文档库 最新最全的文档下载
当前位置:文档库 › 物理学第3版习题解答_第3章热力学

物理学第3版习题解答_第3章热力学

物理学第3版习题解答_第3章热力学
物理学第3版习题解答_第3章热力学

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2) H(S,P) 同(2)式相比有 由得(8) (3) F(T,V)

同(3)式相比 (9) (4) G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §2.2麦氏关系的简单应用 证明 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1) 熵函数S(T,V)的全微分为( 2)

大学物理热学总结

大学物理热学总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理热学总结 (注:难免有疏漏和不足之处,仅供参考。 ) 教材版本:高等教育出版社《大学物理学》热力学基础 1、体积、压强和温度是描述气体宏观性质的三个状态参量。 ①温度:表征系统热平衡时宏观状态的物理量。摄氏温标,t表示,单位摄氏度(℃)。热力学温标,即开尔文温标,T表示,单位开尔文,简称开(K)。 热力学温标的刻度单位与摄氏温标相同,他们之间的换算关系: T/K=273.15℃+ t 温度没有上限,却有下限,即热力学温标的绝对零度。温度可以无限接近0K,但永远不能达到0K。 ②压强:气体作用在容器壁单位面积上指向器壁的垂直作用力。单位帕斯卡,简称帕(Pa)。其他:标准大气压(atm)、毫米汞高(mmHg)。 1 atm =1.01325×105 Pa = 760 mmHg ③体积:气体分子运动时所能到达的空间。单位立方米(m3)、升(L) 2、热力学第零定律:如果两个热力学系统中的每一个都与第三个热力学系统处于热平衡,则这两个系统也必处于热平衡。 该定律表明:处于同一热平衡状态的所有热力学系统都具有一个共同的宏观特征,这一特征可以用一个状态参量来表示,这个状态参量既是温度。3、平衡态:对于一个孤立系统(与外界不发生任何物质和能量的交换)而言,如果宏观性质在经过充分长的时间后保持不变,也就是系统的状态参量不再岁时间改变,则此时系统所处的状态称平衡态。 通常用p—V图上的一个点表示一个平衡态。(理想概念) 4、热力学过程:系统状态发生变化的整个历程,简称过程。可分为: ①准静态过程:过程中的每个中间态都无限接近于平衡态,是实际过程进行的无限缓慢的极限情况,可用p—V图上一条曲线表示。 ②非准静态过程:中间状态为非平衡态的过程。

热力学统计物理各章重点总结..

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 ~ 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 。 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义: 5.热容量:等容热容量和等压热容量及比值<

定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.。 8.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G ( 定义态函数:自由能F,F=U-TS 定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1 定律及推论

工程热力学思考题答案,第三章

第三章 理想气体的性质 1.怎样正确看待“理想气体”这个概念?在进行实际计算是如何决定是否可采用理想气体的一些公式? 答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。 判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。若为理想气体则可使用理想气体的公式。 2.气体的摩尔体积是否因气体的种类而异?是否因所处状态不同而异?任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol? 答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异? 答:摩尔气体常数不因气体的种类及状态的不同而变化。 4.如果某种工质的状态方程式为pv =R g T ,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗? 答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。 5.对于一种确定的理想气体,()p v C C 是否等于定值?p v C C 是否为定

值?在不同温度下()p v C C -、p v C C 是否总是同一定值? 答:对于确定的理想气体在同一温度下()p v C C -为定值, p v C C 为定值。在不同温度下()p v C C -为定值,p v C C 不是定值。 6.麦耶公式p v g C C R -=是否适用于理想气体混合物?是否适用于实际 气体? 答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。 7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。但又曾得出结论,理想气体的热力学能、焓、熵只取决于温度,这两点是否矛盾?为什么? 答:不矛盾。实际气体有两个独立的参数。理想气体忽略了分子间的作用力,所以只取决于温度。 8.为什么工质的热力学能、焓、熵为零的基准可以任选?理想气体的热力学能或焓的参照状态通常选定哪个或哪些个状态参数值?对理想气体的熵又如何? 答:在工程热力学里需要的是过程中热力学能、焓、熵的变化量。热力学能、焓、熵都只是温度的单值函数,变化量的计算与基准的选取无关。热力学能或焓的参照状态通常取 0K 或 0℃时焓时为0,热力学能值为 0。熵的基准状态取p 0=101325Pa 、T 0=0K 熵值为 0 。 9.气体热力性质表中的h 、u 及s 0的基准是什么状态? 答:气体热力性质表中的h 、u 及s 0的基准是什么状态00(,)T P 00T K =

大学物理章热力学基础试题.doc

第 9 章热力学基础 一、选择题 1.对于准静态过程和可逆过程 , 有以下说法.其中正确的是 [ ] (A)准静态过程一定是可逆过程 (B)可逆过程一定是准静态过程 (C)二者都是理想化的过程 (D)二者实质上是热力学中的同一个概念 2.对于物体的热力学过程 , 下列说法中正确的是 [ ] (A)内能的改变只决定于初、末两个状态,与所经历的过程无关 (B)摩尔热容量的大小与所经历的过程无关 (C)在物体内 , 若单位体积内所含热量越多 , 则其温度越高 (D)以上说法都不对 3.有关热量 , 下列说法中正确的是 [ ] (A)热是一种物质 (B)热能是物质系统的状态参量 (C)热量是表征物质系统固有属性的物理量 (D)热传递是改变物质系统内能的一种形式 4.关于功的下列各说法中 , 错误的是 [ ] (A)功是能量变化的一种量度 (B)功是描写系统与外界相互作用的物理量 (C)气体从一个状态到另一个状态 , 经历的过程不同 , 则对外作的功也不一样 (D)系统具有的能量等于系统对外作的功

5. 理想气体状态方程在不同的过程中有不同的微分表达式, 式p d V M R d T 表 示 [ ] (A)等温过程(B)等压过程 (C) 等体过程(D)绝热过程 6.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 式V d p M R d T 表示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 7. 理想气体状态方程在不同的过程中可以有不同的微分表达式, 式V d p pdV 0表 示 [ ] (A) 等温过程(B) 等压过程 (C) 等体过程(D) 绝热过程 8.理想气体状态方程在不同的过程中可以有不同的微分表达式 , 则式 M V d p p dV R d T 表示 [ ] (A)等温过程(B)等压过程 (C)等体过程(D)任意过程 9.热力学第一定律表明 : [ ] (A)系统对外作的功不可能大于系统从外界吸收的热量 (B)系统内能的增量等于系统从外界吸收的热量 (C)不可能存在这样的循环过程,在此过程中,外界对系统所作的功

哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而 对 于 能 量 方 程 来 说 ,其循环积分:

热力学与统计物理第三章知识总结

§3.1 热动平衡判据 当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。这些条件可以利用一些热力学函数作为平衡判据而求出。下面先介绍几种常用的平衡判据。 oisd一、平衡判据 1、熵判据 熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。如果只有体积变化功,孤立系条件相当与体积不变和内能不变。 因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。如果将熵函数作泰勒展开,准确到二级有 d因此孤立系统处在稳定平衡态的充分必要条件为 既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。 如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。 熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。 2、自由能判据

表示在等温等容条件下,系统的自由能永不增加。这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。这一判据称为自由能判据。 按照数学上的极大值条件,自由能判据可以表示为: ; 由此可以确定平衡条件和平衡的稳定性条件。 所以等温等容系统处于稳定平衡状态的必要和充分条件为: 3吉布斯函数判据 在等温等压过程中,系统的吉布斯函数永不增加。可以得到吉布斯函数判据:系统在等温等压条件下,对于各种可能的变动,平衡态的吉布斯函数最小。 数学表达式为 , 等温等压系统处在稳定平衡状态的必要和充分条件为 除了熵,自由能和吉布斯函数判据以外,还可以根据其它的热力学函数性质进行判断。例如,内能判据,焓判据等。 二、平衡条件 做为热动平衡判据的初步应用,我们考虑一个均匀的物质系统与具有恒定温度和恒定压强的热源相互接触,在接触中二者可以通过功和热量的方式交换能量。我们推求在达到平衡时所要满足的平衡条件和平衡稳定条件。 1.平衡条件 现在利用熵判据求系统的平衡条件。我们将系统和热源合起来构成一个孤立系统,设系统的 熵为S,热源的熵为因为熵是一个广延量,具有可加性,则孤立系统的总熵(用) 为: (1) 当达到平衡态时,根据极值条件可得: (2)

工程热力学经典例题-第三章_secret

3.5 典型例题 例题3-1 某电厂有三台锅炉合用一个烟囱,每台锅炉每秒产生烟气733 m (已折算成标准状态下的体积),烟囱出口出的烟气温度为100C ?,压力近似为101.33kPa ,烟气流速为30m/s 。求烟囱的出口直径。 解 三台锅炉产生的标准状态下的烟气总体积流量为 烟气可作为理想气体处理,根据不同状态下,烟囱内的烟气质量应相等,得出 因p =0p ,所以 烟囱出口截面积 32V 299.2m /s 9.97m q A = == 烟囱出口直径 3.56m 讨论 在实际工作中,常遇到“标准体积”与“实际体积”之间的换算,本例就涉及到此问题。又例如:在标准状态下,某蒸汽锅炉燃煤需要的空气量3V 66000m /h q =。若鼓风机送入的热空气温度为1250C t =?,表压力为g120.0kPa p =。当时当地的大气压里为b 101.325kPa p =,求实际的送风量为多少? 解 按理想气体状态方程,同理同法可得 而 1g1b 20.0kPa 101.325kPa 121.325kPa p p p =+=+= 故 33V1101.325kPa (273.15250)K 66000m 105569m /h 121.325kPa 273.15kPa q ?+=?=? 例题3-2 对如图3-9所示的一刚性容器抽真空。容器的体积为30.3m ,原先容 器中的空气为0.1MPa ,真空泵的容积抽气速率恒定为30.014m /min ,在抽气工程中容器内温度保持不变。试求: (1) 欲使容器内压力下降到0.035MPa 时,所需要的抽气时间。 (2) 抽气过程中容器与环境的传热量。 解 (1)由质量守恒得 即 所以 V d d q m m V τ-= (3) 一般开口系能量方程 由质量守恒得 out d d m m =- 又因为排出气体的比焓就是此刻系统内工质的比焓,即out h h =。利用理想气体热力性质得

2020年热力学统计物理各章重点总结

热力学统计物理各章重点总结第一章概念系统孤立系统、闭系、开系与其他物体既没有 物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 平衡态平衡态的特点系统的各种宏观性质都不随时间变化; 热力学的平衡状态是一种动的平衡,常称为热动平衡; 在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落; 对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态 的概念推断系统是否处在平衡状态。 准静态过程和非准静态过程准静态过程进行得非常缓慢的过程,系统在过程汇总经历的每 一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏内能、焓和熵内能是状态函数。当系统的初态A 和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等 压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性克劳修斯 引进态函数熵。定义: 热容量等容热容量和等压热容量及比值定容热容量: 定压热容量: 循环过程和卡诺循环循环过程(简称循环)如果一系统由某个状 态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历 一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循 环过程。 可逆过程和不可逆过程不可逆过程如果一个过程发生后,不论用任何曲折复杂的方法都不 可能使它产生的后果完全消除而使一切恢复原状。 可逆过程如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 自由能F和G 定义态函数自由能F,F=U-TS 定义态函数吉布斯函数G,G=U-TS+PV, 可得GA-GB3-W1 定律及推论热力学第零定律-温标如果物体A和物体B各自与外在 同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。 三要素 (1)选择测温质; (2)选取固定点;

工程热力学习题(第3章)解答

第3章 热力学第一定律 3.5空气在压气机中被压缩。压缩前空气的参数为p 1=1bar ,v 1=0.845m 3/kg ,压缩后的参数为p 2=9bar ,v 2=0.125m 3/kg ,设在压缩过程中1kg 空气的热力学能增加146.5kJ ,同时向外放出热量55kJ 。压缩机1min 产生压缩空气12kg 。求:①压缩过程中对1kg 空气做的功;②每生产1kg 压缩空气所需的功(技术功);③带动此压缩机所用电动机的功率。 解:①闭口系能量方程 q=?u+w 由已知条件:q=-55 kJ/kg ,?u=146.5 kJ/kg 得 w =q -?u=-55kJ-146.5kJ=-201.5 kJ/kg 即压缩过程中压气机对每公斤气体作功201.5 kJ ②压气机是开口热力系,生产1kg 空气需要的是技术功w t 。由开口系能量守恒式:q=?h+w t w t = q -?h =q-?u-?(pv)=q-?u-(p 2v 2-p 1v 1) =-55 kJ/kg-146.5 kJ/kg-(0.9×103kPa×0.125m 3/kg-0.1×103kPa×0.845m 3/kg) =-229.5kJ/kg 即每生产1公斤压缩空气所需要技术功为229.5kJ ③压气机每分钟生产压缩空气12kg ,0.2kg/s ,故带动压气机的电机功率为 N=q m·w t =0.2kg/s×229.5kJ/kg=45.9kW 3.7某气体通过一根内径为15.24cm 的管子流入动力设备。设备进口处气体的参数是:v 1=0.3369m 3/kg , h 1=2826kJ/kg ,c f1=3m/s ;出口处气体的参数是h 2=2326kJ/kg 。若不计气体进出口的宏观能差值和重力位能差值,忽略气体与设备的热交换,求气体向设备输出的功率。 解:设管子内径为d ,根据稳流稳态能量方程式,可得气体向设备输出的功率P 为: 2222f1121213(0.1524)()()(28262326)440.3369 c d P m h h h h v ×=?=?=?× =77.5571kW 。 3.9一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为500kPa ,温度为25℃。充气开始时,罐内空气参数为50kPa ,10℃。求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:根据开口系统的能量方程,有: δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s 由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有: d(m·u )=h in ·d m 有: m ·d u +u ·d m=h in ·d m 即:m ·d u=(h in -u )·d m =pv ·d m =R g T ·d m 分离积分变量可得:(c v /R g )·d T /T=d m /m 因此经积分可得:(c v /R g )ln(T 2/T 1)= ln(m 2/m 1) 设储气罐容积为V 0,则:m 1=p 1·V 0/(R g T 1),m 2=p 2·V 0/(R g T 2) 易得T 2=T 1· (p 2/p 1) R g /cp =283×(500/50)0.287/1.004=546.56 K 3.10一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,压力为1000kPa ,温度为27℃。充气开始时,储气罐内为真空,求充气终了时罐内空气的温度。设充气过程是在绝热条件下进行的。 解:根据开口系统的能量方程,有: δQ =d(m·u )+(h out +c 2fout +gz out )δm out -(h in +c 2fin +gz in ) δm in +δW s 由于储气罐充气过程为绝热过程,没有气体和功的输出,且忽略宏观能差值和重力位能差值,则δQ =0,δm out =0,(c 2fin +gz in )δm in =0,δW s =0,δm in =d m ,故有: d(m·u )=h in ·d m

热力学统计物理课后习题答案

第七章 玻耳兹曼统计 7.1试根据公式V a P L l l ??- =∑ε证明,对于非相对论粒子 () 2 222 22212z y x n n n L m m P ++?? ? ??== πε, ( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为 () 2222 2,,2212z y x n n n n n n L m m P z y x ++?? ? ??== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为3 2 -=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量() 22 222)2(z y x n n n m a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。 由(2)式可得 V aV V l L εε323235 -=-=??----------------------(3) 代入压强公式,有V U a V V a P l l l L l l 3232 = =??-=∑∑εε----------------------(4) 式中 l l l a U ε ∑= 是系统的能。 上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 注:(4)式只适用于粒子仅有平移运动的情形。如果粒子还有其他的自由度,式(4)中的U 仅指平动能。 7.2根据公式V a P L l l ??- =∑ε证明,对于极端相对论粒子 () 2 1 2 222z y x n n n L c cp ++== πε, ,2,1,0,,±±=z y x n n n 有V U P 31= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为 () 2 1 22 2,,2z y x n n n n n n L c z y x ++= πε, ,2,1,0,,±±=z y x n n n -------(1) 为书写简便,我们将上式简记为3 1-=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量( ) 2 1 2 2 2 2z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三 个量子数。

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

广大复习资料之工程热力学第三章思考题答案

第三章思考题 3-1门窗紧闭的房间内有一台电冰箱正在运行,若敞开冰箱的大门就有一股凉气扑面,感到凉爽。于是有人就想通过敞开冰箱大门达到降低室内温度的目的,你认为这种想法可行吗? 解:按题意,以门窗禁闭的房间为分析对象,可看成绝热的闭口系统,与外界无热量交换,Q =0,如图3.1所示,当安置在系统内部的电冰箱运转时,将有电功输入系统,根据热力学规定:W <0,由热力学第一定律W U Q +?=可知,0>?U ,即系统的热力学能增加,也就是房间内空气的热力学能增加。由于空气可视为理想气体,其热力学能是温度的单值函数。热力学能增加温度也增加,可见此种想法不但不能达到降温目的,反而使室内温度有所升高。 3-2既然敞开冰箱大门不能降温,为什么在门窗紧闭的房间内安装空调器后却能使温度降低呢? 解:仍以门窗紧闭的房间为对象。由于空调器安置在窗上,通过边界向环境大气散热,这时闭口系统并不绝热,而且向外界放热,由于Q<0,虽然空调器工作时依旧有电功W 输入系统,仍然W<0,但按闭口系统能量方程:W Q U -=?, 此时虽然Q 与W 都是负的,但W Q >,所以?U<0。可见室内空气热力学能将减少,相应地空气温度将降低。 3-6 下列各式,适用于何种条件?(说明系统、工质、过程) 1)?q=du+ ?w ;适用于闭口系统、任何工质、任何过程 2)?q=du+ pdv ;适用于闭口系统、任何工质、可逆过程 3)?q=c v dT+ pdv ;适用于闭口系统、理想气体、任何过程 4)?q=dh ;适用于开口系统、任何工质、稳态稳流定压过程 5)?q=c p dT- vdp 适用于开口系统、理想气体、可逆过程 3-8 对工质加热,其温度反而降低,有否可能? 答:有可能,如果工质是理想气体,则由热力学第一定律Q=ΔU+W 。理想气体吸热,则Q>0,降温则ΔT<0,对于理想气体,热力学能是温度的单值函数,因此,ΔU <0。在此过程中,当气体对外作功,W>0,且气体对外作功大于热力学能降低的量,则该过程遵循热力学第一定律,因此,理想气体能进行吸热而降温的过程。 3-9 “任何没有容积变化的过程就一定不对外做功“这种说法对吗?说明理由。 答:这种说法不正确。系统与外界传递的功不仅仅是容积功,还有轴功等形式,因此,系统经历没有容积变化的过程也可以对外界做功。 3-10 说明以下论断是否正确: 1) 气体吸热后一定膨胀,热力学能一定增加; 答:不正确。由热力学第一定律Q=ΔU+W ,气体吸热,Q>0,可能使热力学能增加,也可能膨胀做功。 2) 气体膨胀时一定对外做功; 答:不正确。自由膨胀就不对外做功。容积变化是做膨胀功的必要条件,不是充分条件。 3) 气体压缩时一定消耗外功; 答:不正确。气体冷却时容积缩小但是不用消耗外功。

热力学统计物理各章重点总结..教学提纲

热力学统计物理各章重点总结..

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义:

5.热容量:等容热容量和等压热容量及比值定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G 定义态函数:自由能F,F=U-TS

热力学统计物理课后11

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数 κT 。 解:已知理想气体的物态方程为 ,pV nRT = (1) 由此易得 11 ,p V nR V T pV T α???= == ? ??? (2) 11 ,V p nR p T pV T β???= == ? ??? (3) 2111 .T T V nRT V p V p p κ???????=-=--= ? ? ???????? (4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得: ()ln T V =αdT κdp -? 如果11 ,T T p ακ== ,试求物态方程。 解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为 .p T V V dV dT dp T p ?????? =+ ? ? ?????? (1) 全式除以V ,有 11.p T dV V V dT dp V V T V p ??????=+ ? ???????

根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V α κ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有 ()ln .T V dT dp ακ=-? (3) 若1 1,T T p ακ==,式(3)可表为 11ln .V dT dp T p ?? =- ???? (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体 积由0V 最终变到V ,有 000 ln =ln ln ,V T p V T p - 即 000 p V pV C T T ==(常量), 或 .pV CT = (5)

大学物理热力学论文

《大学物理》课程论文 热力学基础 摘要: 热力学第一定律其实是包括热现象在内的能量转换与守恒定律。热力学第二定律则是指明过程进行的方向与条件的另一基本定律。热力学所研究的物质宏观性质,特别是气体的性质,经过气体动理论的分析,才能了解其基本性质。气体动理论,经过热力学的研究而得到验证。两者相互补充,不可偏废。人们同时发现,热力学过程包括自发过程和非自发过程,都有明显的单方向性,都是不可逆过程。但从理想的可逆过程入手,引进熵的概念后,就可以从熵的变化来说明实际过程的不可逆性。因此,在热力学中,熵是一个十分重要的概念。关键词: (1)热力学第一定律(2)卡诺循环(3)热力学第二定律(4)熵 正文: 在一般情况下,当系统状态变化时,作功与传递热量往往是同时存在的。如果有一个系统,外界对它传递的热量为Q,系统从内能为E1 的初始平衡状态改变到内能为E2的终末平衡状态,同时系统对外做功为A,那么,不论过程如何,总有: Q= E2—E1+A 上式就是热力学第一定律。意义是:外界对系统传递的热量,一部分

是系统的内能增加,另一部分是用于系统对外做功。不难看出,热力学第一定律气其实是包括热量在内的能量守恒定律。它还指出,作功必须有能量转换而来,很显然第一类永动机违反了热力学第一定律,所以它根本不可能造成的。 物质系统经历一系列的变化过程又回到初始状态,这样的周而复始的变化过程称为循环过程,或简称循环。经历一个循环,回到初始状态时,内能没有改变,这是循环过程的重要特征。卡诺循环就是在两个温度恒定的热源(一个高温热源,一个低温热源)之间工作的循环过程。在完成一个循环后,气体的内能回到原值不变。卡诺循环还有以下特征: ①要完成一次卡诺循环必须有高温和低温两个热源: ②卡诺循环的效率只与两个热源的温度有关,高温热源的温 度越高,低温热源的温度越低,卡诺循环效率越大,也就 是说当两热源的温度差越大,从高温热源所吸取的热量Q1 的利用价值越大。 ③卡诺循环的效率总是小于1的(除非T2 =0K)。 那么热机的效率能不能达到100%呢?如果不可能到达100%,最大可能效率又是多少呢?有关这些问题的研究就促进了热力学第二定律的建立。 第一类永动机失败后,人们就设想有没有这种热机:它只从一个热源吸取热量,并使之全部转变为功,它不需要冷源,也没有释放热量。这种热机叫做第二类永动机。经过无数的尝试证明,第二类永动

热力学统计物理答案 第一章

第一章 热力学的基本规律 习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。 解:由得:nRT PV = V n R T P P n R T V == ; 所以, T P nR V T V V P 1 1)(1== ??=α T PV Rn T P P V /1)(1== ??=β P P n R T V P V V T T /11 1)(12=--=??-=κ 习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:?-=)(ln dp dT V T κα如果1T α= 1 T p κ= ,试求物态方程。 解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()( ??+??=, 因为T T p p V V T V V )(1,)(1??-=??=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=, 所以, ?-=dp dT V T καln ,当p T T /1,/1==κα. CT pV p dp T dT V =-=? :,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和 1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。问(1压强 要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ?;,由定义得: 74410*8.7*10010*85.4;10*858.4----=?=V x T κ 所以,410*07.4,622-=?=V p x n 错

热力学与统计物理答案第二章

第二章 均匀物质的热力学性质 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =-- 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ?????? === ? ? ?????? (3) 由于0,0p T >>,故有0T S V ??? > ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 设一物质的物态方程具有以下形式: (),p f V T = 试证明其内能与体积无关.

解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ??????=- ? ??????? (3) 所以 ()0.T U Tf V p V ??? =-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 求证: ()0;H S a p ???< ???? ()0.U S b V ??? > ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2)

内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ???=> ???? (4) 已知0T U V ??? = ????,求证0.T U p ?? ?= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ???? ?????= ? ? ?????????? (2) 如果0T U V ??? = ????,即有 0.T U p ?? ?= ???? (3) 式(2)也可以用雅可比行列式证明: (, )(, )(,)(,)(, )(,) T U U T p p T U T V T V T p T ????= ? ??????= ??

工程热力学习题册有部分答案

第一篇工程热力学 第一章基本概念及气体的基本性质 第二章热力学第一定律 一、选择题 3、已知当地大气压 P b , 真空表读数为 Pv , 则绝对压力 P 为(a )。 (a) P=P b -Pv ( b ) P=Pv -P b ( c ) P=P b +Pv 4、.若已知工质的绝对压力P=0.18MPa,环境压力Pa=0.1MPa,则测得的压差为( b ) A.真空p v =0.08Mpa B.表压力p g =0.08MPa C.真空p v =0.28Mpa D.表压力p g =0.28MPa 5、绝对压力p, 真空pv,环境压力Pa间的关系为( d ) A.p+pv+pa=0 B.p+pa-pv=0 C.p-pa-pv=0 D.pa-pv-p=0 6、气体常量R( d ) A.与气体种类有关,与状态无关 B.与状态有关,与气体种类无关 C.与气体种类和状态均有关 D.与气体种类和状态均无关 7、适用于( c ) (a) 稳流开口系统 (b) 闭口系统 (c) 任意系统 (d) 非稳流开口系统 8、某系统经过一个任意不可逆过程达到另一状态,表达式(c )正确。 (a) ds >δq/T ( b ) ds <δq/T ( c ) ds=δq/T 9、理想气体 1kg 经历一不可逆过程,对外做功 20kJ 放热 20kJ ,则气体温度变化为(b )。 (a) 提高( b )下降( c )不变 10、平衡过程是可逆过程的(b )条件。 (a) 充分( b )必要( c )充要 11、热能转变为机械能的唯一途径是通过工质的( a ) (a) 膨胀 (b) 压缩 (c) 凝结 (d) 加热 13、经历一不可逆循环过程,系统的熵( d )

相关文档
相关文档 最新文档