应用更加显示出 Hopfield网络的特点.联想记忆和优化计算是对偶的.当用于联想记忆时,通过样本模式的输入给定网络的稳定状态,经过学习求得突触权重值,网络演变到稳定状态,即使优化计算问题的解.

(完整版)深度神经网络及目标检测学习笔记(2)

深度神经网络及目标检测学习笔记 https://youtu.be/MPU2HistivI 上面是一段实时目标识别的演示,计算机在视频流上标注出物体的类别,包括人、汽车、自行车、狗、背包、领带、椅子等。 今天的计算机视觉技术已经可以在图片、视频中识别出大量类别的物体,甚至可以初步理解图片或者视频中的内容,在这方面,人工智能已经达到了3岁儿童的智力水平。这是一个很了不起的成就,毕竟人工智能用了几十年的时间,就走完了人类几十万年的进化之路,并且还在加速发展。 道路总是曲折的,也是有迹可循的。在尝试了其它方法之后,计算机视觉在仿生学里找到了正确的道路(至少目前看是正确的)。通过研究人类的视觉原理,计算机利用深度神经网络(Deep Neural Network,NN)实现了对图片的识别,包 括文字识别、物体分类、图像理解等。在这个过程中,神经元和神经网络模型、大数据技术的发展,以及处理器(尤其是GPU)强大的算力,给人工智能技术 的发展提供了很大的支持。 本文是一篇学习笔记,以深度优先的思路,记录了对深度学习(Deep Learning)的简单梳理,主要针对计算机视觉应用领域。 一、神经网络 1.1 神经元和神经网络 神经元是生物学概念,用数学描述就是:对多个输入进行加权求和,并经过激活函数进行非线性输出。 由多个神经元作为输入节点,则构成了简单的单层神经网络(感知器),可以进行线性分类。两层神经网络则可以完成复杂一些的工作,比如解决异或问题,而且具有非常好的非线性分类效果。而多层(两层以上)神经网络,就是所谓的深度神经网络。 神经网络的工作原理就是神经元的计算,一层一层的加权求和、激活,最终输出结果。深度神经网络中的参数太多(可达亿级),必须靠大量数据的训练来“这是苹在父母一遍遍的重复中学习训练的过程就好像是刚出生的婴儿,设置。.果”、“那是汽车”。有人说,人工智能很傻嘛,到现在还不如三岁小孩。其实可以换个角度想:刚出生婴儿就好像是一个裸机,这是经过几十万年的进化才形成的,然后经过几年的学习,就会认识图片和文字了;而深度学习这个“裸机”用了几十年就被设计出来,并且经过几个小时的“学习”,就可以达到这个水平了。 1.2 BP算法 神经网络的训练就是它的参数不断变化收敛的过程。像父母教婴儿识图认字一样,给神经网络看一张图并告诉它这是苹果,它就把所有参数做一些调整,使得它的计算结果比之前更接近“苹果”这个结果。经过上百万张图片的训练,它就可以达到和人差不多的识别能力,可以认出一定种类的物体。这个过程是通过反向传播(Back Propagation,BP)算法来实现的。 建议仔细看一下BP算法的计算原理,以及跟踪一个简单的神经网络来体会训练的过程。

神经网络动态系统辨识与控制

神经网络动态系统的辨识与控制 摘要: 本论文表明神经网络对非线性动态系统进行有效的辨识与控制。本论文的侧重点是辨识与控制模型,并论述了动态反向传播以及静态反向传播方法在参数调节中的作用。在所介绍的模型中,加法器与重复网络结构的内部相连很独特,所以很有必要将他们统一起来进行研究。由仿真结果可知辨识与自适应控制方案的提出是可行的。整篇论文中都介绍到基本的概念和定义,也涉及了必须提出的学术性问题, 简介 用数学系统理论处理动态系统的分析与合成在过去的五十年里已经被列为应用广泛的权威科学原理了。权威系统理论最先进的地方定义于基于线性代数以及复合变量理论的先进技术线性操作器以及线性常微分方程。由于动态系统的设计技术与它们的稳定特性密切相关,线性时间不变系统的充分必要条件在上世纪已经产生了,所以已经建立了动态系统的著名设计方法。相反,只要在系统对系统基础上就可以基本上建立非线性系统的稳定性,因此对于大部分系统没有同时满足稳定性、鲁棒性以及良好动态响应的设计程序并不希奇。 过去三十年来,对线性、非时变和具有不确定参数的对象进行辨识与自适应控制的研究已取得了很大的进展。但是在这些研究中辨识器和控制器的结构选取和保证整个系统全局稳定性的自适应调参规律的构成等,都是建立在线性系统理论基础上的[1]。在本论文中,我们感兴趣的是神经网络非线性动态系统的控制与辨识。由于很少有可以直接应用的非线性系统理论结果存在,所以必须密切关注这个问题以及辨识器和控制器结构的选择和调整参数适应性规则的通用性问题。 在人工神经网络领域里,有两类网络今年来最引人注目:它们是(1)多层神经网络(2)回归神经网络。多层神经网络被证实在解决模式辨识问题[2]-[5]上非常成功。而回归神经网络则经常用于联想记忆以及制约优化问题的解决[[6]-[9]。从系统理论的观点来看,多层网络呈现静态非线性映射,而回归网络则通过非线性动态反馈系统显现。尽管两种网络存在外观上的不同外,但是很有必要将他们用统一成更一般化的网络。事实上,笔者确信将来会越来越多的用到动态因素以及反馈,这导致包括两种网络的复杂系统的产生。这样,将两个网络统一起来就成为必要。在本文的第三章,这个观点会得到进一步的阐述。 本文用了三个主要目标。第一个也是最重要的一个目标是在未知非线性动态系统中为自适应控制利用神经网络提出辨识以及控制器结构。当未知参数线性系

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.wendangku.net/doc/1810724712.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

BP神经网络模型应用实例

BP神经网络模型 第1节基本原理简介 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络

设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11)(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并 传向输出层。每一层神经元的状态只影响下一层神经

基于神经网络理论的系统安全评价模型

(神经网络,安全评价) 基于神经网络理论的系统安全评价模型 王三明 蒋军成 (南京化工大学,南京,210009) 摘要 本文阐述了人工神经网络基本原理,研究分析了BP神经网络模型的缺陷并提出了优化策略。在此基础上,将神经网络理论应用于系统安全评价之中,提出了基于此理论的系统安全评价模型、实现方法和优点;评价实例证明此方法的可行性。 关键词 神经网络 网络优化 安全评价  1. 引言 人工神经网络模拟人的大脑活动,具有极强的非线形逼近、大规模并行处理、自训练学习、自组织和容错能力等优点,将神经网络理论应用于系统安全评价之中,能克服传统安全评价方法的一些缺陷,能快速、准确地得到安全评价结果。这将为企业安全生产管理与控制提供快捷和科学的决策信息,从而及时预测、控制事故,减少事故损失。   2. 神经网络理论及其典型网络模型 人工神经网络是由大量简单的基本元件-神经元相互联结,模拟人的大脑神经处理信息的方式,进行信息并行处理和非线形转换的复杂网络系统。人工神经网络处理信息是通过信息样本对神经网络的训练,使其具有人的大脑的记忆、辨识能力,完成各种信息处理功能。人工神经网络具有良好的自学习、自适应、联想记忆、并行处理和非线形转换的能力,避免了复杂数学推导,在样本缺损和参数漂移的情况下,仍能保证稳定的输出。人工神经网络这种模拟人脑智力的特性,受到学术界的高度重视和广泛研究,已经成功地应用于众多领域,如模式识别、图象处理、语音识别、智能控制、虚拟现实、优化计算、人工智能等领域。 按照网络的拓扑结构和运行方式,神经网络模型分为前馈多层式网络模型、反馈递归式网络模型、随机型网络模型等。目前在模式识别中应用成熟较多的模型是前馈多层式网络中的BP反向传播模型,其模型结构如图1。 2.1 BP神经网络基本原理 BP网络模型处理信息的基本原理是:输入信号X i通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k,网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y与期望输出值t之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij和隐层节点与输出节点之间的联接强度T jk以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

BP神经网络模型简介及相关优化案例

华东理工大学 2016-2017学年第2学期 研究生《石油化工单元数学模型》课程论文2017年6月 开课学院:化工学院任课教师:欧阳福生 考生姓名:丁桂宾学号:Y45160205 成绩:

BP 神经网络模型简介及相关优化案例 一、神经网络模型简介 现代神经生理学和神经解剖学的研究结果表明,人脑是极其复杂的,由约1010个神经元交织在一起,构成一个网状结构。它能完成诸如智能、思维、情绪等高级精神活动,被认为是最复杂、最完美、最有效的一种信息处理系统。人工神经网络(Artificial Neural Networks ,以下简写为 NN )是指模拟人脑神经系统的结构和功能,运用大量的处理部件,通过数学方法,由人工方式构造的网络系统[1] 。 图1表示作为 NN 基本单元的神经元模型,它有三个基本要素[2]: (1) 一组连接权(对应于生物神经元的突触),连接强度由各连接上的权值表示,权值为正表示激励,为负表示抑制。 (2) 一个求和单元,用于求取各输入信息的加权和(线性组合)。 (3) 一个非线性激励函数,起非线性映射作用并限制神经元输出幅度在一定的范围内(一般限制在[0,1]或[?1,+1]之间)。 图1 神经元模型 此外还有一个阈值k θ(或偏置 k k b θ-=)。以上作用可以用数学式表达为: ∑= =P j kj k j x w u ;

k k k u θν-=; ) (k k v y ?= 式中 P x x x x ,...,,,321为输入信号, kP k k k w w w w ,...,,,321为神经元k 的权值, k u 为 线性组合结果, k θ为阈值。(.)?为激励函数,k y 为神经元k 的输出。 神经网络理论突破了传统的、串行处理的数字电子计算机的局限,是一个非线性动力学系统,并以分布式存储和并行协同处理为特色,虽然单个神经元的结构和功能极其简单有限,但是大量的神经元构成的网络系统所实现的行为却是极其丰富多彩的。

神经网络模型应用实例

BP 神经网络模型 近年来全球性的神经网络研究热潮的再度兴起,不仅仅是因为神经科学本身取得了巨大的进展.更主要的原因在于发展新型计算机和人工智能新途径的迫切需要.迄今为止在需要人工智能解决的许多问题中,人脑远比计算机聪明的多,要开创具有智能的新一代计算机,就必须了解人脑,研究人脑神经网络系统信息处理的机制.另一方面,基于神经科学研究成果基础上发展出来的人工神经网络模型,反映了人脑功能的若干基本特性,开拓了神经网络用于计算机的新途径.它对传统的计算机结构和人工智能是一个有力的挑战,引起了各方面专家的极大关注. 目前,已发展了几十种神经网络,例如Hopficld 模型,Feldmann 等的连接型网络模型,Hinton 等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen 的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart 等人提出了误差反向传递学习算法(即BP 算),实现了Minsky 的多层网络设想,如图34-1所示。 BP 算法不仅有输入层节点、输出层节点,还可有1个或多个隐含层节点。对于输入信号,要先向前传播到隐含层节点,经作用函数后,再把隐节点的输出信号传播到输出节点,最后给出输出结果。节点的作用的激励函数通常选取S 型函数,如 Q x e x f /11 )(-+= 式中Q 为调整激励函数形式的Sigmoid 参数。该算法的学习过程由正向传播和反向传播组成。在正向传播过程中,输入信息从输入层经隐含层逐层处理,并传向输出层。每一层神经元的状态只影响下一层神经元的状态。如果输出层得不到期望的输出,则转入反向传播,将误差信号沿原来的连接通道返回,通过修改各层神经元的权值,使得误差信号最小。 社含有n 个节点的任意网络,各节点之特性为Sigmoid 型。为简便起见,指定网络只有一个输出y ,任一节点i 的输出为O i ,并设有N 个样本(x k ,y k )(k =1,2,3,…,N ),对某一输入x k ,网络输出为y k 节点i 的输出为O ik ,节点j 的输入为net jk = ∑i ik ij O W 并将误差函数定义为∑=-=N k k k y y E 12 )(21

神经网络典型模型的比较研究

神经网络典型模型的比较研究 杜华英1,赵跃龙2 (中南大学信息科学与工程学院,湖南长沙 410083) 摘要神经网络是近年来发展起来的一门新兴学科,具有较高的研究价值,本文介绍了神经网络的基本概念,针对神经网络在不同的应用领域如何选取问题,对感知器、BP网络、Hopfield网络和ART网络四种神经网络模型在优缺点、有无教师方式、学习规则、正反向传播、应用领域等方面进行了比较研究。可利用其特点有针对性地将神经网络应用于计算机视觉、图像处理、模式识别、信号处理、智能监控、机器人等不同领域。 关键词神经网络;感知器;BP网络;Hopfield网络;ART网络 1 引言 人工神经网络(Artificial Neural Network, ANN)是模仿生物神经网络功能的一种经验模型。生物神经元受到传入的刺激,其作出的反应又从输出端传到相连的其它神经元,输入和输出之间的变换关系一般是非线性的。神经网络是由若干简单元件及其层次组织,以大规模并行连接方式构造而成的网络,按照生物神经网络类似的方式处理输入的信息。模仿生物神经网络而建立的人工神经网络,对输入信号有功能强大的反应和处理能力。 若干神经元连接成网络,其中的一个神经元可以接受多个输入信号,按照一定的规则转换为输出信号。由于神经网络中神经元间复杂的连接关系和各神经元传递信号的非线性方式,输入和输出信号间可以构建出各种各样的关系,因此在运行网络时,可视为一个“黑箱”模型,不必考虑其内部具体情况。人工神经网络模拟人类部分形象思维的能力,是模拟人工智能的一条途径,特别是可以利用人工神经网络解决人工智能研究中所遇到的一些难题。目前,人工神经网络理论的应用已经渗透到多个领域,在计算机视觉、图像处理、模式识别、信号处理、智能监控、机器人等方面取得了可喜的进展。 2 神经网络的典型模型 在人们提出的几十种神经网络模型中,人们用得较多的是感知器、BP网络、Hopfield 网络和ART网络。 2.1 感知器[2] 罗森勃拉特(Rosenblatt)于1957年提出的感知器模型是一组可训练的分类器,为最古老的ANN之一,现已很少使用。然而,它把神经网络的研究从纯理论探讨引向了工程上的实现,在神经网络的发展史上占有重要的地位。尽管它有较大的局限性,甚至连简单的异或(XOR)逻辑运算都不能实现,但它毕竟是最先提出来的网络模型,而且它提出的自组织、自学习思想及收敛算法对后来发展起来的网络模型都产生了重要的影响,甚至可以说,后来发展的网络模型都是对它的改进与推广。 最初的感知器是一个只有单层计算单元的前向神经网络,由线性阈值单元组成,称为单层感知器,后来针对其局限性进行了改进,提出了多层感知器。 1杜华英(1975—),女,江西樟树人,惠州学院成教处计算机工程师,主研人工智能,中南大学信息科学与工程学院在读工程硕士。 2赵跃龙(1958—),男,湖南湘潭人,中南大学信息科学与工程学院计算机系教授,主要从事计算机体系结构、磁盘阵列、计算机控制、神经网络应用等方面的研究。

BP神经网络及深度学习研究 - 综述

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W.Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用 w表示神经元i和神经元j之间的连接强度。 ij (2)具有反映生物神经元时空整合功能的输入信号累加器 。

BP神经网络模型预测未来

BP神经网络模型预测未来 BP神经网络算法概述: 简介与原理 BP神经网络是一种多层前馈神经网络,该网络的主要特点是: 信号前向传递,误差反向传播。在前向传递中,输入信号从输入层经 隐含层逐层处理,直至输出层,每一层的神经元状态只影响下一层神 经元状态。如果输出层得不到期望输出,则转入反向传播,根据预测 误差调整网络权值和阈值,从而使BP神经网络预测输出不断逼近期 望输出。 BP神经网络的拓扑结构如下图所示: X Y 1 X 2 Y M M 1 X n 输入层隐含层输出层 BP神经网络结构图 图中是BP神经网络的输入值,是BP神经网络的预测 值,

为BP神经网络权值。 BP神经网络预测前首先要训练网络,通过训练使网络具有联想记忆和预测能力。BP神经网络的训练过程包括一下几个步骤。 步骤一:网络初始化。根据系统输入输出序列(,) X Y确定网络输入层节点数,n隐含层节点数l、输出层节点数m、初始化输入层、隐含层和输出层神经元之间的连接权值,, ωω初始化隐含层阈值a,给 ij jk 定输出层阈值b,给定学习速率和神经元激励函数。 步骤二:隐含层输出计算。根据输入向量,输入层和隐含层间连接权值,以及隐含层阈值,计算隐含层输出。 步骤三:输出层输出计算。根据隐含层输出,连接权值和阈值,计算BP神经网络预测输出。 步骤四:误差计算根据网络输出和预期输出,计算网络预测误差。 步骤五:权值更新。根据网络预测更新网络连接权值 步骤六:阈值更新。根据网络预测误差更新网络节点阈值。 步骤七:判断算法迭代是否结束,若没有结束,返回步骤二。 下面是基本BP算法的流程图。

BP神经网络的拓扑结构如下图所示: X Y 1 X 2 Y M M 1 X n 输入层隐含层输出层 BP神经网络预测的算法流程如下: 步骤一:对初始数据进行标准化。

基于神经网络模型的最新系统辨识算法

基于神经网络模型的最新系统辨识算法 摘要:神经网络具有大规模并行分布式结构、自主学习以及泛化能力,因此可以利用神经网络来解决许多传统方法无法解决的问题。神经网络应用在非线性系统的辨识中有良好的结果。本文在阅读大量参考文献的基础上,对最新的基于神经网络的系统辨识算法进行总结。 关键字:神经网络;系统辨识;辨识算法 The latest algorithm about identification system based on neural network model Abstract: Neural network has large parallel distributed structure, learning by itself and has generalization ability. So neural network is used to solve many questions which traditional method cannot. Neural network is well applied to nonlinear system which has got good achievements in identification system. Based on most of documents, the paper summaries the latest algorithm about identification system based on neural network model. Keywords:Neural network, identification system, identification algorithm 0 前言 在国内,系统辨识也取得了许多成绩,尽管成果丰硕,但传统辨识法仍存在不少局限:传统辨识法较适用于输入端中扰动水平比较低的控制系统,对于具有外界干扰的控制系统,就会出现计算量大、鲁棒性不够好的问题;最小二乘法及其相关改进算法一般利用梯度算法进行信息搜索,容易陷入局部极小值。鉴于此,神经网络控制在系统辨识中得到了新的应用。本文在阅读大量文献后,针对国内基于神经网络的结合其他算法的最新辨识算法进行综述分析。 1 神经网络的应用优势 神经网络的吸引力在于:能够充分逼近任意复杂的非线性关系,能够学习适应不确定性系统的动态特性;所有定量或定性的信息都分布储存于网络内的各个神经元,所以有很强的鲁棒性和容错性;采用并行分

智能控制之神经网络系统辨识的设计

四、神经网络系统辨识分析(25分) 用BP 神经网络进行系统在线逼近的原理框图如图3所示 ) (k y n (k u (k y 图3 图4 假设某控制对象的模型为2 3 )1(1) 1()()(-+-+ =k y k y k u k y ,采样时间取t=1ms ,输入信号 t)sin(650.)u(π=k 。采用的BP 神经网络结构如图4所示,权值ij w 和2j w 的初值取 [-1,+1] 之间的随机值,权值采用δ学习算法,学习速率η取0.50,动量因子α取0.05。试分析神经网络在线逼近的运行过程,并作Matlab 仿真。 题目四、需要阐述清楚BP 网络逼近控制对象的工作原理和学习过程 BP 算法的基本思想是:对于一个输入样本,经过权值、阈值和激励函数运算后,得到一个输出y n (k),然后让它与期望的样本y(k)进行比较,若有偏差,则从输出开始反向传播该偏差,进行权值、阈值调整,使网络输出逐渐与希望输出一致。 BP 算法由四个过程组成:输入模式由输入层经过中间层向输出层的“模式顺传播”过程,网络的希望输出与网络的实际输出之间的误差信号由输出层经过中间层向输入层逐层修正连接权的“误差逆传播”过程,由“模式顺传播”与“误差逆传播”的反复交替进行的网络“记忆训练”过程,网络趋向于收敛即网络的全局误差趋向极小值的 “学习收敛”过程。 BP 网络(Back Propagation ),该网络是一种单向传播的多层前向网络。误差 反向传播的BP 算法简称BP 算法,其基本思想是梯度下降法。它采用梯度搜索技术,以期使网络的实际输出值与期望输出值的误差均方值为最小。 BP 网络特点: (1)是一种多层网络,包括输入层、隐含层和输出层; (2)层与层之间采用全互连方式,同一层神经元之间不连接; (3)权值通过δ学习算法进行调节;

神经网络算法及模型

神经网络算法及模型 思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。主要的研究工作集中在以下几个方面: (1)生物原型研究。从生理学、心理学、解剖学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能机理。 (2)建立理论模型。根据生物原型的研究,建立神经元、神经网络的理论模型。其中包括概念模型、知识模型、物理化学模型、数学模型等。 (3)网络模型与算法研究。在理论模型研究的基础上构作具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也称为技术模型研究。 (4)人工神经网络应用系统。在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理或模式识别的功能、构作专家系统、制成机器人等等。 纵观当代新兴科学技术的发展历史,人类在征服宇宙空间、基本粒子,生命起源等科学技术领域的进程中历经了崎岖不平的道路。我们也会看到,探索人脑功能和神经网络的研究将伴随着重重困难的克服而日新月异。 神经网络和粗集理论是智能信息处理的两种重要的方法,其任务是从大量观察和实验数据中获取知识、表达知识和推理决策规则。粗集理论是基于不可分辩性思想和知识简化方法,从数据中推理逻辑规则,适合于数据简化、数据相关性查找、发现数据模式、从数据中提取规则等。神经网络是利用非线性映射的思想和并行处理方法,用神经网络本身的结构表达输入与输出关联知识的隐函数编码,具有较强的并行处理、逼近和分类能力。在处理不准确、不完整的知识方面,粗集理论和神经网络都显示出较强的适应能力,然而两者处理信息的方法是不同的,粗集方法模拟人类的抽象逻辑思维,神经网络方法模拟形象直觉思维,具有很强的互补性。 首先,通过粗集理论方法减少信息表达的属性数量,去掉冗余信息,使训练集简化,减少神经网络系统的复杂性和训练时间;其次利用神经网络优良的并行处理、逼近和分类能力来处理风险预警这类非线性问题,具有较强的容错能力;再次,粗集理论在简化知识的同时,很容易推理出决策规则,因而可以作为后续使用中的信息识别规则,将粗集得到的结果与神经网络得到的结果相比较,以便相互验证;最后,粗集理论的方法和结果简单易懂,而且以规则的形式给出,通过与神经网络结合,使神经网络也具有一定的解释能力。因此,粗集理论与神经网络融合方法具有许多优点,非常适合处理诸如企业战略风险预警这类非结构化、非线性的复杂问题。 关于输入的问题--输入模块。

系统辨识综述

系统辨识课程综述 作者姓名:王瑶 专业名称:控制工程 班级:研硕15-8班

系统辨识课程综述 摘要 系统辨识是研究建立系统数学模型的理论与方法。虽然数学建模有很长的研究历史,但是形成系统辨识学科的历史才几十年在这短斩的几十年里,系统辨识得到了充足的发展,一些新的辨识方法相继问世,其理论与应用成果覆盖了自然科学和社会科学的各个领域。而人工神经网络的系统辨识方法的应用也越来越多,遍及各个领域。本文简单介绍了系统辨识的基本原理,系统辨识的一些经典方法以及现代的系统辨识方法,其中着重介绍了基于神经网络的系统辨识方法:首先对神经网络系统便是方法与经典辨识法进行对比,显示出其优越性,然后再通过对改进后的算法具体加以说明,最后展望了神经网络系统辨识法的发展方向。 关键字:系统辨识;神经网络;辨识方法 0引言 辨识、状态估计和控制理论是现代控制理论三个相互渗透的领域。辨识和状态估计离不开控制理论的支持,控制理论的应用又几乎不能没有辨识和状态估计技术。随着控制过程复杂性的提高,控制理论的应用日益广泛,但其实际应用不能脱离被控对象的数学模型。然而在大多数情况下,被控对象的数学模型是不知道的,或者在正常运行期间模型的参数可能发生变化,因此利用控制理论去解决实际问题时,首先需要建立被控对象的数学模型。所以说系统辨识是自动化控制的一门基础学科。 图1.1系统辨识、控制理论与状态估计三者之间的关系 随着社会的进步 ,越来越多的实际系统变成了具有不确定性的复杂系统 ,经典的系统辨识方法在这些系统中应用 ,体现出以下的不足 : (1) 在某些动态系统中 ,系统的输入常常无法保证 ,但是最小二乘法的系统辨

神经网络系统辨识综述

神经网络系统辨识综述 目前,国内外有许多利用神经网络来模拟设备性能、预测负荷的成功例子。1993 年,美国的Mistry和Nair成功开发了一个用来决定预期平均满意率(PMV)和温湿度参数的神经网络模型。1994 年,Curtiss利用神经网络模型成功地模拟了一台往复压缩式的冷水机组和其它暖通空调设备的性能。随后,Darred和Curtiss利用神经网络模型成功地预测了冷水机组的冷负荷和耗电量。在国内,也有利用神经网络对暖通空调优化控制、对空调器进行仿真研究的成功例子。神经网络之所以能够在国内外得到如此广泛的应用是因为: a)神经网络具有模拟高度非线性系统的优点; b)神经网络具有较强的学习能力、容错能力和联想能力; c)神经网络具有较强的自适应能力。 例如可通过重新训练网络进行设备特性的动态校准功能,这也是它优于其它控制方法的主要特点。此外,神经网络模型还具有建模时间短、易于进行计算机模拟的优点。对于智能建筑,其热动力学参数模型本质上为分布参数系统,应用系统辨识也很难获得其精确的数学模型,控制效果可想而知,而人工神经网络允许在模型理论不完善的情况下,构成一种具有自学习、自适应的体系结构,在与外界信息的交互作用中,形成一种非线性映射或线性动力学系统,以正确反映输入和输出关系而不必预先知道这种关系的精确数学模型。 神经网络在线性系统辨识中的应用 自适应线性(Adaline-Mada Line)神经网络作为神经网络的初期模型与感知机模型相对应,是以连续线性模拟量为输入模式,在拓扑结构上与感知机网络十分相似的一种连续时间型线性神经网络。这种网络模型是美国学者Widrow和Hoff

基于Elman神经网络的非线性动态系统辨识

2007,43(31)神经网络辨识器 被辨识系统 y(k)e (k)y !(k)u (k)- +图1系统辨识原理框图 1引言 动态系统的控制通常需要在无需预先知道精确的对象和 环境知识时便能实现,因此寻求适当的方法以解决不确定性的、高度复杂的动态系统辨识是控制理论研究的一个重要分支。神经网络是由大量处理单元广泛互连而成的网络,具有大规模并行模拟处理能力和很强的自适应、自组织、自学习能力,因而近年来在系统建模、辨识与控制中受到普遍重视。在自动控制领域,基于线性系统理论对被控系统进行辩识并修正参数的方法能较好地应用于线性系统,但很难推广到复杂的非线性系统。神经网络所具有的非线性变换特性和高度并行运算能力为系统辨识,尤其是非线性系统的辨识提供了有效的方法。 目前,系统辩识中应用最多的是多层前向网络,多层前向网络具有逼近任意连续非线性函数的能力,但这种网络结构一般是静态的,而人们更关心控制系统的动态特性,这恰恰是BP神经网络等前馈网络所缺乏的。与静态前馈型神经网络不同,动态递归网络通过存储内部状态,使其具备映射动态特征的功能,从而使系统具有适应时变特性的能力,更适合于非线性动态系统的辩识。动态递归神经网络是控制系统建模和辨识中极具发展潜力的网络,本文利用改进的动态递归Elman神经网络实现对非线性动态系统的辨识。 2神经网络非线性系统辨识原理 假定拟辨识对象为非线性离散时间系统,或者可以离散化 为这样的系统,用NARMA模型来描述: y(k)=f(y(k-1),…,y(k-n),u(k-1),…,u(k-m))(1) 式中,n、m分别为模型输出y(t)和输入u(t)的阶次,f(? )是非线性函数。 如果f(? )未知时,不确定系统的辨识问题可以描述为寻求一数学模型,使得模型的输出y!(?)和被辨识系统的输出y(?) 尽量接近。神经网络具有通过恰当选择网络层次和隐层单元数,能够以任意精度逼近任意连续非线性函数的特性,因此可作为辨识模型,用来对非线性系统进行辨识。 由图1所示的系统辨识原理可以看出,辨识模型和被辨识 系统具有相同的输入,定义误差e(k)=y!(k)-y(k),用于对神经 网络进行学习和修正。 基于Elman神经网络的非线性动态系统辨识 高钦和1,2,王孙安1 GAOQin-he1,2,WANGSun-an1 1.西安交通大学机械工程学院,西安7100282.第二炮兵工程学院,西安710025 1.SchoolofMechanicalEngineering,Xi’anJiaotongUniversity,Xi’an710028,China2.SecondArtilleryEngineeringCollege,Xi’an710025,ChinaE-mail:gao202@yahoo.com.cn GAOQin-he,WANGSun-an.IdentificationofnonlineardynamicsystembasedonElmanneuralnetwork.Computer EngineeringandApplications,2007,43 (31):87-89.Abstract:Thetheoryandmethodofdynamicsystemidentificationbydynamicrecurrentneuralnetworkarestudied.Animproved Elmanneuralnetworkissuccessfullyusedtoidentifythenonlineardynamicsystemeventhoughwithoutanypriorinformationofidentifiedsystem.SimulationresultsshowthattheElmanneuralnetworkhashigherlearningspeedandbettergeneralizationabilitythanthefeedforwardneuralnetwork,andthatitissuitableforthenonlineardynamicsystemidentification. Keywords:nonlinearsystemidentification;dynamicsystem;dynamicrecurrentneuralnetwork;Elmanneuralnetwork 摘 要:研究了应用动态递归神经网络实现动态系统辨识的原理和方法,在没有被辨识对象的先验知识情况下,通过改进的El- man网络实现了非线性动态系统的辨识。 仿真结果表明,与前馈网络相比,Elman网络具有学习速度快、泛化能力强的特点,可用较小的网络结构实现高阶系统的辨识,适用于具有本质非线性动态系统的辨识。关键词:非线性系统辨识;动态系统;动态递归神经网络;Elman网络文章编号:1002-8331(2007)31-0087-03 文献标识码:A 中图分类号:TP183 作者简介:高钦和(1968-),男,西安交通大学博士后,第二炮兵工程学院副教授,主要研究方向为发射系统仿真与自动检测;王孙安(1957-),男, 教授,博士,主要研究方向为机电系统与工业过程的计算机智能监控。 ComputerEngineeringandApplications计算机工程与应用87

相关文档
相关文档 最新文档