文档库 最新最全的文档下载
当前位置:文档库 › 免疫球蛋白的结构

免疫球蛋白的结构

免疫球蛋白的结构
免疫球蛋白的结构

第一节免疫球蛋白的结构(The Structure of Immunoglobulin)

B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋白,这类免疫球蛋白被称为抗体(antibody, Ab)。

1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。

实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。1968年和1972年的两次国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。

Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Bence Jones, BJ)蛋白等。

免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。

☆☆相关素材☆☆

图片正常人血清电泳分离图

一免疫球蛋白的基本结构 The basical structure of immunoglobulin

免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。

X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region)连接到主干上形成一个"Y"形分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本单位。

☆☆相关素材☆☆

图片免疫球蛋白分子的基本结构

图片 IgG分子结构示意图

(一)重链和轻链

免疫球蛋白重链的分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。

据此,可将免疫球蛋白分为五类,或称为免疫球蛋白的同种型(isotype),即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。

不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区(functional domain)的数目以及铰链区的长度等。

同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链

可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的。

五类Ig中每类Ig都可以有κ链或λ链,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。

κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。

根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ4 四个亚型。

☆☆相关素材☆☆

图片五类免疫球蛋白结构示意图

(二)可变区和恒定区通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable region,V区),而靠近C端的其余氨基酸序列相对稳定,称为恒定区(constant region, C区)。

☆☆相关素材☆☆

图片免疫球蛋白的可变区与恒定区

1. 可变区

重链和轻链的V区分别称为VH和VL。

比较许多不同抗体V区的氨基酸序列,发现VH和VL各有三个区域的氨基酸组成和排列顺序特别易变化,这些区域称为高变区(hypervariable region,HVR),分别用HVR1、HVR2和HVR3表示,一般HVR3变化程度更高。

VL的三个高变区分别位于28~35、49~56和91~98位氨基酸;VH的三个高变区分别

位于29~31、49~58和95~102位氨基酸。高变区之外区域的氨基酸组成和排列顺序相对不易变化,称为骨架区(framework region,FR),VH或VL各有四个骨架区,分别用FR1、FR2、FR3和FR4表示。

VH和VL的三个高变区共同组成Ig的抗原结合部位(antigen-binding site),该部位形成一个与抗原决定簇互补的表面,故高变区又被称为互补性决定区(complementarity-determining region,CDR),分别用CDR1、CDR2和CDR3表示。不同的抗体其CDR序列不相同,并因此决定抗体的特异性。

☆☆相关素材☆☆

图片抗体的互补决定区与抗原表位结合示意图

2. 恒定区

重链和轻链的C区分别称为CH和CL。

不同类Ig重链CH长度不一,有的包括CH1、CH2和CH3;有的更长,包括CH1、CH2、CH3和CH4。同一种属动物中,同一类别Ig分子其C区氨基酸的组成和排列顺序比较恒定。

例如:针对不同抗原的人IgG抗体,它们的V区不相同,只能与相应的抗原发生特异性结合,但其C区的抗原性是相同的,应用抗人IgG抗体(第二抗体),均能与不同人的IgG 结合。

3.铰链区

铰链区位于CH1与CH2之间,含有丰富的脯氨酸,因此易伸展弯曲,而且易被木瓜蛋白酶、胃蛋白酶等水解。

铰链区连接抗体的Fab段和Fc段,使两个Fab段易于移动和弯曲,从而可与不同距离的抗原部位结合。

五类Ig或亚类的铰链区不尽相同,例如IgG1、IgG2、IgG4和IgA的铰链区较短,而IgG3和IgD的铰链区较长。

IgM和IgE无铰链区。

☆☆相关素材☆☆

图片免疫球蛋白铰链区的结构及其功能

二免疫球蛋白的功能区: The domain of immunoglobulin

Ig分子的每条肽链可折叠为几个球形的功能区,或称结构域,这些功能区的功能虽不同,但其结构相似。每个功能区约由110个氨基酸组成,其氨基酸的序列具有相似性或同源性。免疫球蛋白的每个功能区的二级结构是由几股多肽链折叠一起形成的两个反向平行的β片层( anti-parallel β sheet),例如CL的两个β片层分别为4股与3股,VL为5股与4股。两个β片中心的两个半胱氨酸残基由一个链内二硫键垂直连接,具有稳定功能区的作用,因而形成一个“β桶状(β barrel)”或“β三明治 (β sandwich)”的结构。免疫球蛋白肽链的这种折叠方式称为免疫球蛋白折叠(immunoglobulin folding)。轻链有VL 和CL两个功能区;IgG、IgA和IgD重链有VH、CH1、CH2和CH3四个功能区;IgM和IgE 重链有五个功能区,比IgG多一个CH4。功能区的作用为:①VH和VL是结合抗原的部位,其中HVR(CDR)是V区中与抗原表位互补结合的部位;②CH和CL上具有部分同种异型(allotype)的遗传标志;③IgG的CH2和IgM的CH3具有补体C1q结合位点,可启动补体活化经典途径;④IgG可通过胎盘;⑤IgG的CH3可与单核细胞、巨噬细胞、中性粒细胞、B 细胞和NK细胞表面的IgG Fc受体(FcγR)结合,IgE的CH2和CH3可与肥大细胞和嗜碱性粒细胞的IgE Fc受体(FcεR)结合。

☆☆相关素材☆☆

图片 Ig轻链V区和C区结构与折叠

图片3-1-9 免疫球蛋白的功能区

三免疫球蛋白的水解片段: The hydrolyzed fragment of immunglobulin

(一)木瓜蛋白酶水解片段

木瓜蛋白酶(papain)水解IgG的部位是在铰链区二硫键连接的2条重链的近N端,裂解后可得到三个片段:

①2个相同的Fab段即抗原结合片段(fragment antigen binding, Fab),相当

于抗体分子的两个臂,每个Fab段由一条完整的轻链和重链的VH和CH1功能区

组成。Fab段为单价,与抗原结合后,不能形成凝集反应或沉淀反应;

② 1个Fc段(fragment crystallizable,Fc),即可结晶片段。Fc段相当于IgG 的CH2和CH3功能区,无抗原结合活性,是抗体分子与效应分子和细胞相互作用的部位。Ig 同种型的抗原性主要存在于Fc段。

(二)胃蛋白酶水解片段

胃蛋白酶(pepsin)在铰链区连接重链的二硫键近C端水解IgG,获得一个F(ab')2片段,由于抗体分子的两个臂仍由二硫键连接,因此F(ab')2片段为双价,与抗原结合可发

生凝集反应和沉淀反应。

Ig的Fc段被胃蛋白酶裂解为若干小分子片段,被称为pFc',失去生物学活性。胃蛋白酶水解IgG后的F(ab')2片段,保留了结合相应抗原的生物学活性,又避免了Fc段抗原性可能引起的副作用,因而作为生物制品有较大的实际应用价值,例如白喉抗毒素、破伤风抗毒素经胃蛋白酶消化后精制提纯的制品,因去掉Fc段而减缓发生超敏反应。

☆☆相关素材☆☆

图片免疫球蛋白水解片段

四 J链和分泌片: Joining chain and secretory piece

(一)J链 J链(joining chain)是一条多肽链,富含半胱氨酸,由浆细胞合成。J 链可连接Ig 单体形成二聚体、五聚体或多聚体。两个单体IgA由J链连接形成二聚体,五个单体IgM由二硫键相互连接,并通过二硫键与J链连接形成五聚体。IgG、IgD、IgE为单体,无J链。

(二)分泌片分泌片(secretory piece,SP)又称为分泌成分(secretory component, SC),是分泌型IgA分子上的一个辅助成分,为一种含糖的肽链,由粘膜上皮细胞合成和分泌,以非共价形式结合到二聚体上,并一起被分泌到粘膜表面。分泌片具有保护分泌型IgA 的铰链区免受蛋白水解酶降解的作用,并介导IgA二聚体从粘膜下通过粘膜等细胞到粘膜表面的转运。

☆☆相关素材☆☆

图片 IgM和SIgA结构示意图

免疫球蛋白的试题及答案

第四章免疫球蛋白 名词解释: 1.抗体(antibody) 2.Fab(fragment antigen binding) 3.Fc(fragment crytallizable) 4.免疫球蛋白(Immunoglobulin Ig) 5.超变区(hypervariable region,HVR) 6.可变区(variable region,V区) 7.单克隆抗体(Monoclonal antibody,mAb) 8.ADCC(Antibody –dependent cell-mediatedcytotoxicity) 9.调理作用(opsonization) 10.J链(joining chain) 11.分泌片(secretory piece) 12.Ig功能区(Ig domain) 13.Ig折叠(Ig folding) 14.CDR(complementary-determining region) 问答题 1.简述抗体与免疫球蛋白的区别和联系。 2.试述免疫球蛋白的主要生物学功能。 3.简述免疫球蛋白的结构、功能区及其功能。 4.简述单克隆抗体技术的基本原理。 参考答案 名词解释 1.抗体(Antibody) :是B 细胞特异性识别Ag后,增殖分化成为浆细胞,所合成分泌的一类能与相应抗原特异性结合的、具有免疫功能的球蛋白。 2.Fab(Fragment antigen binding):即抗原结合片段,每个Fab段由一条完整的轻链和重链的VH和CH1功能区构成,可以与抗原表位发生特异性结合。 3.Fc片段(fragment crytallizable):即可结晶片段,相当于IgG的CH2和CH3功能区,无抗原结合活性,是抗体分子与效应分子和细胞相互作用的部位。 4. 免疫球蛋白(Immunoglobulin,Ig):是指具有抗体活性或化学结构与抗体相似的球蛋白。可分为分泌型和膜型两类。 5.高变区(hypervariable region ,HVR):在Ig分子VL和VH内,某些区域的氨基酸组成、排列顺序与构型更易变化,这些区域为超变区。 6.可变区(V区):在Ig多肽链氨基端(N端),L链1/2与H链1/4区域内,氨基酸的种类、排列顺序与构型变化很大,故称为可变区。 7.单克隆抗体(Monoclonal antibody ,mAb):是由识别一个抗原决定簇的B淋巴细胞杂交瘤分裂而成的单一克隆细胞所产生的高度均一、高度专一性的抗体。 8.ADCC(Antibody –dependent cell-mediatedcytotoxicity):即抗体依赖的细胞介导的细胞毒作用。是指表达Fc受体细胞通过识别抗体的Fc段直接杀伤被抗体包被的靶细胞。NK细胞是介导ADCC的主要细胞。 9.调理作用(Opsonization):是指IgG抗体(特别是IgG1和IgG3)的Fc段与中性粒细胞、巨噬细胞上的IgG Fc受体结合,从而增强吞噬细胞的吞噬作用。 10.J链(joining chain):是由浆细胞合成的富含半胱氨酸的一条多肽链。J链可以连接Ig单体形成二聚体、五聚体或多聚体。

抗体的基本结构(精制甲类)

免疫球蛋白目录 1. 拼音 2. 英文参考 3. 概述 4. 免疫球蛋白分子的基本结构 1. 轻链和重链 2. 可变区和恒定区 3. 功能区 4. J链和分泌成分 5. 单体、双体和五聚体 6. 酶解片段 5. 免疫球蛋白分子的功能 1. 特异性结合抗原 2. 活化补体 3. 结合Fc受体 4. 通过胎盘 6. 免疫球蛋白分子的抗原性 1. 同种型 2. 同种异型 3. 独特型 7. 免疫球蛋白分子的超家族 1. 免疫球蛋白超家族的组成 2. 免疫球蛋白超家族的特点 8. 各类免疫球蛋白的生物学活性 1. IgG 2. IgA 3. IgM 4. IgD 5. IgE 9. 免疫球蛋白基因的结构和抗体多样性 1. Ig重链基因的结构和重排 2. Ig轻链基因的结构和重排 3. 抗体多样性的遗传学基础

10. 药理作用 11. 药品说明书 1. 适应症 2. 用量用法 12. 相关文献 具有抗体活性的血清蛋白称为免疫球蛋白,又称为抗体。是由机体的B淋巴细胞在抗原的刺激下分化、分裂而成的一组特殊球蛋白。人和动物的免疫血清中的免疫球蛋白极不均一,其组成、结构、大小、电荷、生物学活性等都有很大差异,约占机体全部血清蛋白的20~25%。目前已在人、小鼠等血清中先后分纯得到5类免疫球蛋白,1968年,世界卫生组织统一命名为免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、免疫球蛋白A(IgA)、免疫球蛋白D(IgD)、免疫球蛋白E(IgE)。 免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig单体分子的基本结构是由四条肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 轻链和重链

第四章 免疫球蛋白剖析

第四章免疫球蛋白 第一节基本概念 1、抗体:B淋巴细胞在有效的抗原刺激下分化为浆细胞,产生具有与相应抗原发生特异性结合功能的免疫球蛋白,这类免疫球蛋白称为抗体。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。 20世纪40年代初期,Tiselius和Kabat用肺炎球菌多糖免疫家兔,证实了抗体活性与血清丙种球蛋白组分相关。肺炎球菌多糖免疫家兔后可获得高效价免疫血清。然后加入相应抗原吸收以除去抗体,将除去抗体的血清进行电泳图谱分析,发现丙种球蛋白(γ-G)组分明显减少,从而证明了抗体活性是存在于丙种球蛋白内。 2、免疫球蛋白:具有抗体活性或化学结构与抗体相似的球蛋白统称为免疫球蛋白(immunoglobulin,Ig)。 区别: 抗体都是免疫球蛋白,而免疫球蛋白并不都是抗体。如骨髓瘤蛋白,巨球蛋白血症、冷球蛋白血症等患者血清中存在的异常免疫球蛋白结构与抗体相似,但无抗体活性。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。 前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后 者是B细胞表面的抗原识别受体。 第二节免疫球蛋白结构

一、免疫球蛋白的基本结构 (一)重链和轻链 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。X 射线晶体结构分析发现,IgG分子由3个相同大小的节段组成。 1. 重链 分子量约为50~75kD,由450~550个氨基酸残基组成。免疫球蛋白重链恒定区由于氨基酸的组成和排列顺序不同,故其抗原性也不同。据此,可将免疫球蛋白分为五类,即IgM、IgD、IgG、IgA和IgE,其相应的重链分别为μ链、δ链、γ链、α链和ε链。不同的同种型具有不同的特征,包括链内二硫键的数目和位置、连接寡糖的数量、功能区的数目以及铰链区的长度等。同一类Ig根据其铰链区氨基酸组成和重链二硫键的数目和位置的差别,又可分为不同的亚类。如IgG可分为IgG1~IgG4;IgA可分为IgA1和IgA2。IgM、IgD和IgE尚未发现有亚类。 2.轻链 免疫球蛋白轻链的分子量约25 kD,由214个氨基酸残基构成。轻链可分为两型,即κ(kappa)型和λ(lambda)型,一个天然Ig分子上两条轻链的型别总是相同的,两型轻链的功能无差异。不同种属中,两型轻链的比例不同,正常人血清免疫球蛋白κ:λ约为2:1,而在小鼠则为20:1。κ:λ比例的异常可能反映免疫系统的异常,例如人类免疫球蛋白λ链过多,提示可能有产生λ链的B细胞肿瘤。根据λ链恒定区个别氨基酸的差异,又可分为λ1、λ2、λ3和λ 4 四个亚型。 (二)可变区和恒定区 通过分析不同免疫球蛋白重链和轻链的氨基酸序列,发现重链和轻链靠近N端的约110个氨基酸的序列变化很大,称为可变区(variable

抗原、抗体基本概念

一、抗原、抗体的概念及抗原抗体的关系 (一)抗原(Antigen) 凡能刺激机体产生抗体,并能与抗体发生特异性结合的物质称为抗原。物质所具有的这种特性称为抗原性(Antigenicity)。 (二)抗体 是机体受抗原刺激后,在体液中出现的一种能与相应抗原发生反应的球蛋白,称免疫球蛋白(Immunoglobulin, Ig)。含有免疫球蛋白的血清称免疫血清。 (三)抗原与抗体的关系 抗原是引起机体产生免疫反应的主要外因,决定免疫反应的特异性,机体与抗原物质的斗争过程中为加速循环和排除抗原而产生的抗体、致敏淋巴细胞等物质,是机体排除异体物质的保护性反应。没有抗原的刺激,机体不能产生抗体;没有抗原物质,也无法检测抗体的存在;利用抗体可以检测抗原物质。 二、抗原的性质及种类 (一)抗原的性质 1.异种异体物质机体能对进入体内的异种、异体的大分子物质产生抗体,该物质与机体的种类关系愈远,其抗原性就愈强,机体的免疫反应也更强。例如鸭血清蛋白对鸡的免疫原性较弱,而对家兔则能引起较强的免疫反应。 同种异体物质也可具有抗原性,同种不同个体之间,同一类型的细胞和组织,其抗原性也有差异,例如人的红细胞有ABO血型抗原及Rh型抗原。人类白细胞和其它组织的细胞膜上也具有组织相容性复合物的抗原物质(Man Histocompatibility complex, MHC)。 自身抗原:机体对本身所具有的物质不产生免疫反应。但在某些条件下,使机体某种物质、细胞或组织成分具有抗原性时,也可导致机体产生免疫反应。此具有抗原性的自身物质称自身抗原(Autoantigen),所产生的抗体称为自身抗体(Autoantibody)。如自身组织变性,机体组织或细胞在各种理化因素作用下,引起化学组成的分子排列和构型改变,形成新的抗原决定簇,例如服用安替比林、匹拉米洞等药所致白细胞减少,就是由于所服用药物改变了白细胞的一部分表面化学结构,形成新的抗原决定簇,激活免疫活性细胞产生白细胞抗体(自身抗体),导致白细胞减少症。在外伤、感染和炎症时,可能使隐蔽性抗原如精子、甲状腺球蛋白等释放,引起机体产生免疫反应。 并非异物都是抗原,例如砂尘和一些非生物性高分子聚合物,仅能激发细胞吞噬反应而不能使机体产生抗体或致敏淋巴细胞。 2.大分子胶体凡具有抗原性的物质,分子愈大,抗原性愈强(如细菌、蛋白质)。一般认为抗原分子量愈大,其表面积相应较大,接触免疫细胞机会增多,在体内停留时间较长,不易排除,因而对机体刺激作用也强。一般具有免疫原性的物质,其分子量常在10000以上。对于蛋白质组成的抗原,其分子量小于5000~10000免疫原性很弱或完全没有。但某些低分子量多肽、如胰岛素(分子量5734),升血糖激素(分子量3800),血管紧张素(分子量1031),对某些实验动物还是具有一定的免疫原性。分子量小的物质团聚成的多聚体或吸附于其它胶体(载体)表面,形成大分子表面结构时,如和蛋白质结合,即具有大分子胶体特性,可使小分子物质获得或增强抗原性,如细菌的多糖成分、青霉素等化学药物。 3.抗原的特异性各种抗原物质的化学组成虽然很复杂,但能刺激机体产生抗体并与抗体反应相结合的化学组成,仅仅是抗原物质表面的一些具有活性的化学基因-化学结构及空间构型,称为抗原物质决定簇(基)(Antigenic determinant)。各种抗原物质各有其特异的抗原决定簇,但不同的抗原物质常含有共同的抗原成分,称为类属抗原。在分类上相近的种类之间的同一类蛋白质抗原,可表现出类属抗原关系。多种物质结构的相似性,决定这些物质抗原上的类属关系,而分子结构的差异性,决定各种物质的抗原特异性。 抗原的特异性是临床诊断、预防、治疗的基础。各种特异诊断抗体的制备依靠特异性抗原物质的获得;在不易获得特异性抗原的条件下,可利用类属抗原代替。但在鉴别抗原时,应注意区分类属抗原,以免误诊。 一般认为,环状构型要比直线排列的分子免疫原性强,聚合状态的比单体强。具有大分子量的异物,无论具有何种构型,基本上具有免疫原性。但明胶和核酸免疫原性很弱或无。 免疫原的抗原决定簇是否暴露,抗原决定簇之间的距离是否适当,对于免疫原性强弱亦有很大影响。凡暴露的抗原决定簇的数目多,间距大,免疫原性也就较强。能与抗体分子结合的抗原决定簇的总数,称为抗原的结合价。简单的半抗原一般只能与一个抗体分子结合,是单价抗原。根据抗原分子大小推算,有100个氨基酸的多肽,约有14~20个不重叠的抗原决定簇,即有14~20个抗原结合价。 (二)抗原的种类

免疫球蛋白的结构

第一节免疫球蛋白的结构(The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋白,这类免疫球蛋白被称为抗体(antibody, Ab)。 1937年,Tiselius用电泳方法将血清蛋白分为白蛋白、α1、α2、β及γ球蛋白等组分,其后又证明抗体的活性部分是在γ球蛋白部分。因此,相当长一段时间内,抗体又被称为γ球蛋白(丙种球蛋白)。 实际上,抗体的活性除γ球蛋白外,还存在于α和β球蛋白处。1968年和1972年的两次国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin,Ig)。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Bence Jones, BJ)蛋白等。 免疫球蛋白可分为分泌型(secreted Ig,SIg)和膜型(membrane Ig, mIg)。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 一免疫球蛋白的基本结构 The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链(heavy chain,H链)和两条相同的轻链(light chain,L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region)连接到主干上形成一个"Y"形分子,称为Ig分子的单体,是构成免疫球蛋白分子的基本单位。

常用免疫学检验技术的基本原理

常用免疫学检验技术的基本原理 免疫学检测即是根据抗原、抗体反应的原理,利用已知的抗原检测未知的抗体或利用已知的抗体检测未知的抗原。由于外源性和内源性抗原均可通过不同的抗原递呈途径诱导生物机体的免疫应答,在生物体内产生特异性和非特异性T 细胞的克隆扩增,并分泌特异性的免疫球蛋白(抗体)。由于抗体-抗原的结合具有特异性和专一性的特点,这种检测可以定性、定位和定量地检测某一特异的蛋白(抗原或抗体)。免疫学检测技术的用途非常广泛,它们可用于各种疾病的诊断、疗效评价及发病机制的研究。 最初的免疫检测方法是将抗原或抗体的一方或双方在某种介质中进行扩散,通过观察抗原-抗体相遇时产生的沉淀反应,检测抗原或抗体,最终达到诊断的目的。这种扩散可以是蛋白的自然扩散,例如环状沉淀试验、单向免疫扩散试验、双向免疫扩散实验。单向免疫扩散试验就是在凝胶中混入抗体,制成含有抗体的凝胶板,而将抗原加入凝胶板预先打好的小孔内,让抗原从小孔向四周的凝胶自然扩散,当一定浓度的抗原和凝胶中的抗体相遇时便能形成免疫复合物,出现以小孔为中心的圆形沉淀圈,沉淀圈的直径与加入的抗原浓度成正比。 利用蛋白在不同酸碱度下带不同电荷的特性,可以利用人为的电场将抗原、抗体扩散,例如免疫电泳试验和双向免疫电泳。免疫电泳首先将抗原加入凝胶中电泳,将抗原各成分依次分散开。然后沿电泳方向平行挖一直线形槽,于槽内加入含有针对各种抗原的混合抗体,让各抗原成分与相应抗体进行自然扩散,形成沉淀线。然后利用标准的抗原-抗体沉淀线进行抗原蛋白(或抗体)的鉴别。上述的方法都是利用肉眼观察抗原-抗体反应产生的沉淀,因此灵敏度有很大的局限。比浊法引入沉淀检测产生的免疫比浊法就是利用浊度计测量液体中抗原-抗体反应产生的浊度,根据标准曲线来计算抗原(或抗体)的含量。该方法不但大大提高了检测的灵敏度,且可对抗原、抗体进行定量的检测。

免疫球蛋白的结构

第一节免疫球蛋白的结构 (The Structure of Immunoglobulin) B淋巴细胞在抗原刺激下增殖分化为浆细胞,产生能与相应抗原发生特异性结合的免疫蛋 白,这类免疫球蛋白被称为抗体( an tibody, Ab )。 1937年,Tiselius 用电泳方法将血清蛋白分为白蛋白、a 1、a 2、B及丫球蛋白等组分,其后又证明抗体的活性部分是在丫球蛋白部分。因此,相当长一段时间内,抗体又被称为丫 球蛋白(丙种球蛋白)。 实际上,抗体的活性除丫球蛋白外,还存在于a和B球蛋白处。1968年和1972年的两次 国际会议上,将具有抗体活性或化学结构与抗体相似的球蛋白统一命名为免疫球蛋白(immunoglobulin , Ig )。 Ig是化学结构的概念,它包括正常的抗体球蛋白和一些未证实抗体活性的免疫球蛋白,如骨髓瘤病人血清中的M蛋白及尿中的本周氏(Be nee Jon es, BJ )蛋白等。 免疫球蛋白可分为分泌型(secreted lg,Slg )和膜型(membrane Ig, mIg )。前者主要存在于血清及其他体液或外分泌液中,具有抗体的各种功能;后者是B细胞表面的抗原识别 受体。 ☆☆相关素材☆☆ 图片正常人血清电泳分离图 I 丨总血清 -------- igG -------- IgA --------- IgM 一电泳迁移率十 (igES极少、不能定曲表示) 正常人血清电泳分离图 一免疫球蛋白的基本结构The basical structure of immunoglobulin 免疫球蛋白分子是由两条相同的重链( heavy chain , H链)和两条相同的轻链(light chain , L链)通过链间二硫键连接而成的四肽链结构。 X射线晶体结构分析发现,IgG分子由3个相同大小的节段组成,位于上端的两个臂由易弯曲的铰链区(hinge region )连接到主干上形成一个 "Y"形分子,称为Ig分子的单体, 是构成免疫球蛋白分子的基本单位。

抗体的基本结构

免疫球蛋白

具有抗体活性的血清蛋白称为免疫球蛋白,又称为抗体。是由机体的B淋巴细胞在抗原的刺激下分化、分裂而成的一组特殊球蛋白。人和动物的免疫血清中的免疫球蛋白极不均一,其组成、结构、大小、电荷、生物学活性等都有很大差异,约占机体全部血清蛋白的20~25%。目前已在人、小鼠等血清中先后分纯得到5类免疫球蛋白,1968年,世界卫生组织统一命名为免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、免疫球蛋白A(IgA)、免疫球蛋白D(IgD)、免疫球蛋白E(IgE)。 Porter等对血清IgG抗体的研究证明,Ig单体分子的基本结构是由四条肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 轻链和重链

由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(lightchain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个链内二硫键所组成的环肽。L链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。 2.重链(heavychain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于氨基酸的排列顺序、二硫键的数目和们置、含糖的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个环肽,μ和ε链含有5个环肽。重链(heavy chain,H链)由450~570个氨基酸残基组成,分子量约为50~70kD。不同的H链因氨基酸的排列顺序、二硫键的数目和位置、含糖的种类和数量不同,其抗原性也不相同,可将其分为μ链、γ链、α链、δ链、ε链五类,这些H链与L链(κ链或λ链)组成的完整Ig分子分别称为IgM(μ)、IgG(γ)、IgA (α)、IgD(δ)和IgE(ε 可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区(C区)。 1.可变区(variableregion,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类、排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。在V 区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(framework region)。VL中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL和VH 的这三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determining region,CDR)。VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,

免疫球蛋白分子的结构与功能

、免疫球蛋白分子的基本结构 Porter等对血清IgG 抗体的研究证明,lg分子的基本结构是由四肽链组成的。即由二条 相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为lg分子的单体,是构成免疫球蛋白分子的基 本结构。lg单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。 图2-3免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是lg分子的 L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较 分析,从而为lg分子氨基酸序列分析提供了良好的材料。 1. 轻链(light chain,L )轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(与lambda(入)同一个天然lg分子上L链的型总是相同的。正常人血清中的K入约为2:1。 2. 重链(heavy chain,H链)重链大小约为轻链的2倍,含450?550个氨基酸残基,分子量约为55或75kD。每条H链含有4?5个链内二硫键所组成的环肽。不同的H链由于 ?戰水化合韧

氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:卩链、丫链、a链、3链和£链,不同H链与L链 (K或入链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。Y a和3链上含有4个肽,□和&链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N- 末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1. 可变区(variable region,V区)位于L链靠近N端的1/2 (约含108?111个氨基酸残基)和H链靠近N端的1/5或1/4 (约含118个氨基酸残基)。每个V 区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67?75个氨基酸残基。V区氨基酸的组成和排列 随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万 化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR )。在V区 中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion )。VL 中的高变区有三个,通常分别位于第24?34、50?65、95?102位氨基酸。VL和VH的这 三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(compleme ntarity-determi ning regi-on,CDR)o VL 和VH 的HVR1、HVR2 和HVR3 又可分另U称为CDR1、CDR2 和CDR3 , 一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determ inants 主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

抗体的结构与功能

免疫球蛋白的结构与功能 一、免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig分子的基本结构是由四肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(light chain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。 2.重链(heavy chain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L 链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个肽,μ和ε链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1.可变区(variable region,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion)。VL 中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL和VH的这三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determining regi-on,CDR)。VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determinants)主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。 2.恒定区(constant region,C区)位于L链靠近C端的1/2(约含105个氨基酸残基)和H 链靠近C端的3/4区域或4/5区域(约从119位氨基酸至C末端)。H链每个功能区约含110多个氨基酸残基,含有一个由二锍键连接的50~60个氨基酸残基组成的肽环。这个区域氨

抗体的基本结构

1.适应症 2.用量用法 12.相关文献 具有抗体活性得血清蛋白称为免疫球蛋白,又称为抗体。就是由机体得B淋巴细胞在抗原得刺激下分化、分裂而成得一组特殊球蛋白。人与动物得免疫血清中得免疫球蛋白极不均一,其组成、结构、大小、电荷、生物学活性等都有很大差异,约占机体全部血清蛋白得20~25%。目前已在人、小鼠等血清中先后分纯得到5类免疫球蛋白,1968年,世界卫生组织统一命名为免疫球蛋白G(IgG)、免疫球蛋白M(IgM)、免疫球蛋白A(IgA)、免疫球蛋白D(IgD)、免疫球蛋白E(IgE)。 免疫球蛋白分子得基本结构 Porter等对血清IgG抗体得研究证明,Ig单体分子得基本结构就是由四条肽链组成得。即由二条相同得分子量较小得肽链称为轻链与二条相同得分子量较大得肽链称为重链组成得。轻链与重链就是由二硫键连接形成一个四肽链分子称为Ig分子得单体,就是构成免疫球蛋白分子得基本结构。Ig单体中四条肽链两端游离得氨基或羧基得方向就是一致得,分别命名为氨基端(N端)与羧基端(C端)。 图2-3 免疫球蛋白分子得基本结构示意图 轻链与重链 由于骨髓瘤蛋白(M蛋白)就是均一性球蛋白分子,并证明本周蛋白(BJ)就是Ig分子得L链,很容易从患者血液与尿液中分离纯化这种蛋白,并可对来自不同患者得标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好得材料。

1.轻链(lightchain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个链内二硫键所组成得环肽。L链共有两型:kappa(κ)与lambda(λ),同一个天然Ig分子上L链得型总就是相同得。正常人血清中得κ:λ约为2:1。 2.重链(heavychain,H链)重链大小约为轻链得2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成得环肽。不同得H链由于氨基酸得排列顺序、二硫键得数目与们置、含糖得种类与数量不同,其抗原性也不相同,根据H链抗原性得差异可将其分为5类:μ链、γ链、α链、δ链与ε链,不同H链与L链(κ或λ链)组成完整Ig得分子分别称之为IgM、IgG、IgA、IgD与IgE。γ、α与δ链上含有4个环肽,μ与ε链含有5个环肽。重链(heavy chain,H链)由450~570个氨基酸残基组成,分子量约为50~70kD。不同得H链因氨基酸得排列顺序、二硫键得数目与位置、含糖得种类与数量不同,其抗原性也不相同,可将其分为μ链、γ链、α链、δ链、ε链五类,这些H链与L链(κ链或λ链)组成得完整Ig分子分别称为IgM(μ)、IgG(γ)、IgA(α)、IgD(δ)与IgE(ε 可变区与恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链得氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区(C区)。 1.可变区(variableregion,V区)位于L链靠近N端得1/2(约含108~111个氨基酸残基)与H链靠近N端得1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成得肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸得组成与排列随抗体结合抗原得特异性不同有较大得变异。由于V区中氨基酸得种类、排列顺序千变万化,故可形成许多种具有不同结合抗原特异性得抗体。 L链与H链得V区分别称为VL与VH。在VL与VH中某些局部区域得氨基酸组成与排列顺序具有更高得变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位得氨基酸组面与排列相对比较保守,称为骨架区(framework region)。VL中得高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL与VH得这三个HVR分别称为HVR1、HVR2与HVR3。经X线结晶衍射得研究分析证明,高变区确实为抗体与抗原结合得位置,因而称为决定簇互补区(plementarity-determining region,CDR)。VL 与VH得HVR1、HVR2与HVR3又可分别称为CDR1、CDR2与CDR3,一般得CDR3具有更高得高变程度。高变区也就是Ig分子独特型决定簇(idiotypic determinants)主要存在得部位。在大多数情况下H链在与抗原结合中起更重要得作用。

最新医学免疫学:免疫球蛋白分子的结构与功能

医学免疫学:免疫球蛋白分子的结构与功 能

医学免疫学 第二节免疫球蛋白分子的结构与功能 一、免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig分子的基本结构是由四肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(light chain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:kappa(κ)与 lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。

2.重链(heavy chain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个肽,μ和ε链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1.可变区(variable region,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion)。VL中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL和VH的这三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determining regi-on,CDR)。VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇 (idiotypic determinants)主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

抗体的结构与功能

来源:医学全在线更新:2007-12-3 医学论坛 该文章转载自医学全在线:https://www.wendangku.net/doc/1911730015.html,/edu/200712/18959.shtml 免疫球蛋白的结构与功能 一、免疫球蛋白分子的基本结构 Porter等对血清IgG抗体的研究证明,Ig分子的基本结构是由四肽链组成的。即由二条相同的分子量较小的肽链称为轻链和二条相同的分子量较大的肽链称为重链组成的。轻链与重链是由二硫键连接形成一个四肽链分子称为Ig分子的单体,是构成免疫球蛋白分子的基本结构。Ig单体中四条肽链两端游离的氨基或羧基的方向是一致的,分别命名为氨基端(N 端)和羧基端(C端)。 图2-3 免疫球蛋白分子的基本结构示意图 (一)轻链和重链 由于骨髓瘤蛋白(M蛋白)是均一性球蛋白分子,并证明本周蛋白(BJ)是Ig分子的L链,很容易从患者血液和尿液中分离纯化这种蛋白,并可对来自不同患者的标本进行比较分析,从而为Ig分子氨基酸序列分析提供了良好的材料。 1.轻链(light chain,L)轻链大约由214个氨基酸残基组成,通常不含碳水化合物,分子量约为24kD。每条轻链含有两个由链内二硫键内二硫所组成的环肽。L链共有两型:

kappa(κ)与lambda(λ),同一个天然Ig分子上L链的型总是相同的。正常人血清中的κ:λ约为2:1。 2.重链(heavy chain,H链)重链大小约为轻链的2倍,含450~550个氨基酸残基,分子量约为55或75kD。每条H链含有4~5个链内二硫键所组成的环肽。不同的H链由于氨基酸组成的排列顺序、二硫键的数目和们置、含的种类和数量不同,其抗原性也不相同,根据H链抗原性的差异可将其分为5类:μ链、γ链、α链、δ链和ε链,不同H链与L 链(κ或λ链)组成完整Ig的分子分别称之为IgM、IgG、IgA、IgD和IgE。γ、α和δ链上含有4个肽,μ和ε链含有5个环肽。 (二)可变区和恒定区 通过对不同骨髓蛋白或本周蛋白H链或L链的氨基酸序列比较分析,发现其氨基端(N-末端)氨基酸序列变化很大,称此区为可变区(V),而羧基末端(C-末端)则相对稳定,变化很小,称此区为恒定区。 1.可变区(variable region,V区)位于L链靠近N端的1/2(约含108~111个氨基酸残基)和H链靠近N端的1/5或1/4(约含118个氨基酸残基)。每个V区中均有一个由链内二硫键连接形成的肽环,每个肽环约含67~75个氨基酸残基。V区氨基酸的组成和排列随抗体结合抗原的特异性不同有较大的变异。由于V区中氨基酸的种类为排列顺序千变万化,故可形成许多种具有不同结合抗原特异性的抗体。 L链和H链的V区分别称为VL和VH。在VL和VH中某些局部区域的氨基酸组成和排列顺序具有更高的变休程度,这些区域称为高变区(hypervariable region,HVR)。在V区中非HVR部位的氨基酸组面和排列相对比较保守,称为骨架区(fuamework rugion)。VL 中的高变区有三个,通常分别位于第24~34、50~65、95~102位氨基酸。VL和VH的这三个HVR分别称为HVR1、HVR2和HVR3。经X线结晶衍射的研究分析证明,高变区确实为抗体与抗原结合的位置,因而称为决定簇互补区(complementarity-determining regi-on,CDR)。VL和VH的HVR1、HVR2和HVR3又可分别称为CDR1、CDR2和CDR3,一般的CDR3具有更高的高变程度。高变区也是Ig分子独特型决定簇(idiotypic determinants)主要存在的部位。在大多数情况下H链在与抗原结合中起更重要的作用。

第四章 免疫球蛋白

第四章 免疫球蛋白 第一部分:学习习题 一、 填空题 1.免疫球蛋白分子是有两条相同的____和两条相同的____通过链____连接而成的四肽链结构。 2.根据免疫球蛋白重链抗原性不同,可将其分为IgA 、IgM 、 IgG 、IgE 、IgD 等五类,其相应的重链分别为___、___、___、___、___。 3.免疫球蛋白轻链可分为___型和___型。 4.用木瓜蛋白酶水解IgG 可得到两个相同的____片段和一个____片段,前者的抗原结合价为1;用胃蛋白酶水解IgG 则可获得一个抗原结合价为2的_____片段和无生物学活性的____片段。 二、 多选题 [A 型题] 1.抗体与抗原结合的部位: A.V H B. V L C. C H D.C L E. V H 和 V L 2.免疫球蛋白的高变区(HVR)位于 A.V H 和 C H B. V L 和V H C.Fc 段 D.V H 和C L E. C L 和C H 3.能与肥大细胞表面FcR 结合,并介导I 型超敏反应的Ig 是: A.IgA B. IgM C. IgG D.IgD E. IgE 4.血清中含量最高的Ig 是: A.IgA B. IgM C. IgG

D.IgD E. IgE 5.血清中含量最低的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 6.与抗原结合后激活补体能力最强的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 7.脐血中哪类Ig增高提示胎儿有宫内感染? A.IgA B. IgM C. IgG D.IgD E. IgE 8.在免疫应答过程中最早合成的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 9.下面哪一类Ig参与粘膜局部抗感染: A.IgA B. IgM C. IgG D.IgD E. IgE 10.分子量最大的Ig是: A.IgA B. IgM C. IgG D.IgD E. IgE 11.ABO血型的天然抗体是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体 D.IgD类抗体 E. IgE类抗体 12.在种系发育过程中最早出现的Ig是: A.IgA类抗体 B. IgM类抗体 C. IgG类抗体

相关文档