文档库 最新最全的文档下载
当前位置:文档库 › 第9章 质点系动量定理

第9章 质点系动量定理

动量守恒定律碰撞与反冲

动量守恒定律碰撞与反冲Last revision on 21 December 2020

碰撞与反冲 【自主预习】 1.如果碰撞过程中机械能守恒,这样的碰撞叫做________。 2.如果碰撞过程中机械能不守恒,这样的碰撞叫做________。 3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在________,碰撞之后两球的速度________会沿着这条直线。这种碰撞称为正碰,也叫________碰撞。 4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会________原来两球心的连线。这种碰撞称为________碰撞。 5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做 ________。 6. 弹性碰撞和非弹性碰撞 从能量是否变化的角度,碰撞可分为两类: (1)弹性碰撞:碰撞过程中机械能守恒。 (2)非弹性碰撞:碰撞过程中机械能不守恒。 说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。 7.弹性碰撞的规律 质量为m1的物体,以速度v1与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v′1和v′2,碰撞前后的速度方向均在同一直线上。 由动量守恒定律得m1v1=m1v′1+m2v′2 由机械能守恒定律得1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 联立两方程解得 v′1=m1-m2 m1+m2 v1,v′2= 2m1 m1+m2 v1。 (2)推论 ①若m1=m2,则v′1=0,v′2=v1,即质量相等的两物体发生弹性碰撞将交换速度。惠更斯早年的实验研究的就是这种情况。 ②若m1m2,则v′1=v1,v′2=2v1,即质量极大的物体与质量极小的静止物体发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。 ③若m1m2,则v′1=-v1,v′2=0,即质量极小的物体与质量极大的静止物体发生弹性碰撞,前者以原速度大小被反弹回去,后者仍静止。乒乓球落地反弹、台球碰到桌壁后反弹、篮球飞向篮板后弹回,都近似为这种情况。 【典型例题】 【例1】在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图16-4-2所示。设碰撞中不损失机械能,则碰后三个小球的速度可能是( )

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

【2013真题汇编】第18专题 碰撞与动量守恒定律

第十七专题 碰撞与动量守恒定律 【 2013福建卷30 (2) 】将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在及短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是 。(填选项前的事母) A.0m v M B. 0M v m C. 0M v M m - D. 0m v M m - 【答案】D 【解析】根据动量守恒定律得:0)(0=--mv v m M ,所以火箭模型获得的速度大小是m M m v v -=0,选项D 正确。 【2013山东 38(2)】如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。 解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得 C C A A A v m v m v m +=0 A 与 B 在摩擦力作用下达到共同速度,设共同速度为v AB , 由动量守恒定律得 AB B A B A A v m m v m v m )+(=+0 A 与 B 达到共同速度后恰好不再与 C 碰撞,应满足C AB v v = 联立上式,代入数据得 s /m 2=A v 【2013江苏 12 C (3)】如图所示,进行太空行走的宇航员A 和B 的质量分别为80kg 和100kg ,他们携手远离空间站,相对空间站的速度为0。 1m/ s 。 A 将B 向空间站方向轻推后,A 的速度变为0。2m/ s ,求此时B 的速度大小和方向。

动量守恒定律-碰撞问题试卷

动量守恒定律-碰撞问题试卷

考点23动量守恒定律碰撞问题考点名片 考点细研究:(1)动量守恒定律处理系统内物体的相互作用;(2)碰撞、打击、反冲等“瞬间作用”问题。其中考查到的如:2016年全国卷Ⅰ第35题(2)、2016年全国卷Ⅲ第35题(2)、2016年天津高考第9题(1)、2015年福建高考第30题(2)、2015年北京高考第17题、2015年山东高考第39题(2)、2014年重庆高考第4题、2014年福建高考第30题(2)、2014年江苏高考第12题C(3)、2014年安徽高考第24题、2013年天津高考第2题、2013年福建高考第30题等。高考对本考点的考查以识记、理解为主,试题难度不大。 备考正能量:预计今后高考仍以选择题和计算题为主要命题形式,以物理知识在生活中的应用为命题热点,灵活考查动量守恒定律及其应用,难度可能加大。 一、基础与经典 1. 如图所示,在光滑水平面上,用等大反向的力F1、F2分别同时作用于A、B两个静止的物体上。已知m A

答案 A 解析选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零。初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,选项A正确。 2.关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量一定守恒 答案 C 解析动量守恒的条件是系统不受外力或所受合外力为零,与系统内是否存在摩擦力无关,与系统中物体是否具有加速度无关,故A、B选项错误,C选项正确;所有物体加速度为零时,各物体速度恒定,动量恒定,总动量只能说不变,不能说守恒,D选项错误。 3. 质量为m的甲物块以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在甲物块上。另一质量也为m的乙物块以4 m/s的速度与甲相向运动,如图所示。则() A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒 B.当两物块相距最近时,甲物块的速率为零 C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0

高中物理选修3-5碰撞与动量守恒经典题型计算题练习有答案

动量守恒定律 1、(16分)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求 (1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍; (2)物块与水平轨道BC 间的动摩擦因数μ。 答案:(1)设物块的质量为m ,其开始下落处的位置距BC 的竖直高度为h ,到达B 点时的速度为v ,小车圆弧轨道半径为R 。由机械能守恒定律,有 22 1mv mgh = ① 根据牛顿第二定律,有R v m mg mg 2 9=- ② 解得h =4R ③ 即物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的4倍。 (2)设物块与BC 间的滑动摩擦力的大小为F ,物块滑到C 点时与小车的共同速度为 v ′,物块在小车上由B 运动到C 的过程中小车对地面的位移大小为s 。依题意,小车的质量为3m ,BC 长度为10R 。由滑动摩擦定律,有 mg F μ= ④ 由动量守恒定律,有'+=v m m mv )3( ⑤ 对物块、小车分别应用动能定理,有 222 1 21)10(mv mv s R F -'=+- ⑥ 0)3(2 1 2-'= v m Fs ⑦ 解得3.0=μ ⑧ 2、(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求 (1) 物块在车面上滑行的时间t; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。

对质点系角动量定理的讨论

目录 摘要 (1) Abstract (1) 1 引言 (1) 2 惯性系中质点系角动量定理 (1) 2.1惯性系中角动量定理的推导 (1) 2.2在惯性系中角动量表达式的一点讨论 (2) 2.3惯性系中质点对轴的角动量定理 (3) 2.4刚体定轴转动时对转轴的角动量 (3) 3 非惯性系中的角动量定理 (4) 4 应用 (5) 4.1质点系质心系的角动量定理在刚体定轴转动中的应用 (5) 4.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (5) 5 结论 (6) 参考文献 (7)

对质点系角动量定理的讨论 摘 要:通过对质点系角动量定理推导以及讨论其在具,体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 Discussion on the Theorem of Angular Momentum of Particle Abstract : Through to discuss of the particle system and angular moment theorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them, we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly , and proved a lot of help to solve the related mechanical problems. Key W ords : Particle; Angular momentum; Reference points; Axis; centroid. 1引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯。性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 2惯性系中质点系角动量定理 2.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v 表示,相对于参考点O 的位置矢量分别为1r ,2r ……i r …n r ,质量分别为1m , 2m ……i m ……n m 将质点系的角动量记作L 。则

高三物理碰撞与动量守恒

《碰撞与动量守恒》复习课 一、教学目的 1、复习巩固动量定理 2、复习巩固应用动量守恒定律解答相关问题的基本思路和方法 3、掌握处理相对滑动问题的基本思路和方法 二、教学重点 1、 本节知识结构的建立 2、 物理情景分析和物理规律的选用 三、教学难点 物理情景分析和物理规律的选用 四、教学过程 本章知识结构 〖引导学生回顾本章内容,建立相关知识网络(见下表)〗 典型举例 问题一:动量定理的应用 例1:质量为m 的钢珠从高出沙坑表面H 米处由静止自由下落,不考虑空气阻力,掉入沙坑后停止,如图所示,已知钢珠在沙坑中受到沙的平均阻力是f ,则钢珠在沙内运动时间为多少? 分析:此题给学生后,先要引导学生分清两个运动过程:一是在空气中的自由落体运动,二是在沙坑中的减速运动。学生可能会想到应用牛顿运动定律和运动学公式进行分段求解,此时不急于否定学生的想法,应该给予肯定。在此基础上,可以引导学生应用全过程动量定理来答题。然后学生自己思考讨论,动手作答,老师给出答案。 设钢珠在空中下落时间为t 1,在沙坑中运动时间为t 2,则: 在空中下落,有H= 2121gt ,得t 1= g H 2, 对全过程有:mg(t 1 +t 2)-f t 2=0-0 得: mg f gH m t -= 22

巩固:蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回

到离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s 2) 〖学生自练,老师巡回辅导,给出答案N 3 105.1?,学生自评〗 例2:一根弹簧上端固定,下端系着质量为m 的物体A ,物体A 静止时的位置为P 处,再用细绳将质量也为m 的物体B 挂在物体A 的下面,平衡后将细绳剪断,如果物体A 回到P 点处时的速率为V ,此时物体B 的下落速度大小为u ,不计弹簧的质量和空气阻力,则这段时间里弹簧的弹力对物体A 的冲量大小为多少? 分析:引导学生分析,绳子剪断后,B 加速下降,A 加速上升,当A 回到P 点时,A 的速度达到最大值。尤其要强调的是本题中所求的是弹簧的弹力对物体A 的冲量,所以要分析清楚A 上升过程中 A 的受力情况。 解:取向上方向为正, 对B :-mgt=-mu ○ 1 对A :I 弹-mgt=mv ○ 2 两式联立得I 弹=m (v +u ) 问题二:动量守恒定律的应用 例3:质量为 M 的气球上有一质量为 m 的猴子,气球和猴子静止在离地高为 h 的空中。从气球上放下一架不计质量的软梯,为使猴子沿软梯安全滑至地面,则软梯至少应为多长? 分析:此题为前面习题课中出现过的人船模型,注意引导学生分析物理情景,合理选择物理规律。 设下降过程中,气球上升高度为H ,由题意知猴子下落高度为h , 取猴子和气球为系统,系统所受合外力为零,所以在竖直方向动量守恒,由动量守恒定律得:M ·H=m ·h ,解得M mh H = 所以软梯长度至少为M h m M H h L )(+=+= 例4:一质量为M 的木块放在光滑的水平桌面上处于静止状态,一颗质量为m 的子弹以速度v 0沿水平方向击中木块,并留在其中与木块共同运动,则子弹对木块的冲量大小是: A 、mv 0 ; B 、m M mMv +0 ; C 、mv 0-m M mv +0 ;D 、mv 0-m M v m +02 分析:题中要求子弹对木块的冲量大小,可以利用动量定理求解,即只需求出木块获得 的动量大小即可。 对子弹和木块所组成的系统,满足动量守恒条件,根据动量守恒定律得: mv 0=(M+m )v 解得:m M mv v += ,由动量定理知子弹对木块的冲量大小为 m M Mmv Mv I += =0

对质点系角动量定理的讨论

目录 摘要 (1) 关键词 (1) Abstract (1) Key Words (1) 引言 (1) 1惯性系中质点系角动量定理 (1) 1.1惯性系中角动量定理的推导 (1) 1.2在惯性系中角动量表达式的一点讨论 (2) 1.3惯性系中质点对轴的角动量定理 (3) 1.4刚体定轴转动时对转轴的角动量 (4) 2非惯性系中的角动量定理 (5) 3应用 (6) 3.1质点系质心系的角动量定理在刚体定轴转动中的应用 (6) 3.2刚体做定轴转动时对轴上任一点的角动量定理和应用 (7) 结束语: (8) 参考文献: (8)

对质点系角动量定理的讨论 姓名:杜晨阳 学号:20095040038 单位:物理电子工程学院 专业:物理学 指导老师:贾老师 职称:副教授 摘 要:通过对质点系角动量定理推导以及讨论其在具体问题中的应用,并且结合其在惯性系、非惯性系以及质心系的情况下的公式和它们之间的联系,明确了解了角动量定理在解决力学相关问题的重要性,从而为解决相关力学问题提供帮助。 关键词:质点系;角动量;参考点;轴;质心 To express theorem of angular momentu Abstract: Through to discusse of the particle system and angular momenttheorem andits specific problems, and to combinate with the application in the inertial system, noninertial system under the conditions of the heart and the quality of the formula and the relationship between them,we understanded the angular momentum in solving problems which related to the mechanical theorems and its importance clearly,and proved a lot of help to solve the related mechanical problems. Key Words : Particle, Angular momentum, Reference points, Axis, centroid. 引言 角动量定理在质点系中的应用在力学相关问题中非常重要,本论文主要是通过上学期对质点系角动量在惯性系,非惯性系,以及质心系内的研究与讨论,总结出的一些公式和规律,为掌握解决问题方法提供方便。 1惯性系中质点系角动量定理 1.1惯性系中角动量定理的推导 质点系内各质点对参考点O 的角动量的矢量和看作质点系对O 点的角动量,设 由n 个质点组成的质点系,在惯性参考系中,各质点的速度分别用1v ,2v ……i v …n v

专地的题目:弹性碰撞、非弹性碰撞动量守恒定律实验

专题:弹性碰撞、非弹性碰撞实验:探究动量守恒定律 学习目标: 1、了解弹性碰撞、非弹性碰撞和完全非弹性碰撞。 2、会用动量、能量的观点综合分析、解决一维碰撞问题。 3、了解探究动量守恒定律的三种方法。 学习过程: 系统不受外力,或者所受的外力为零,某些情况下系统受外力,但外力远小于内力时均可以认为系统的动量守恒,应用动量守恒定律时请大家注意速度的方向问题,最好能画出实 际的情境图协助解题。请规范解下列问题。 一、弹性碰撞、非弹性碰撞: 实例分析1:在气垫导轨上,一个质量为2kg的滑块A以1m/s的速度与另一个质量为1kg、速度为4m/s并沿相反方向运动的滑块B迎面相撞,碰撞后两个滑块粘在一起,求: (1)碰撞后两滑块的速度的大小和方向?系统的动能减少了多少?转化为什么能量? ⑵若碰撞后系统的总动能没有变化,则碰撞后两滑块的速度的大小和方向? 问题一:什么叫做弹性碰撞?什么叫做非弹性碰撞?什么叫做完全非弹性碰撞?碰撞过程中

会不会出现动能变多的情形?

实例分析2 :如图,光滑的水平面上,两球质量均为m,甲球与一轻弹簧相连,静止不动, 乙球以速度v撞击弹簧,经过一段时间和弹簧分开,弹簧恢复原长,求: (1 )撞击后甲、乙两球相距最近时两球球的速度的大小和方向? (2 )弹簧的弹性势能最大为多少? (3)乙球和弹簧分开后甲、乙两球的速度的大小和方向? 思考与讨论:假设物体m i以速度v i与原来静止的物体m2发生弹性碰撞,求碰撞后两物体 的速度V3、V4,并讨论m i=m 2; m 1》m2; m 1《m2时的实际情形。

二、探究动量守恒的实验: 问题二(P4参考案例一)如何探究系统动量是否守恒(弹性碰撞、分开模型、完全非弹性碰撞)? 问题三(P5参考案例二):某同学采用如图所示的装置进行实验. 把两个小球用等长的细线悬挂于同一点,让B球静止,拉起A球,由静止释放后使它们相碰,碰后粘在一起.实验 过程中除了要测量A球被拉起的角度i,及它们碰后摆起的最大角度还需测量哪些 2之外, 物理量(写出物理量的名称和符号)才能验证碰撞中的动量守恒.用测量的物理量表 示动量守恒应满足的关系式. 问题四(P5参考案例三):水平光滑桌面上有A、B两个小车,质量分别是0.6 kg和0.2 kg.A 车的车尾拉着纸带,A车以某一速度与静止的B车碰撞,碰后两车连在一起共同向前运动 碰撞前后打点计时器打下的纸带如图所示?根据这些数据,请通过计算猜想:对于两小车组 成的系统,什么物理量在碰撞前后是相等的?

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

动量守恒定律与碰撞

动量守恒定律与碰撞复习卷 一、单选题 1.甲、乙两球在光滑水平面上发生碰撞。碰撞前,甲球向左运动,乙球向右运动,碰撞后一起向右运动,由此可以判断 A.甲的质量比乙小B.甲的初速度比乙小 C.甲的动量变化比乙小D.甲的初动量比乙小 2.在光滑水平面上,一质量为m、速度大小为v的A球与质量为2m静止的B球碰撞后,A球的速度方向与碰撞前相反。则碰撞后B球的速度大小可能是 A.0 B.C.v D. 3.A、B两球质量均为m=1 kg,在光滑水平面上沿同一直线同向运动并发生正碰,A 球碰前动量为4 kg·m/s,B球碰前动量为2 kg·m/s,碰后两球粘在一起运动。下列正确的是() A.碰撞前、后AB系统动量不守恒 B.A、B两球碰撞后的共同速度为1m/s C.碰撞过程中A球对B球的冲量为-3 N·s D.碰撞前、后A球的动量变化量为-1 kg·m/s 4.质量为m的炮弹沿水平方向飞行,其动能为E k,突然在空中爆炸成质量相同的两块,其中一块向后飞去,动能为,另一块向前飞去,则向前的这块的动能为()A.B.C.D. 5.如图所示,弹簧的一端固定在竖直墙上,质量为m的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m的小球从槽上高h处由静止开始自由下 滑() A.在下滑过程中,小球和槽之间的相互作用力对槽不做功 B.在下滑过程中,小球和槽组成的系统动量守恒 C.被弹簧反弹后,小球和槽做速率相等的直线运动 D.被弹簧反弹后,小球能回到槽上高h处 6.在冰壶比赛中,某队员利用红壶去碰撞对方的蓝壶,两者在大本营中心发生对心碰撞如图(a)所示,碰撞前后两壶运动的v-t图线如图(b)中实线所示,其中红壶碰撞 前后的图线平行,两冰壶质量相等,则() A.两壶发生了弹性碰撞

专题15+碰撞与动量守恒定律

一、动量、冲量 1.动量 运动物体的质量和速度的乘积叫动量.公式:p=m v. (1)动量是矢量,方向与速度方向相同.动量的合成与分解遵循平行四边形定则、三角形法则. (2)动量是状态量.通常说物体的动量是指运动物体某一时刻的动量(状态量),计算物体此时的动量应取这一时刻的瞬时速度. (3)动量是相对量.物体的动量与参照物的选取有关,通常情况下,指相对地面的动量.单位是kg·m/s. 2.动量、动能、动量变化量的比较 注意:对于给定的物体,若动能发生变化,动量一定也发生变化;而动量发生变化,动能却不一定发生变化. 3.冲量 冲量I=Ft,是力对时间的累积效应,是过程量,效果表现为物体动量的变化.(1)冲量的时间性:冲量不仅由力决定,还由力的作用时间决定.恒力的冲量等于力与作用时间的乘积. (2)冲量的矢量性:对于方向恒定的力来说,冲量的方向与力的方向一致;对于作用时间内方向变化的力来说,冲量的方向与相应时间内物体动量改变量的方向

一致.冲量的运算遵循平行四边形定则. 注意:作用力与反作用的冲量一定等大、反向,但作用力与反作用力的功之间并无必然联系. 二、动量定理 1.动量定理的内容 物体所受合外力的冲量等于它的动量的变化,即Ft=p′-p或Ft=m v2-m v1. 2.动量定理的理解 (1)动量定理的表达式应是一个矢量式,式中3个矢量都要选同一个方向为正方向. (2)动量定理公式中的F是研究对象所受的合外力,它可以是恒力,也可以是变力,当F为变力时,F应是合外力对作用时间的平均值. (3)公式Ft=p′-p除表明等号两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因. (4)动量定理说明的是合外力的冲量与动量变化的关系,与物体的初末动量无必然联系. (5)由Ft=p′-p,得F=p′-p t= Δp t,即物体所受的合外力等于物体的动量对时 间的变化率. 三、动量守恒定律 1.动量守恒定律的适用条件 (1)系统不受外力或所受外力的合力为零——理想守恒. (2)系统所受外力远小于内力,如碰撞、爆炸,外力可以忽略不计——近似守恒. (3)系统某一方向不受外力或所受外力的合力为零,或外力远小于内力,则该方向动量守恒——分方向守恒. 2.几种常见的表述及表达式 (1)p=p′,即系统相互作用前的总动量p等于相互作用后的总动量p′. (2)Δp=p′-p=0,即系统总动量的增量为0. (3)Δp1=-Δp2,即两个物体组成的系统中,一部分动量的增量与另一部分动量的增量大小相等、方向相反.

质点角动量定理附角动量守恒定律

第六章角动量 内容: §6-1 力矩(4课时) §6-2 质点的角动量定理及角动量守恒定律(4课时) 要求: 1.熟练掌握力对点的力矩。 2.理解对点的角动量定理及角动量守恒定律。 重点与难点: 角动量守恒定律。 作业: P219 1,2,3,4, P220 5,6,,

第六章 角动量 §6-1 力矩 一、力对点的力矩: 如图所示,定义力F 对O 点的力矩为: F r M ?= 大小为: θs i n Fr M = 力矩的方向:力矩是矢量,其方向可用右手螺旋 法则来判断:把右手拇指伸直,其余四指弯曲,弯曲 的方向由矢径通过小于1800的角度转向力的方向 时,拇指指向的方向就是力矩的方向。 二、力对转轴的力矩: 力对O 点的力矩在通过O 点的轴上的投影称为力对转轴的力矩。 1)力与轴平行,则0=M ; 2)刚体所受的外力F 在垂直于转轴的平面内,转轴和力的作用线之间的距离d 称为力对转轴的力臂。力的大小与力臂的乘积,称为力F 对转轴的力矩,用M 表示。力矩的大小为: Fd M = 或: θs i n Fr M = 其中θ是F 与r 的夹角。 3)若力F 不在垂直与转轴的平面内,则可把该力分解为两个力,一个与转轴平行的分力1F ,一个在垂直与转轴平面内的分力2F ,只有分力2F 才对刚体的转动状态有影响。 对于定轴转动,力矩M 的方向只有两个,沿转轴方向或沿转轴方 向反方向,可以化为标量形式,用正负表示其方向。 三、合力矩对于每个分力的力矩之和。 合力 ∑=i F F 合外力矩 ∑∑∑=?=?=?i i i M F r F r F r M = 即 ∑i M M = 四、单位: m N ? 注意:力矩的单位和功的单位不是一回事,力矩的单位不能写成焦耳。 (1)与转动垂直但通过转轴的力对转动不产生力矩; (2)与转轴平行的力对转轴不产生力矩;

11届高考物理碰撞与动量守恒定律综合过关测练

高考物理碰撞与动量守恒定律综合过关测练题 班别: 姓名: 学号: 得分: 一.选择题(每小题4分,共48分.在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不答的得0分) B 点静止着一个质量为m 2 的弹性小球乙,另一个质量为m 1的弹性 小球甲以初速v 0运动,与乙球发生第一次碰撞后,恰在C 点发生 第二次碰撞。则甲、乙两球的质量之比m 1∶m 2等于 A.5∶3 B.9∶1 C.1∶7 D.2∶3 2.一沿直线轨道运动的质点,初始速率为V 1,受到外力的冲量I 作用后,速率变为V 2,仍在同一直线轨道上运动。则此质点受冲 量作用后的末动能E k2与初动能E k1之差E k2 - E k1可能是 A.21I(V 1 + V 2) B.-21I(V 1 + V 2) C.21I(V 2 - V 1) D.2 1I(V 1 - V 2) 3.如图所示,半圆形光滑凹槽放在光滑的水平面上,小滑块从凹边缘点A 由静止释放经最低点B ,又向上到达另一侧边缘点C .把从点A到达点B 称为过程I ,从点B 到达点C 称为过程Ⅱ,则:( ) A.过程I 中小滑块减少的势能等于凹槽增加的动能 B.过程I 小滑块动量的改变量等于重力的冲量 C.过程I 和过程Ⅱ中小滑块所受外力的冲量大小相等 D.过程Ⅱ中小滑块的机械能的增加量等于凹槽动能的减少量 4.三个完全相同的小球a 、b 、c ,以相同的速度分别与静止于光滑水平面上的另外三个不相同的小球正碰,碰后,a 被弹回;b 球与被碰小球结合在一起运动;c 球碰后静止,以下说法中正确的是: ( ) A.被a 球碰撞的小球获得动量最大 B.b 球在碰撞过程中动量改变最小 C.c 球给被碰的小球冲量最大 D.c 球在碰撞前后动能损失最大 5.在高台跳水中,运动员从高台上向下跃起,在空中完成动作后,进入水中在浮力作用下做减速运动,速度减为零后返回水面.设运动员在空中运动过程为?,在进入水中做减速运动过程为??.不计空气阻力和水的粘滞阻力,则运动员( ) A.在过程?中,重力的冲量等于动量的改变量 B.在过程?中,重力冲量的大小与过程??中浮力冲量的大小相等 C.在过程?中,每秒钟运动员动量的变化量相同 D.在过程?和在过程??中动量变化的大小相等 6.质量不等的A 、B 两小球在光滑的水平上沿同一直线向同一方向运动,A 球的动量为5kg ·m/s ,B 球的动量为7kg ·m/s 。当A 球追上B 球时发生碰撞,碰撞后B 球动量的增量为2kg ·m/s ,则下列关于A 、B 两球的质量关系,可能正确的是: ( ) A 、m A =6m B B 、 m A =4m B C 、 m B =1.5m A D 、 m B =2.5m A 7.关于质点的运动情况,下列叙述正确的是

004-质点与质点系的动量定理和动量守恒定律

004-质点与质点系的动量定理和动量守恒定律 1、选择题: 1. 两辆小车A 、B ,可在光滑平直轨道上运动。A 以3 m/s 的速率向右与静止的B 碰撞,A 和B 的质量分别为1kg 和2kg ,碰撞后A 、B 车的速度分别为-1 m/s 和2 m/s ,则碰撞的性质为:[ ] (A) 完全弹性碰撞 (B) 完全非弹性碰撞 (C) 非完全弹性碰撞 (D) 无法判断 答案:(A ) 2. 完全非弹性碰撞的性质是:[ ] (A) 动量守恒,机械能不守恒 (B) 动量不守恒,机械能守恒 (C) 动量守恒,机械能守恒 (D) 动量和机械能都不守恒 答案:(A ) 3. 两辆小车A 、B ,可在光滑平直轨道上运动.第一次实验,B 静止,A 以0.5 m/s 的速率向右与B 碰撞,其结果A 以 0.1 m/s 的速率弹回,B 以0.3 m/s 的速率向右运动;第二次实验,B 仍静止,A 装上1 kg 的物体后仍以 0.5 m/s 的速率与B 碰撞,结果A 静止,B 以0.5 m/s 的速率 向右运动,如图.则A 和B 的质量分别为[ ] (A) m A =2 kg , m B =1 kg (B) m A =1 kg , m B =2 kg (C) m A =3 kg, m B =4 kg (D) m A =4 kg, m B =3 kg 答案:(B ) 4. 质量分别为m A 和m B (m A >m B )、速度分别为A v v 和B v v (v A > v B )的两质点A 和B ,受到 相同的冲量作用,则[ ] (A) A 的动量增量的绝对值比B 的小 (B) A 的动量增量的绝对值比B 的大 (C) A 、B 的动量增量相等 (D) A 、B 的速度增量相等 答案:(C )

角动量定理

角动量守恒 现在我们来讨论物体的转动。有关转动的运动学我们在第一章已经了解得很 清楚了,有趣的是,你发现在转动和线性运动之间几乎每一个量都是相互对应的。 譬如,就象我们讨论位置和速度那样,在转动中可以讨论角位置和角速度。速度 说明物体运动得多快,而角速度则反映了物体转动的快慢,角速度越大,物体转动得越快,角度变化也越快。再继续下去,我们可以把角速度对时间微分,并称2 d dt d dt αω==ΦK K K 2为角加速度,它与通常的加速度相对应。 当然,转动只是一种形式稍微特殊一点的运动,其动力学方程也就无外乎 Newton 定律了。当然,由于这种运动只涉及转动,因此,我们也许可以找到一 些更加适合描述转动的物理量以及相应的作为Newton 第二定律推论的动力学 方。为了将该转动动力学和构成物体的质点动力学规律联系起来,我们首先就应 当求出,当角速度为某一值时,某一特定质点是如何运动的。这一点我们也是已 经知道了的:假如粒子是以一个给定的角速度ωK 转动,我们发现它的速度为 v r ω=×K K K (1) 接下来,为了继续研究转动动力学,就必须引进一个类似于力的新的概念。 我们要考察一下是否能够找到某个量,它对转动的关系就象力对线性运动的关系 那样,我们称它为转矩(转矩的英文名称torque 这个字起源于拉丁文torquere ,即 扭转的意思)。力是线性运动变化所必须的,而要使某一物体的转动发生变化就 需要有一个“旋转力”或“扭转力”,即转矩。定性地说,转矩就是“扭转’;但 定量地说,转矩又应该是什么呢?因为定义力的一个最好的办法是看在力作用下 通过某一给定的位移时,它做了多少功,所以通过研究转动一个物体时做了多少 功就能定量地得出转矩的理论。为了保持线性运动和转动的各个量之间的对应关 系,我们让在力作用下物体转过一个微小距离时所做的功等于转矩与物体转过的 角度的乘积。换句话说,我们是这样来定义转矩,使得功的定理对两者完全相同: 力乘位移是功,转矩乘角位移也是功。这就告诉了我们转矩是什么。如果粒子的 位矢转过一个很小的角度,它做了多少功呢?这很容易。所做的功是

碰撞与动量守恒

碰撞与动量守恒 1. (2)在粗糙的水平桌面上有两个静止的木块A 和B ,两者相距为d.现给A 一初速度,使A 与B 发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B 的质量为A 的2倍,重力加速度大小为g .求A 的初速度的大小. (2)从碰撞时的能量和动量守恒入手,运用动能定理解决问题. 设在发生碰撞前的瞬间,木块A 的速度大小为v ;在碰撞后的瞬间,A 和B 的速度分别为v 1和v 2.在碰撞过程中,由能量和动量守恒定律,得 12m v 2=12m v 21+12 (2m )v 22 ① m v =m v 1+(2m )v 2 ② 式中,以碰撞前木块A 的速度方向为正.由①②式得 v 1=-v 22 ③ 设碰撞后A 和B 运动的距离分别为d 1和d 2,由动能定理得 μmgd 1=12m v 21 ④ μ(2m )gd 2=12 (2m )v 22 ⑤ 据题意有 d =d 1+d 2 ⑥ 设A 的初速度大小为v 0,由动能定理得 μmgd =12m v 20-12 m v 2 ⑦ 联立②至⑦式,得 v 0= 285 μgd . 答案:(2) 285 μgd 2. (2)如图,光滑水平直轨道上有三个质量均为m 的物块A 、B 、C .B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A 以速度v 0朝B 运动,压缩弹簧;当A 、 B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短,求从A 开始压缩弹簧直至与弹黄分离的过程中, (ⅰ)整个系统损失的机械能; (ⅱ)弹簧被压缩到最短时的弹性势能. (2)A 、B 碰撞时动量守恒、能量也守恒,而B 、C 相碰粘接在一块时,动量守恒.系统产生的内能则为机械能的损失.当A 、B 、C 速度相等时,弹性势能最大. (ⅰ)从A 压缩弹簧到A 与B 具有相同速度v 1时,对A 、B 与弹簧组成的系统,由动量守恒定律得 m v 0=2m v 1 ① 此时B 与C 发生完全非弹性碰撞,设碰撞后的瞬时速度为v 2,损失的机械能为ΔE .对B 、C 组成的系统,由动量守恒定律和能量守恒定律得 m v 1=2m v 2 ② 12m v 21=ΔE +12 (2m )v 22 ③ 联立①②③式得ΔE =116m v 20 . ④ (ⅱ)由②式可知v 2

第五节-角动量角动量守恒定理讲解学习

第五节-角动量角动量 守恒定理

第五章角动量角动量守恒定理 本章结构框图 学习指导 本章概念和内容是中学没有接触过的,是大学物理教学的重点和难点。许多同学容易将平动问题与转动问题中的概念和规律混淆,例如两种冲击摆问题。建议采用类比方法,对质量与转动惯量、动量与角动量、力与力矩、冲量与角冲量、平动动能和转动动能、运动学的线量和角量、动量定理和角动量定理、动量守恒和角动量守恒……一一加以比较。本章的重点是刚体定轴转动问题,注意定轴条件下,各种规律都应该用标量式表示。还请注意动量守恒在天体问题、粒子问题中的应用。 基本要求 1.理解质点、质点系、定轴刚体的角动量概念。 2.理解定轴刚体的转动惯量概念,会进行简单计算。 3.理解力矩的物理意义, 会进行简单计算。

4.掌握刚体定轴转动定律,熟练进行有关计算。 5.理解角冲量(冲量矩)概念,掌握质点、质点系、定轴刚体的角动量定 理,熟练进行有关计算。 6.掌握角动量守恒的条件,熟练应用角动量守恒定律求解有关问题。 内容提要 1.基本概念 刚体对定轴的转动惯量:是描述刚体绕定轴转动时,其转动惯性大小的物理量。定义为刚体上每个质元(质点、线元、面元、体积元)的质量与该质元到转轴距离平方之积的总和。即: I的大小与刚体总质量、质量分布及转轴位置有关。 质点、质点系、定轴刚体的角动量:角动量也称动量矩,它量度物体的转动运动量,描述物体绕参考点(轴)旋转倾向的强弱。表5.1对质点、质点系、定轴刚体的角动量进行了比较。 表5.1质点、质点系和定轴刚体的角动量

力矩:力的作用点对参考点的位矢与力的矢积叫做力对该参考点的力矩(图5.1): 即: 大小:(力×力臂)方向:垂直于决定的平面,其指向由右手定则确定。

相关文档
相关文档 最新文档