文档库 最新最全的文档下载
当前位置:文档库 › 三角函数图像变换教学设计

三角函数图像变换教学设计

三角函数图像变换教学设计
三角函数图像变换教学设计

§5 创新课堂教学设计模式

在情境教学设计中,创立了课堂教学八步骤:

(1)创设情境(2)提出问题(3)学生探究(4)构建知识

(5)变式练习(6)归纳概括(7)能力训练(8)评估学习

数学情境设计实验案例

《函数y=Asin的图象》教学设计

模块名称:数学新课程必修4 (苏教版)

一课时

一、设计思想:

按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。

本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析

本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。

教学重点:掌握函数y=Asin的图像和变换

教学难点:学生能通过自主探究掌握对函数图象的影响。

三、教学目标分析

1认知目标:

(1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确

对函数图象的影响。

(2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。

(3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。

2 能力目标:

(1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。

(2)在问题解决过程中,培养学生的自主学习能力。

(3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。

3 情感目标:

(1)通过函数图像及利用函数图像解决问题,培养学生发现数学中的美,并由欣赏到应用。

(2)提供适当的问题情境,激发学生学习热情,培养学生学习数学的兴趣。

四、课堂教学结构:

1 创设情境,2提出问题,3学生探究,4构建知识,5变式练习,6归纳概括,7能力训练,8评估学习。

教学过程:

创设情境:

在现实生活中,我们常常会遇到形如y=Asin的函数解析式(其中

都是常数)。利用动画课件展示物体简谐振动过程,创设问题情境。

定义:A :称为振幅;T=:称为周期;f=:称为频率;

ωx+:称为相位。x=0时的相位,称为初相。

一、提出问题:

有实际问题背景,建立数学模型。

讨论函数y=Asin,(A>0, ω>0)x∈R的图像与y=sinx的图像

关系及画法

二、学生探究:

例1画出函数y=2sinx x∈R;y=sin x x∈R的图象(简图)解:用“五点法”∵这两个函数都是周期函数,且周期为2π

∴我们先画它们在[0,2π]上的简图列表:

(1)y =2sinx ,x ∈R

的值域是[-2,2]

图象可看作把y

=sinx ,x ∈R 上所有

点的纵坐标伸长到原

来的2倍而得(横坐

标不变)。

(2)y

=sinx ,

x ∈R

的值域是[-,]

图象可看作把y =sinx ,x ∈R

上所有点的纵坐标缩短到原来的倍而得(横坐标不变)。教师引导观察,启发点拨,用几何画板课件作图象比较,通

过图形的直观创设情境。

一、 构建知识:

学生归纳结论:振幅变换:y=Asinx ,x ∈R(A>0且A ≠1)的图象可以看作把正数曲线上的所有点的纵坐标伸长(A>1)或缩短(0

到的。它的值域[-A, A],大值是A, 最小值是-A 。

例2 画出函数y=sin2x x ∈R ;y=sin x x ∈R 的图象(简图)

解:函数y =sin2x ,x ∈R 的周期T =π

我们先画在[0,π]上的简图,在[0, π]上作图,列表、作图:

sinx

函数y=sin x,x∈R的周期T=4π

我们画[0,4π]上的简图,列表:

(1)函数y=sin2x,x∈R的图象,可看作把y=sinx,x∈R上所有点的

横坐标缩短到原来的倍(纵坐标不变)而得到的。

(2)函数y=sin x, x∈R图象,可看作把y=sinx,上所有点的横坐标

伸长到原来的2倍(纵坐标不变)而得到。

用几何画板课件与y=sinx的图象作比较。

周期变换:函数y=sinωx, x∈R (ω>0且ω≠1)的图象,可看作把正弦

曲线上所有点的横坐标缩短(ω>1)或伸长(0<ω<1)到原来的倍(纵坐标

不变)。

例3画出函数y=sin(x+),x∈R

y=sin(x-),x∈R的简图。

解:列表描点画图:

2 x+

sin(x+)

)

(1)函数y=sin(x+),x∈R的图象可看作把正弦曲线上所有的点向

左平行移动个单位长度而得到

(2)函数y=sin(x-),x∈R的图象可看作把正弦曲线上所有点向右

平行移动个单位长度而得到

一般地,函数y=sin(x+),x∈R(其中≠0)的图象,可以看作把

正弦曲线上所有点向左(当>0时)或向右(当<0时=平行移动||个单位长度而得到 (用平移法注意讲清方向:“加左”“减右”) 。

y=Asin与y=sinx的图象只是在平面直角坐标系中的相对位置不

一样,这一变换称为相位变换

例4 画出函数y=3sin(2x -),x∈R的简图

解:(五点法) 列表、描点画图。用几何画板课件作图象比较。

)

二、变式练习,创设迁移类比情境。画出函数y=3sin(2x+),x R

的简图。

解:(五点法) 列表、描点画图:用几何画板课件作图象比较。

-

2x+

3sin(2x+)

这种曲线也可由图象变换得到:

即:y=sinx y=sin(x+)

y=sin(2x+) y=3sin(2x+)

六、归纳概括:

一般地,函数y=Asin,x R(其中A>0,ω>0)的图象,可以

看作用下面的方法得到:

先把正弦曲线上所有的点向左(当>0时)或向右(当<0时)平移

||个单位长度,再把所得各点的横坐标缩短(当ω>1时)或伸长(当0<ω

<1时)到原来的倍(纵坐标不变),再把所得各点的纵坐标伸长(当A>1时)或缩短(当0<A<1时)到原来的A倍(横坐标不变)

评述:由y=sinx的图象变换出y=sin的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。途径一:先平移变换再

周期变换(伸缩变换)

先将y=sinx的图象向左(>0)或向右(<0)平移||个单位,再

将图象上各点的横坐标变为原来的倍(ω>0),便得y=sin的图象

途径二:先周期变换(伸缩变换)再平移变换

先将y=sinx的图象上各点的横坐标变为原来的倍(ω>0),再沿x

轴向左(>0)或向右(<0)平移个单位,便得y=sin()的图

七、能力训练:

1若将某函数的图象向右平移以后所得到的图象的函数式是y=

sin(x+),则原来的函数表达式为( )

A y=sin(x+)

B y=sin(x+)

C y=sin(x-)

D y=sin(x+)-

答案:A

2把函数y=cos(3x+)的图象适当变动就可以得到y=sin(-3x)的

图象,这种变动可以是( )

A向右平移 B向左平移 C向右平移 D向左平移

分析:三角函数图象变换问题的常规题型是:已知函数和变换方法,求变换后的函数或图象,此题是已知变换前后的函数,求变换方式的逆向型题目,解题的思路是将异名函数化为同名函数,且须x的系数相同

解:∵y=cos(3x+)=sin(-3x)=sin[-3(x-)]

∴由y=sin[-3(x-)]向左平移才能得到

y=sin(-3x)的图象。答案:D

3将函数y=f(x)的图象沿x轴向右平移,再保持图象上的纵坐标不变,而横坐标变为原来的2倍,得到的曲线与y=sinx的图象相同,则y

=f(x)是( )

A y=sin(2x+)

B y=sin(2x-)

C y=sin(2x+)

D y=sin(2x-)

分析:这是三角图象变换问题的又一类逆向型题,解题的思路是逆推

解:y=f(x)可由y=sinx,纵坐标不变,横坐标压缩为原来的,得

y=sin2x;再沿x轴向左平移得y=sin2(x+),即f(x)=sin(2x+)。

答案:C

八、评估学习:小结(略)

九、作业:P.42.3,4,5,6

十、板书设计(略)

函数的图象教学设计教案设计

函数()0,0)sin(>>+=ω?ωA x A y 的图象教学设计 教学目标 1.知识与技能 (1)结合物理中的简谐振动,了解()0,0)sin(>>+=ω?ωA x A y 的实际意义; (2)用“五点法”作出()0,0)sin(>>+=ω?ωA x A y 的图象, 并借助图形计算器 动态演示三角函数图象,研究参数?ω,,A 对函数图象变化的影响,让学 生进一步了解三角函数图象各种变换的实质和内在规律. (3)考察参数A 、?、ω对()0,0)sin(>>+=ω?ωA x A y 图象影响的过程中认识 到函数x y sin =与()0,0)sin(>>+=ω?ωA x A y 的联系. 2.过程与方法 (1)经历x y sin =到()0,0)sin(>>+=ω?ωA x A y 图象变换探究的过程,培养学生 的数学发现能力和概括总结能力. (2)让学生经历三角函数图象各种变换的探求和运用,体验各种变换的内在联系, 提高学生的推理能力、分析问题和解决问题的能力. (3)在研究各种变换的过程中,让学生体验由简单到复杂、由特殊到一般的化归 思想,渗透数形结合的思想. 3.情感、态度、价值观 (1)通过三角函数图象各种变换的探求,培养学生的探索能力、钻研精神和科学 态度. (2)通过合作学习,探求三角函数图象各种变换,培养学生团结协作的精神. 教学重点与难点 教学重点:函数()0,0)sin(>>+=ω?ωA x A y 的图象以及参数?ω,,A 对图象变换的影响.函数x y sin =的图象与函数()0,0)sin(>>+=ω?ωA x A y 的图象之间的变换关系. 教学难点:函数()0,0)sin(>>+=ω?ωA x A y 的图象与函数x y sin =的图象与之间的变

第三章 三角恒等变换(教案)

三角恒等变换 知识点精讲: 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵ 2222cos2cos sin 2cos 112sin ααααα =-=-=-( 2cos 21 cos 2 αα+= , 21cos 2sin 2 α α-= ). ⑶22tan tan 21tan α αα = -. 3、()sin cos ααα?A +B = +,其中tan ?B = A . 经典例题: 例 1.已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2 α 1-tan α的值.

例2.设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π 6)的最值. 例3.已知tan 2 θ=2tan 2 α+1,求证:cos2θ+sin 2 α=0. 例4.已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),c =( 3-1),其中x ∈R . (1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值. 例5.设函数f (x )=22cos(2x +π 4)+sin 2 x

三角函数的图像与性质教案

三角函数的图像与性质教案 考纲要求 1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性. 2.借助图象理解正弦函数、余弦函数在[0,2π],正切函数在(-π 2,π 2)上的性质. 要点识记 1个必会思想——整体思想的运用 研究y=A sin(ωx+φ)(ω>0)的单调区间、值域、对称轴(中心)时,首先把“ωx+φ”视为一个整体,再结合基本初等函数y=sin x的图象和性质求解. 2个重要性质——三角函数的周期性与单调性 (1)周期性:函数y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为2π |ω|,y=tan(ωx+φ)的最 小正周期为π |ω|. (2)单调性:三角函数的单调性应在定义域内考虑,注意以下两个三角函数单调区间的不同: ①y=sin(π 4-x),②y=sin(x- π 4). 教材回归 判断下列说法是否正确(请在括号内填“√”或“×”). (1)y=cos x在第一、二象限上是减函数.(×) (2)y=k sin x+1,x∈R,则y的最大值是k+1 . (×) (3)y=cos(x+π 3)在[0,π]的值域是[-1, 1 2].(√) (4)y=sin(2x+5 2π)是非奇非偶函数.(×) 考向一三角函数的定义域、值域 例1(1)[2014·天津高考]函数f(x)=sin(2x-π 4)在区间[0, π 2]上的最小值为() A. -1 B. - 2 2 C. 2 2 D. 0 (2)函数y=lg(2sin x-1)+1-2cos x的定义域是________.

[解析] (1)∵x ∈[0,π2],∴2x -π4∈[-π4,34π], ∴y ∈[-22,1],选B 项. (2)由题意,得????? 2sin x -1>0,1-2cos x ≥0, 即????? sin x >12,cos x ≤12, [2k π+π3,2k π+56π)(k ∈Z ) 变式练习 1.已知f (x )的定义域为[0,1],则f (cos x )的定义域为__[2k π-π2,2k π+π2](k ∈Z ) ______. 2.若函数f (x )=(1+3tan x )cos x,0≤x <π2,则f (x )的最大值为 __2__. 3.函数y =2cos 2x +5sin x -4的值域为____[-9,1]____. [易错点拨] 求解三角函数的最值和值域时一定要注意自变量的取值范围,由于三角函数的周期性,正弦函数、余弦函数的最大值和最小值可能不在自变量区间的端点处取得,因此要把这两个最值点弄清楚,不然极易出现错误. 三角函数定义域、值域的求解策略 (1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值). 考向二 三角函数的单调性 例2 (1)[2014·唐山模考]已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f (π8)=-2,则f (x )的一个

第10讲函数图像及其变换(教案)

函数图像与变换 教学目标:掌握常见函数图像及其性质(高考要求B ),熟悉常见的函数图像(平移、对称、翻折)变换(高考要求B ). 教学重难点:掌握常见函数图像及其性质,会用“平移、对称、翻折”等手段进行函数图像变换。 教学过程: 一.知识要点: 1.常见函数图像及其性质: (1)平移变换: ①y =f (x ) →y =f (x ±a )(a >0)图象 横向 平移a 个单位,(左+右—). ②y =f (x ) →y =f (x )±b (b >0)图象 纵向 平移b 个单位,(上+下—) ③若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象; ④若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象. (2)对称变换: ①y =f (x ) →y =f (-x )图象关于 y 轴 对称; 若f (-x )=f (x ),则函数自身的图象关于y 轴对称. ②y =f (x ) →y =-f (x )图象关于x 轴 对称. ③y =f (x ) →y =-f (-x )图象关于原点 对称; 若f (-x )=-f (x ),则函数自身的图象关于原点对称. ④y =f (x ) →y =f -1(x )图象关于直线y =x 对称. ⑤y =f (x ) →y =-f -1(-x )图象关于直线y =-x 对称. ⑥y =f (x ) →y =f (2a -x )图象关于直线x =a 对称; ⑦y =f (x ) →y =2b -f (x )图象关于直线y =b 对称. ⑧y =f (x ) →y =2b -f (2a -x )图象关于点(a ,b ) 对称. 若f (x )=f (2a -x )(或f (a +x )=f (a -x ))则函数自身的图象关于直线x =a 对称. 若函数()y f x =的图象关于直线2 a b x +=对称()()f a mx f b mx ?+=- ()()f a b mx f mx ?+-= (3)翻折变换主要有 ①y =f (x ) →y =f (|x |)的图象在y 轴右侧(x >0)的部分与y =f (x )的图象相同,在y 轴左侧部分与其右侧部分关于y 轴对称. ②y =f (x ) →y =|f (x )|的图象在x 轴上方部分与y =f (x )的图象相同,其他部分图象为y =f (x )图象下方部分关于x 轴的对称图形. 二.基础练习: 1.若把函数f (x )的图象作平移变换,使图象上的点P (1,0)变换成点Q (2,-1), 则函数y =f (x )的图象经此变换后所得图象的函数解析式为 ( A ) A.y =f (x -1)-1 B.y =f (x +1)-1 C.y =f (x -1)+1 D.y =f (x +1)+1 2.已知函数y =f (x )的图象如图2—3,则下列函数所对应的图象中,不正确的是( B ) A.y =|f (x )| B.y =f (|x |) C.y =f (-x ) D.y =-f (x ) 解: y =f (|x |)是偶函数,图象关于y 轴对称. 图2—3

三角恒等变换教案

教学过程 一、课堂导入 思路1.我们知道变换是数学的重要工具,也是数学学习的主要对象之一,三角函数主要有以下三个基本的恒等变换:代数变换、公式的逆向变换和多向变换以及引入辅助角的变换.前面已经利用诱导公式进行了简单的恒等变换,本节将综合运用和(差)角公式、倍角公式进行更加丰富的三角恒等变换. 思路2.三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系它们的适当公式,这是三角式恒等变换的重要特点.

二、复习预习 复习三角函数值的计算及诱导公式(一)-(六)。 απαsin )2sin(=+k , απαcos )2cos(=+k , απαtan )2tan(=+k (公式一) sin( )sin , cos() cos , tan( ) tan (公式二) sin( ) sin , cos( )cos , tan( ) tan (公式三) ααπsin sin(=-) , ααπ-cos cos(=-), ααπtan tan(-=-) (公式四) sin( )cos 2 (公式五) sin( )cos 2 (公式六) cos()sin 2 cos( ) sin 2

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

函数图象的几何变换教案

函数图象的几何变换教案 【教学目标】1.让学生熟练掌握各种图象变换,能迅速作出给定的函数图象; 2.让学生了解用数形结合法解决方程、不等式、含参问题的讨论; 3.培养学生主动运用数形结合方法解题的意识. 【教学重点】函数图象的几何变换 【教学难点】1.各种图象变换之间的区别及灵活应用; 2.运用数形结合方法解题. 【例题设置】例1(平移易错点剖析),例2、4(函数作图),例3(找中心),例5(图 象法解不等式) 【教学过程】 第一课时 一、复习九种基本函数及圆锥曲线的图象. ⑴ 正比例函数 kx y =,)0,(≠∈k R k ⑵ 反比例函数 k y = , )0,(≠∈k R k ☆ 其图象是以原点为中心,以直线y x =和y x =-为对称轴的双曲线. ⑶ 一次函数 b kx y +=,)0,(≠∈k R k ⑷ 一元二次函数 )0(2 ≠++=a c bx ax y ⑸ 指数函数 ,0x y a a =>且1≠a (特征线:1=x ) ⑹ 对数函数 0, log >=a x y a 且1≠a (特征线:1=y ) ⑺ 正弦函数 R x x y ∈=,sin ,周期π2=T ⑻ 余弦函数 x y cos =,R x ∈,周期π2=T ⑼ 正切函数 ),2 (,tan Z k k x x y ∈+ ≠=π π 周期π=T ☆一个小结论:在区间)2 , 0(π 上恒有x x x sin tan >>(证明文科留至《三角函数》一节

再给出,理科用导数证明如下) 证明:① 记()tan f x x x =-,则2 1 ()10cos f x x '= ->在)2 ,0(π上恒成立,故()f x 在)2 ,0(π上为增函数,所以()(0)0f x f >=,即当(0,)2x π ∈时,恒有tan x x > ② 记()sin g x x x =-,则()1cos 0g x x '=->在)2, 0(π 上恒成立,故()g x 在)2 ,0(π 上为增函数,所以()(0)0g x g >=,即当(0,)2 x π ∈时,恒有sin x x > 综上所述,在区间)2 ,0(π 上恒有x x x sin tan >> ⑽ 椭圆 X 型:12222=+b y a x ; Y 型: 122 22=+b x a y ⑾ 双曲线 X 型:12222=-b y a x ; Y 型: 122 22=-b x a y ⑿ 抛物线 px y 22=)0(>p ;px y 22-= )0(>p ; py x 22=)0(>p ;py x 22-= )0(>p . ★注意:1.牢记九种基本函数及圆锥曲线图象是进行函数图象变换的基础,也是提高用数形结合方法解题速度的关键. 2.理解各种曲线图象的较为精确的画法,这在用数形结合法解题,涉及两个图象之间关系时,才不至于造成误解. 二、图象的初等变换 A 、平移变换 1.要作出函数)(a x f y +=的图象,只需将函数)(x f y =的图象向左)0(>a 或向右 )0(h 或向下 )0(

高中数学人教版必修简单的三角恒等变换教案(系列一)

3.2 简单的三角恒等变换 一.教学目标 1、通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、换元、方程、逆向 使用公式等数学思想,提高学生的推理能力。 2、理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三 角恒等变形在数学中的应用。 3、通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中 如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力. 二、教学重点与难点 教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力. 教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力. 三、教学设想: (一)复习:三角函数的和(差)公式,倍角公式 (二)新课讲授: 1、由二倍角公式引导学生思考:2 αα与有什么样的关系? 学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台. 例1、试以cos α表示222 sin ,cos ,tan 222α α α. 解:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin 2αα=-,可以得到21cos sin 2 2α α-=;

因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=. 又因为222 sin 1cos 2tan 21cos cos 2α α ααα-==+. 思考:代数式变换与三角变换有什么不同? 代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点. 例2.已知135sin = α,且α在第二象限,求2tan α的值。 例3、求证: (1)、()()1sin cos sin sin 2 αβαβαβ=++-????; (2)、sin sin 2sin cos 22θ? θ? θ?+-+=. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手. ()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-; 即()()1sin cos sin sin 2 αβαβαβ=++-????; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβ?+=-=, 那么,22θ? θ? αβ+-==. 把,αβ的值代入①式中得sin sin 2sin cos 22θ?θ?θ?+-+=. 思考:在例3证明中用到哪些数学思想? 例3证明中用到换元思想,(1)式是积化和差的形式,

三角函数的图像与性质教学设计

三角函数的图像与性质(王玮玮) 教材:人教版《普通高中课程标准实验教科书·数学(B版)》必修4 本节课“三角函数的图像和性质”选自实验教材第一章第四节。下面我将从五个方面说明本节课的教学设计。 1教学设计思路 2教材分析 3学情分析 4教学目标与重点、难点 5教学流程 一、教学设计思路:新课程标准倡导积极主动、勇于探索的学习方式,把学习的主动权还给学生。以此为宗旨,我采用自主学习、合作探究方法,引导学生自主学习、探究学习,努力做到教法、学法的最优组合,并体现以下几个特点: (1)苏霍姆林斯基说过:“在人的内心深处,都有一种根深蒂固的需要,那就是希望自己是一个发现者和探索者.”本节课正是抓住学生的这一心理需求,充分利用互动工具,让学生动手实践、思考探索,合作交流,真正意义上做到尊重学生的创造性,挖掘学生的潜力,让他们对整个学习过程充满激情,快乐学数学。 (2)注重信息反馈,坚持师生间的多向交流。当学生接触新知—周期性、单调性、值域等性质时以及利用性质画出图象时,要引导学生多思、多说、多练,要充分暴露他们所遇到的知识障碍,并在师生之间的多向交流中,不断的得到解决,使知识深化。 二、教材分析: 地位与作用:本节课是在学生掌握了单位圆中的正弦函数线和诱导公式的基础上进行的,不仅是对前面所学知识应用的考察,也是后续学习正、余弦函数性质的基础。对函数图像清晰而准确的掌握也为学生在解题实践

中提供了有力的工具。本小节内容是三角函数的图象与性质,是本章知识的重点,有着承前启后的作用。 美国华盛顿一所大学有句名言:“我听见了,就忘记了;我看见了,就记住了;我做过了,就理解了.”要想让学生深刻理解三角函数性质和图像,就应该让学生主动去探索,大胆去实践,亲身体验知识的发生和发展过程 三、学生情况分析: 知识上,通过高一对函数的学习,学生已经具备了一定的绘图技能,能够类比推理画出图像,并通过观察图像,总结性质。心理上,具备了一定的分辨能力、语言表达能力,初步形成了辩证的思维方法。另外学生基础差异较大,在小组中尽量搭配合理,在练习和作业中注意分层,另外学生对观察正切线得出函数单调性以及利用单位圆中的三角函数线作图有困难,要加强指导。 四、鉴于以上认识,确定本节课的(一)教学目标为: 1. 知识与技能目标:通过研究掌握正弦函数图像及其画法;掌握余弦函数图像;深刻理解五点作图法中五点的本质。利用正切函数已有的知识(如定义、诱导公式、正切线等),自己或合作通过绘制正切线的变化研究性质,根据性质探究正切函数的图象。 2. 过程与方法:通过主动思考,主动发现,亲历知识的形成过程,使对正弦函数图像的认知更为深刻。让学生借助单位圆中的三角函数线能画出tan y x =的图象,借助图象理解正切函数在(,) 22ππ -上的性质(如单调性、周期性、最大值和最小值、图象与x 轴的交点等),并能解决一些简单问题。 3. 情感态度与价值观:用联系的观点看待问题,善于类比联想,直观想象,对数形结合有进一步认识,激发学习数学的兴趣,养成良好的数学品质。让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。 (二)、教学重点、难点 1. 教学重点: (1)正弦函数、余弦函数的图像形状 (2)利用正切函数已有的知识(如定义、诱导公式、正切线等)研究性质, (3)根据性质探究正切函数的图象。 2.教学难点:sin y x =在[]0,2x π∈时的函数图像。画正切函数的简图,体

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

函数图象的变换教学设计

“函数B x A y ++=)sin(?ω的图像”教学设计 教材分析 本节选自《普通高中课程标准实验教科书》(人教A 版)必修4 “函数B x A y ++=)sin(?ω的图像”这一节作为示范课课题。它是在前面学习了正弦函数和余弦函数的图象和性质的基础上对正弦函数图象的深化和拓展。根据学生实际情况,为了更好地化解难点,本节分三个课时进行教学,这里是针对第一个课时的教学设计,主要是通过实践探究、归纳总结等方式让学生掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律,明确常数A 、ω、?、B 对图像变化的影响,进而是学生对函数sin()y A x B ω?=++的图像变化有个感性认识,为继续学习函数sin()y A x B ω?=++与sin y x =的图象间的变换关系打下坚实的基础,同时有助于学生进一步理解正弦函数的图象和性质,加深学生对其他函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识,使学生领会由简单到复杂,特殊到一般的化归思想,同时也为相关学科的学习打下扎实的基础。 由于本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要,因此这节课的内容是本章的重点、难点之一。 教学分析 一.设计理念 根据“诱思探究教学”中提出的教学模式,设计的教学过程,遵循“探索—研究—运用”亦即“观察—思维—迁移”的三个层次要素,侧重学生的“思”“探”“究”的自主学习,由旧知识类比得新知识,自主探究图象与图象之间的变换关系,让学生动脑思,动手探,教师的“诱”要在点上,在精不用多。整个教学过程始终贯穿“体验为主线,思维为主攻”,学生的学习目的要达到“探索找核心,研究获本质”。 二.教学目标 1.知识与技能: (1)熟练掌握五点法作图; (2)掌握sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图像变化规律, 明确常数A 、ω、?、B 对图像变化的影响; (3)对函数sin()y A x B ω?=++的图象变化有个感性认识。 2.过程与方法: 通过学生自己动手画图,使学生知道列表、描点、连线是作图的基本要求;通过在同一个坐标平面内对比相关的几个函数图象,发现规律、总结提炼、加以应用;通过用《几何画板》软件进行验证,加深学生对自己探究的成果的理解和认可,进而鼓励学生积极思考、勤于动手进行实践探索的良好学习品质。 3.情感态度与价值观 通过本节的学习,渗透数形结合思想;培养学生发现问题、研究问题、解决问题的能力和总结、归纳的能力;让学生在实践中领会由简单到复杂、由特殊到一般的化归思想;让学生体会实践与探索带来的成功与喜悦。 三.教学重点和难点 1.教学重点:考察参数A 、ω、?、B 对函数图象变化的影响,理解函数sin y x =图象到 sin y A x =、sin()y x ω=、sin()y x ?=+、sin y x B =+的图象的变化过程。 2.教学难点:ω对sin()y A x ω?=+的图象的影响规律的概括。

三角恒等变换教学设计

三角恒等变换 单元教学设计 一、教材分析 1、本单元教学内容的范围 和角公式 3.1.1 两角和与差的余弦 3.1.2 两角和与差的正弦 3.1.3两角和与差的正切 倍角公式和半角公式 3.2.1 倍角公式 3.2.2 半角的正弦、余弦和正切 三角函数的积化和差和和差化积 2、本单元教学内容在模块内容体系中的地位和作用 变换是数学的重要工具,也是数学学习的主要对象之一。代数变换是学生熟悉的,与代数变换一样,三角变换也是只变其形不变其质的,它可以揭示那些外形不同但实质相同的三角函数式之间的内在联系。在本册第一章,学生接触了同角三角函数式的变换。在本章,学生将运用向量方法推导两角差的余弦公式,由此出发推导其它三角函数恒等变换公式,并运用这些公式进行简单的三角恒等变换。通过本章学习,学生的推论能力和运算能力将得到进一步提高。 三角恒等变换在数学积应用科学中应用广泛,同时有利于发展学生的推论能力和计算能力。本章将通过三角恒等变换揭示一些问题的数学本质。 3、本单元教学内容总体教学目标 (1)和角公式 经历用向量的数量积推导出两角差的余弦公式的过程,掌握用向量证明问题的方法,进一步体会向量法的作用. 能从两角差的余弦公式导出两角和的余弦公式,以及两角和与差的正弦、正切公式,了解公式间的内在联系。 能应用公式解决比较简单的有关应用的问题。 (2)倍角公式和半角公式 经历运用正弦、余弦、正切的和角公式,推导出它们对应的倍角公式积公式及公式2C α的两种变形,再运用二倍角的变形公式推导出半角的正弦、余弦和正切公式的过程,掌握倍角公式和半角公式,能正确运用公式进行简单的三角函数式的化简、求值、恒等式的证明。 了解公式之间的内在联系,培养学生的逻辑推理能力。 (3)三角函数的积化和差和和差化积 经历运用两角和、两角差的三角函数公式推导出三角函数的积化和差和和差化积的过程,体会“解方程组”和“换元”的数学思想,掌握三角函数的积化和差和和差化积公式,能正确运用公式进行有关的计算和证明。 4、本单元教学内容重点和难点分析 (1)和角公式 重点:两角和与差的余弦公式求值和证明. 难点:两角和的余弦公式的推导. (2)倍角公式和半角公式 重点:1.二倍角的正弦、.余弦、正切公式及公式2C α的两种变形; 2.半角的正弦、.余弦、正切公式。 难点:1.倍角公式与同角三角函数的基本关系式、诱导公式、和角公式的综合应用; 2.半角公式和倍角公式之间的内在联系,以及应用公式时正负号的选取.

三角函数的图像与性质优秀教案

三角函数图像与性质复习 教案目标: 1、掌握五点画图法,会画正余弦、正切函数图象以及相关的三角函数图象及性质。 2、深刻理解函数的定义和正弦、余弦、正切函数的周期性。 重点:五点作图法画正余弦函数图象,及正余弦函数的性质,及一般函数) sin(?ω+=x A y 的图象。 难点:一般函数)sin(?ω+=x A y 的图象与性质。 【教案内容】 1、引入: 有个从未管过自己孩子的统计学家,在一个星期六下午妻子要外出买东西时,勉强答应照看一下4个年幼好动的孩子。当妻子回家时,他交给妻子一张纸条,上写:“擦眼泪11次;系鞋带15次;给每个孩子吹玩具气球各5次,每个气球的平均寿命10秒钟;警告孩子不要横穿马路26次;孩子坚持要穿过马路26次;我还想再过这样的星期六0次。” 2、三角函数知识体系及回忆正余弦函数的概念和周期函数: 正弦函数: 余弦函数: 周期函数: 注意: 最小正周期: 一般函数)sin(?ω+=x A y 中:A 表示 ,ω表示 及频率: ,相位: 。 正切函数: 3、三角函数的图象:

值域:tan ;tan .2 2 22 x x x x x x π π π π < → →+∞>- →-→-∞当且时,当且时, 单调性:对每一个k Z ∈,在开区间(,)22 k k π π ππ- +内,函数单调递增. 对称性:对称中心:( ,0)()2 k k Z π ∈,无对称轴。 五点作图法的步骤: (由诱导公式画出余弦函数的图象) 【例题讲解】

例1 画出下列函数的简图 (1)1sin y x =+[0,2]x π∈(2)cos y x =-[0,2]x π∈ (3)2sin y x =[0,2]x π∈ 例2 (1)方程lg sin x x =解得个数为( ) A. 0 B. 1 C. 2 D. 3 (2)3[, ]22x ππ ∈- 解不等式3 sin 2 x ≥- 4([,])33x ππ∈- 例3已知函数()cos(2)2sin()sin()3 4 4 f x x x x π π π =-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程; (Ⅱ)求函数()f x 在区间[,]122 ππ - 上的值域。 例4已知函数()sin(),f x A x x R ω?=+∈(其中0,0,02 A π ω?>><< )的周期为π, 且图象上一个最低点为2( ,2)3 M π -. (Ⅰ)求()f x 的解读式;(Ⅱ)当[0, ]12 x π∈,求()f x 的最值. 例5写出下列函数的单调区间及在此区间的增减性: (1)1tan()26 y x π=-;(2)tan(2)4y x π =-. 【过手练习】 1、函数sin(2)3 y x π =+ 图像的对称轴方程可能是() A .6x π =- B .12 x π =- C .6x π = D .12 x π = 2、已知函数)0)(sin(2>+=ωφωx y 在区间[0,2π]的图像 如下,那么ω=() A. 1 B. 2 C. 1/2 D. 3 1 3、函数()cos 22sin f x x x =+的最小值和最大值分别为

高中数学_正弦型函数图象变换第二课时教学设计学情分析教材分析课后反思

教学设计

【学情分析】

从知识方面看: ①学生已经具备的:(1)正弦函数图象的三种变换规律(2)上学期已经学习了函数 图象 的平移,有“左加右减”这样一些粗略的关于图象平移的认识,对函数图像的对称性已具备了初步认识,具备将“数”与“形”相结合及转化的意识。但对于本节内容,学生需要理解并掌握三个参数变化对正弦型函数图像的影响,还要研究正弦型函数图像变换规律以及变形应用,知识密度较大,理解掌握起来难度较大。 ②学生所缺乏的:(1)应用数学知识解决问题的能力还不强;(2)数形结合的思想还有 待提 高。 从学习情感方面看: 高一的学生具有一定的知识基础,有强烈的求知欲,喜欢探求真理,自主学习与合作学习意识较强,具有积极的情感态度,。 从学习能力上看: 这一阶段的学生正处在由抽象思维到逻辑思维的过渡期,对图形的观察、分析、总结可能会感到比较困难。尤其是我所任教班级的学生,尽管思维活跃、敏捷,却缺乏冷静、深刻,因而片面,不够严谨,系统地分析问题和解决问题的能力有待提高。 由于三角函数图象变换是高中数学的难点,学生的数学思维能力与思想方法有待继续培养、提高、完善,要结合学生的实际情况,分解难点,逐一突破。针对上述情况,在教学中,我注意面向全体,发挥学生的主动性,引导学生积极地观察问题,分析问题,激发学生的求知欲和学习积极性,指导学生积极思维、主动获取知识,养成良好的学习方法。利用几 何画板进行动画演示,让学生体会 sin() y A x ω? =+中的,ω?均是针对x而言的,其他因 素暂时不考虑,帮助学生从形的角度更好的理解变换规律。并逐步学会独立提出问题、解决问题。总之,调动学生的非智力因素来促进智力因素的发展,引导学生积极开动脑筋,思考问题和解决问题,从而发扬钻研精神、勇于探索创新。 【效果分析】 这是一节新授课,从课前准备、课堂气氛、课后调查反馈的情况看,学生基本上能掌握

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

三角函数图像变换教学设计

§5 创新课堂教学设计模式 在情境教学设计中,创立了课堂教学八步骤: (1)创设情境(2)提出问题(3)学生探究(4)构建知识 (5)变式练习(6)归纳概括(7)能力训练(8)评估学习 数学情境设计实验案例 《函数y=Asin的图象》教学设计 模块名称:数学新课程必修4 (苏教版) 一课时 一、设计思想: 按照新课程理念,通过计算机辅助教学创设情境,实施信息技术与学科课程整合教学设计。引发学生学习兴趣,从而较好地完成教学任务。动画效果的展示形成对视觉的强刺激,把通常惯用的语言描述生动形象地刻画出来,促进学生对重点难点的知识理解掌握。 本课教学设计重点是学习环境的设计,通过几何画板创设动态直观情境,引导学生主动参与、乐于探究、培养学生处理信息的能力。

二、教学内容分析 本课教学内容是能通过变换和五点法作出函数y=Asin的图像,理解函数y=Asin(A>0, ω>0)的性质及它与y=sinx的图象的关系。本节内容是在三种基本变换的基础上进行的,进一步深入研究正弦函数的性质,y=Asin的图像变换是函数图像变换的综合,充分体现利用数形结合研究函数解决问题的思想,对前面的基础和知识有很好的小结作用,这种函数在物理学和工程学中应用比较广泛,有实际生活背景,它能为实际问题的解决提供良好的理论保证。同时,本课的教材也是培养学生逻辑思维能力、观察、分析、归纳等数学能力的重要素材。 教学重点:掌握函数y=Asin的图像和变换 教学难点:学生能通过自主探究掌握对函数图象的影响。 三、教学目标分析 1认知目标: (1)结合具体实例,理解y=Asin的实际意义,会用“五点法”画出函数y=Asin的简图。会用计算机画图,观察并研究参数,进一步明确 对函数图象的影响。 (2)能由正弦曲线通过平移、伸缩变换得到y=Asin的图象。 (3)教学过程中体现由简单到复杂、特殊到一般的化归的数学思想。 2 能力目标: (1)为学生创设学习数学的情境氛围,培养学生的数学应用意识和创新意识。 (2)在问题解决过程中,培养学生的自主学习能力。 (3)让学生经历列表、描点、连线成图的作图过程,体会数形结合、整体与局部的数学思想,培养学生的科学探索精神,归纳、发现的能力。 3 情感目标:

3.2简单的三角恒等变换优质教案

3.2 简单的三角函数恒等变换 授课班级:高一(1)班 授课教师:郭建德 授课日期:2018-1-11 一、教学目标 1.知识与技能 熟练掌握和、差、二倍角公式,会用已学公式进行三角函数式的化简、求值和证明,使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力 2.过程与方法 通过三角变换,加强学生对换元、逆向思维等思想方法的认识 3.情感、态度与价值观 体会变换中形变而质不变的哲理 二、教学重点和难点 1.教学重点 引导学生以已有公式为依据,以推导半角公式、积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力 2.教学难点 认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力 三、授课类型和授课方法: 新授课(公开课);探究合作,先学后练 四、教学过程 1、新课导入 复习倍角公式2S α、2C α、2T α 先让学生默写三个倍角公式,注意等号两边角的关系,特别注意2C α 。既然能用单角 表示倍角,那么能否用倍角表示单角呢? 2、新课讲解、范例演示 半角公式的推导及理解 : 例1、 试以cos α表示222 sin ,cos ,tan 222α α α. 解析:我们可以通过二倍角2cos 2cos 12α α=-和2cos 12sin 2α α=-来做此题.(二倍角公式中以 α代2α,2 α代α) 解:因为2cos 12sin 2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12α α=-,可以得到21cos cos 22 α α+=.

相关文档
相关文档 最新文档