文档库 最新最全的文档下载
当前位置:文档库 › 泊松分布

泊松分布

泊松分布
泊松分布

泊松分布

Poisson distribution

概率论中常用的一种离散型概率分布。若随机变量X 只取非负整数值,取k值的概率为λke-l/k!(记作P (k;λ),其中k可以等于0,1,2,则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式是时提出来的。泊松分布P (λ)中只有一个参数λ,它既是泊松分布的均值,也是泊松分布的方差。在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布。因此泊松分布在管理科学,运筹学以及自然科学的某些问题中都占有重要的地位。

泊松分布(Poisson distribution),台译卜瓦松分布,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。泊松分布的概率密度函数为:P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!} 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。

(Poisson distribution),-{zh-cn:台译卜瓦松分布;zh-tw:也译为布瓦松分布,布阿松分布,波以松分布等}-,是一种统计与概率学里常见到的离散机率分布(discrete probability distribution),由法国数学家(Siméon-Denis Poisson)在1838年时发表。

泊松分布的概率密度函数为:

:P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}

泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。

泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。

观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示:P(x)=(m^x/x!)*e^(-m)

p ( 0 ) = e ^ (-m)

称为泊松分布。例如采用0.05J/m2紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式:

P(0)=e^(-3)=0.05;

P(1)=(3/1!)e^(-3)=0.15;

P(2)=(3^2/2!)e^(-3)=0.22;

P(3)=0.22;

P(4)=0.17;……

P(0)是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/m2照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此P(1),P(2)……就意味着全部死亡的概率。

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

泊松分布

概率论大作业 --泊松分布 班级:11011001班 姓名:郭敏 学号:2010302612 2013年1月10日

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 泊松分布在现实生活中应用非常广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。在某些函数关系泊松分布起着一种重要作用,例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质以及基本相关知识, 并讨论了这些知识在实际生活中的重要作用。 关键词:泊松分布性质及其应用、二项分布、泊松过程

近数十年来,泊松分布日益显示其重要性,成了了解概率论中最重要的几个分布之一。 一、泊松分布的由来 在历史上泊松分布是作为二项分布的近似,于1837年由法国数学家泊松引入。 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。又设0>=λn np 是常数, 则{}λλ-∞ →= =e k k x P k n n ! lim 。 证明 由λ=n np 得: {}()()n n k n k k n k n n n k n n k n n k k n n n k x P ?--??? ??-??????? ??? ??--????? ??-???? ? ?-?= ? ? ? ??-??? ??+--==λλλλ11121111!1!11 显然,当k = 0 时,故λ -n e k} x P{→=。当k ≥1 且k → ∞时,有 λλ-?-→? ? ? ??-→??? ??--????? ??-???? ??-?e n n k n n n n k n 1,11121111 从而{}λ λ-→ =e k k x P k n 1 ,故{}λλ-∞ →= =e k k x P k n n ! lim 。 在应用中,当p 相当小时(一般当p<=0.1)时,用下面近似公式 np k e k np p n k b -≈! )(),;( 对于不同λ值得泊松分布图:

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

泊松分布的概念及表和查表方法

目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质 命名原因 泊松分布实例

泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例

概率论与数理统计课程报告:泊松分布及其在实际中的应用

泊松分布及其在实际中的应用 摘要:本文从泊松分布的定义和基本性质出发,举例讨论了泊松分布在实际中的重要应用。 关键字:泊松分布;应用;运筹学;分子生物学;核衰变 泊松分布是法国数学家泊松于1837年引入的,是概率论中的几大重要分布之一。作为一种常见的离散型随机变量的分布,其在实际中有着非常广泛的应用。 1泊松分布的定义及基本知识 1.1定义: (1)若随机变量X 的分布列为 ), ?=>= =-,2,1,0(0,! )(k k e k X P k λλλ 则称X 服从参数为λ的泊松分布,并用记号X~P(λ)表示。 (2)泊松流: 随机质点流:随机现象中源源不断出现的随机质点构成的序列。 若质点流具有平稳性、无后效性、普通性, 则称该质点流为泊松事件流(泊松流)。 例如某电话交换台收到的电话呼叫数; 到某机场降落的飞机数; 一个售货员接待的顾客数等这些事件都可以看作泊松流。 1.2有关泊松分布的一些性质 (1)满足分布列的两个性质:P(X=k)≥0(k=0,1,2,…), 且有 1! ! )(0 =?====-∞ =-∞=∞ =-∑∑∑ λλλ λ λλe e k e k e k X P k k k o k k . (2)若随机变量X 服从参数为λ的泊松分布,则X 的期望和方差分别为:E (X)=λ; D(X)=λ. (3)以n ,p 为参数的二项分布,当n →∞,p →0时,使得np=λ保持为正常数,则 λλ--→ -e k p p C k k n k k n ! ) 1(对于k=0,1,2,…一致成立。 由如上定理的条件λ=np 知,当n 很大时,p 很小时,有下面的近似公式 λλ--→ -=e k p p C k P k k n k k n n ! ) 1()( 2泊松分布的应用 对于试验成功概率很小而试验次数很多的随机过程, 都可以很自然的应用于泊松分布的理论。在泊松分布中的概率表达式只含一个参数λ,减少了对参数的确定与修改工作量, 模型构建比较简单, 具有很重要的实际意义。 以下具体举例说明泊松分布在实际中的重要应用。 (1)泊松分布在经济生活中的应用: 泊松分布是经济生活中的一种非常重要的分布形式,尤其是经常被运用在运筹学研究中的一个分布模型。如物料订单的规划,道路交通信号灯的设计,生产计划的安排,海港发

06二项分布及泊松分布

●Bernoulli 试验(Bernoulli T est): 将感兴趣的事件A出现的试验结果称为“成功”,事件A不出现的试验结果称为“失败”,这类试验就称为Bernoulli 试验 ●二项分布(binomial distribution): 是指在只会产生两种可能结果如阳性或阴性之一的n次独立重复试验中,当每次试验的阳性概率π保持不变时,出现阳性次数X=0,1,2,…,n的一种概率分布。 ●Poisson分布(Poisson distribution): 随机变量X服从Poisson分布式在足够多的n次独立试验中,X取值为1,2,…,的相应概率为 …的分布。 ★二项分布成立的条件: ①每次试验只能是互斥的两个结果之一;②每次试验的条件不变;③各次试验独立。 ★二项分布的图形: 当∏=0.5,二项分布图形是对称的,当∏不等于0.5,图形是偏态的,随着n增大,图形趋于对称。当n趋于无穷大时,只有∏不太靠近0或者1,二项分布近似正态分布。 ★二项分布的应用 总体率的区间估计,样本率与总体率比较,两样本率的比较 ★Poisson 分布的应用 总体均数的区间估计,样本均数与总体均数的比较,两个样本均数的比较:两个样本计数均较大时,可根据Poisson 分布的正态近似性对其进行u 检验。 ★Poisson 分布成立的条件: ①平稳性:X 的取值与观察单位的位置无关,只与观察单位的大小有关;②独立增量性:在某个观察单位上X 的取值与前面各观察单位上X 的取值无关;③普通性:在充分小的观察单位上X 的取值最多为1。 Poisson 分布,X~P(μ),X 的均数μX =μ,X的方差σ2 =μ,X的标准差σX ★Poisson分布的性质 1、总体均数λ与总体方差相等是泊松分布的重要特点。 2、当n增大,而∏很小,且n∏=λ总体均数时,二项分布近似泊松分布。 3、当总体均数增大时,泊松分布渐近正态分布,一般而言,总体均数》20时,泊松分布资料做为正态分布处理。 4、泊松分布具有可加性。 ★泊松分布的图形 当总体均数越小,分布就越偏态,当总体均数越大,泊松分布就越趋近正态分布。当总体均数小于等于1时,随X取值的变大,P(X)值反而变小;当总体均数大于1时,P(X)值先增大而后变小,若总体均数取整数时,则P(X)在X=总体均数,和X=总体均数—1取得最大值。 ★二项分布和泊松分布的特性 1.可加性 二项分布和Poisson 分布都具有可加性。 如果X1,X2,?Xk 相互独立,且它们分别服从以ni,p(i=1,2, ?,k)为参数的二项分 布,则X=X1+X2+?+Xk 服从以n,p(n=n1+n2+?+nk)为参数的二项分布。如果X1,X2,?,Xk相互独立,且它们分别服从以μi(i=1,2, ?,k)为参数的Poisson 分布,则X=X1+X2+?+Xk服从以μ(μ=μ1+μ2+?+μk)为参数的Poisson 分布。 2.近似分布

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

正确理解 泊松分布 通俗解释

很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在1876 年由贝尔发明,一台电话由几个部分构成……”(泊松分布在1876 年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。比如在一段时间t(比如 1 个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200 人),而应该符合某种随机规律:假如在 1 个小时内来200 个学生的概率是10%,来180 个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布,若要公式化定义,那就是:若随机变量X 只取非负整数值0,1,2,..., 且其概率分布服 从则随机变量X 的分布称为泊松分布,记作P(λ)。这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (λ)中只有一个参数λ ,它既是泊松分布的均值,也是泊松分布的方差。生活中,当一个随机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从

Poisson过程

第三章Poisson过程 教学目的:(1)了解计数过程的概念; (2)掌握泊松过程两种定义的等价性; (3)掌握泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (4)了解泊松过程的三种推广。 教学重点:(1)泊松过程两种定义的等价性; (2)泊松过程的到达时刻的分布、等待时间的分布和来到时刻的条件分布; (3)泊松过程的三种推广。 教学难点:(1)泊松过程两种定义的等价性的证明; (2)泊松过程来到时刻的条件分布; (3)泊松过程的推广。 3.1 Poisson过程 教学目的:掌握Poisson过程的定义及等价定义;会进行Poisson过程相关的概率的计算。 教学重点:Poisson过程的定义与其等价定义等价性的证明;Poisson过程相关的概率的计算。 教学难点:Poisson过程的定义与其等价定义等价性的证明。 Poisson过程是一类重要的计数过程,先给出计数过程的定义 定义3.1:{(),0} 表示从到时刻 N t t N t t≥ 随机过程称为计数过程,如果()0特定事件发生的次数,它具备以下两个特点: 某一A N t取值为整数; (1)() 内事件发生的次数。 (2)()()()-()(,] 时,且表示时间A s t N s N t N t N s s t <≤ 计数过程有着广泛的应用,如:某商店一段时间内购物的顾客数;某段时 间内电话转换台呼叫的次数;加油站一段时间内等候加油的人数等。 如果在不相交的时间区间中发生的事件个数是独立的,则称该计数过程

有独立增量。即当123,t t t <<2132()-()()-()X t X t X t X t 有与是独立的。 若在任一时间区间中的事件个数的分布只依赖于,时间区间的长度则计数 过程有平稳增量。即对一切12120(,]t t s t s t s <>++及,在中事件个数 21()()N t s N t s +-+12(,]t t 与区间中事件的个数21()()N t N t -有相同的分布。 Poission 过程是计数过程,而且是一类最重要、应用广泛的计数过程,它最早于1837年由法国数学家Poission 引入。 .独立增量和平稳增量是某些级数过程的主要性质Poisson 过程是具有独立 增量.和平稳增量的计数过程 定义3.2:{(),0}(0)N t t λλ≥>计数过程称为参数为Poisson 过程,如果 (1)(0)0N =; (2)过程具有独立增量; (3),0,s t ≥对任意的 (()-())P N t s N s n +=! n t t e n λλ-=() 例3.1:3/h 设顾客到达商店依次人的平均速度到达,Poisson 且服从分布, 9:00,已知商店上午开门试求 (1)9:0010:005从到这一小时内最多有名顾客的概率? (2)9:3011:30到时仅到一位顾客,而到时总计已达到5位顾客的概率? (解:见板书。) 注:(1)Poisson 过程具有平稳增量。 (2)随机变量()N t 服从参数为t λ的Poisson 分布,故[()]E N t t λ=(显然,可以认为λ是单位时间内事件发生的平均次数,称λ是Poisson 过程的强度或速率或发生率。)

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

泊松分布的应用

泊松分布的应用

泊松分布的应用 摘要 泊松分布是指一个系统在运行中超负载造成的失效次数的分布形式。它是高等数学里的一个概念,属于概率论的范畴,是法国数学家泊松在推广伯努利形式下的大数定律时,研究得出的一种概率分布,因而命名为泊松分布。 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。本文对泊松分布产生的过程、定义和性质做了简单的介绍,研究了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。 关键词:泊松过程;泊松分布;定义;定理;应用;

一、 计数过程为广义的泊松过程 1.计数过程 设)} 0, [ T t , t)( {N X T ∞=∈=为一随机过程, 如果 t )( N 是取非负整数值的随机变量,且满足s < t 时, t)( s) ( N ≤,则称)} 0, [ T t , t)( {N X T ∞=∈=为计数过程。 将增量 t t 0 , t), t ( N ) t ( N - t)( N 000<≤?=,它表示时间间隔 t), t [ 0内出现的质点数。“在 t), t [ 0内出现k 个质点”,即k} t), t ( {N 0=是一随机事件,其概率记为 2 0,1, k , k} t), t ( P{N t), t ( P 00K ===总之,对某种随机事件的来到数都可以得到一个计数过程,而同一时刻只能至多发生一个来到的就是简单计数过程。 2.泊松过程 计数过程0} t , t)( {N ∈称为强度为λ的泊松过程,如果满足条件: (1)在不相重叠的区间上的增量具有独立性; (2)0 (0) N =; (3)对于充分小的, t)( O t 1} t) t t,( P{N t) t t,( P 1?+?==?+=?+λ其中常数 0>λ,称为过程)(t N 的强度。 (4)对于充分小的Δt (){}()t j t t t N P t t t P j j j ?==?+=?+∑∑∞ =∞=ο2 2 ,),( 亦即对于充分小的t ?,在()t t t ?+,或2个以上质点的概率与出现一个质点的概率相对可以忽略不计。了解泊松过程,就很容易去了解泊松分布的相关性质,其实泊松分布就是在泊松过程当中每单位的时间间隔内出现质点数目的计数。 二、 泊松分布的概念: 泊松分布常用于描述单位时间、单位平面或单位空间中罕见“质点”总数的随机分布规律。 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。

事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。 应用场景 在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导

浅析二项分布、泊松分布和正态分布之间的关系

浅析二项分布、泊松分布和正态分布之间的关系 1预备知识 1.1二项分布 在同一条件下重复做n次独立试验,每次试验只可能有两种对立的结果:A和A之一,并设在同一次试验中A发生的 概率是P (A) = p,00是常数, 则称X服从参数为兄的泊松分布,记为X一‘(刃。 泊松分布的重要性质是它的数学期望和方差都等于参数兄。 1 .3正态分布 设连续型随机变量x的概率密度为: I(x) _ 1- e 一J27rs (x一月产 2,5' -00 < x < +00,其中PIC为 常数,口>0,则称溯及从参数为从口的正态分布或高斯分 布,记为X一N(u,a2)。 正态分布的概率密度中的两个参数产和a,分别就是该分 布的数学期望和方差。特别地,当,t=O,a2 =1时的正态分 布.称为标准正态分布,记为X一N(0,1),标准正态分布的 产 密度函数记为(Pkx) -了歹e2r‘,-0o < x <+00· 正态分布是自然界及工程技术中最常见的分布之一,大量的随机现象都是服从或近似服从正态分布的。文献【1]指出,

概率论与数理统计附表1 泊松分布表

附表1 泊松分布表 ()! m P X m e m λλ-==

390.0000070.000056 附录 附录A A1 正态分布函数表 2 2 ()e d(0) 2π t x x t x Φ -∞ =-≥ ? x 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 0.5000 0.5398 0.5793 0.6179 0.6554 0.6915 0.7257 0.7580 0.7881 0.8159 0.8413 0.8643 0.8849 0.90320 0.91924 0.93319 0.94520 0.95543 0.96407 0.97128 0.97725 0.98214 0.98610 0.98928 0.99180 0.99379 0.99534 0.99653 0.99745 0.99813 0.5040 0.5438 0.5832 0.6217 0.6591 0.6950 0.7291 0.7611 0.7910 0.8186 0.8438 0.8665 0.8869 0.90490 0.92073 0.93448 0.94630 0.95637 0.96485 0.97193 0.9778 0.98257 0.98645 0.98956 0.99202 0.99396 0.99547 0.99664 0.99752 0.99819 0.5080 0.5478 0.5871 0.6255 0.6628 0.6985 0.7324 0.7642 0.7939 0.8212 0.8461 0.8686 0.8888 0.90658 0.92220 0.93574 0.94738 0.95728 0.96562 0.97257 0.97831 0.98300 0.98679 0.98983 0.99224 0.99413 0.99560 0.99674 0.99760 0.99825 0.5120 0.5517 0.5910 0.6293 0.6664 0.7019 0.7357 0.7673 0.7967 0.8238 0.8485 0.8708 0.8907 0.90824 0.92364 0.93699 0.94845 0.95818 0.96638 0.97320 0.97882 0.98341 0.98713 0.99010 0.99245 0.99430 0.99573 0.99683 0.99767 0.99831 0.5160 0.5557 0.5948 0.6331 0.6700 0.7054 0.7389 0.7703 0.7995 0.8264 0.8508 0.8729 0.8925 0.90988 0.92507 0.93822 0.94950 0.95907 0.96712 0.97381 0.97932 0.98382 0.98745 0.99036 0.99266 0.99446 0.99586 0.99693 0.99774 0.99836 0.5199 0.5596 0.5987 0.6368 0.6736 0.7088 0.7422 0.7734 0.8023 0.8289 0.8531 0.8749 0.8944 0.91140 0.92647 0.93943 0.95053 0.95994 0.96784 0.97441 0.97982 0.98422 0.98778 0.99061 0.99286 0.99461 0.99598 0.99702 0.99781 0.99841 0.5239 0.5636 0.6026 0.6406 0.6772 0.7123 0.7454 0.7764 0.8051 0.8315 0.8554 0.8770 0.8962 0.91309 0.92785 0.94062 0.95154 0.96080 0.96856 0.97500 0.98030 0.98461 0.98809 0.99086 0.99305 0.99477 0.99609 0.99711 0.99788 0.99846 0.5279 0.5675 0.6064 0.6443 0.6808 0.7157 0.7486 0.7794 0.8078 0.8340 0.8577 0.8790 0.8980 0.91466 0.92922 0.94179 0.95254 0.96164 0.96926 0.97558 0.98077 0.98500 0.98840 0.99111 0.99324 0.99492 0.99621 0.99720 0.99795 0.99851 0.5319 0.5714 0.6103 0.6480 0.6844 0.7190 0.7517 0.7823 0.8106 0.8365 0.8599 0.8810 0.8997 0.91621 0.93056 0.94295 0.95352 0.96246 0.96995 0.97615 0.98124 0.98537 0.98870 0.99134 0.99343 0.99506 0.99632 0.99728 0.99801 0.99856 0.5359 0.5753 0.6141 0.6517 0.6879 0.7224 0.7549 0.7852 0.8133 0.8389 0.8621 0.8830 0.90147 0.91774 0.93189 0.94408 0.95449 0.96327 0.97062 0.97670 0.98169 0.98574 0.98899 0.99158 0.99361 0.99520 0.99643 0.99737 0.99807 0.99861 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9

正确理解-泊松分布-通俗解释

正确理解-泊松分布-通俗解释

年由贝尔发明,一台电话由几个部分构成”(泊松分布在1876年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。时间t (比如1个小时)内来到食堂就餐的学生数量肯定不会是一比如在一段个常数(比 如一直是200人),而应该符合某种随机规律: 学生的概率是10%,来180个学生的概率是假如在1个小时内来200个20%'般认为,这种随机规 若要公式化定义,那就是:若 当一个随 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。如果我们学习的意义是为了通过考试,那么我们大可停留在 只会做题”的阶段,因为试卷上不会出现请发表一下你对泊松公式的看法”这 样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。而如果我们学习的目的是为了理解一 样东西,那么我们就有必要停下来去思考一下诸如为什么要有泊松分布?” 泊松分布的物理意义是什么?”这样的哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:电话是 一种机器,两个距离很远的人可以通过它进行交谈”而不会说:电话在1876 律服从的就是泊松分布。 这当然只是形象化的理解什么是泊松分布, 随机变量X只取非负整数值0,1,2,…,且其概率分布服 从"k!则随机变量X的分布称为泊松分布,记作P(入。)这个分布是S.-D.泊松研究二项分布的渐近公式时提出来的。泊松分布P (/中只有一个参数入,它既是泊松分布的均值,也是泊松分布的方差。生活中,当 机事件,例如来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜 F某区域中的白血球等等,以固定的平均瞬时速率入或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地

二项分布与Poisson分布

二项分布与Poisson分布 二项分布和Poisson分布均是常见的离散型分布,在分类资料的统计推断中有非常广泛的应用。 一、二项分布的概念及应用条件 1. 二项分布的概念: 如某实验中小白鼠染毒后死亡概率P为0.8,则生存概率为=1-P=0.2,故 对一只小白鼠进行实验的结果为:死(概率为P)或生(概率为1-P) 对二只小白鼠(甲乙)进行实验的结果为:甲乙均死(概率为P2)、甲死乙生[概率为P(1-P)]、乙死甲生[概率为(1-P)P]或甲乙均生[概率为(1-P)2],概率相加得P2+P(1-P)+(1-P)P+(1-P)2=[P+(1-P)]2 依此类推,对n只小白鼠进行实验,所有可能结果的概率相加得P n+1 C P(1- n P)n-1+...+x C P x(1-P)n-x+...+(1-P)x=[P+(1-P)]n其中n为样本含量,即事件发生总数,x n 为某事件出现次数, x C P x(1-P)n-x为二项式通式,x n C=n!/x!(n-x)!, P为总体率。 n 因此,二项分布是说明结果只有两种情况的n次实验中发生某种结果为x次的概率分布。其概率密度为: P(x)= x C P x(1-P)n-x, x=0,1,...n。 n 2. 二项分布的应用条件: 医学领域有许多二分类记数资料都符合二项分布(传染病和遗传病除外),但应用时仍应注意考察是否满足以下应用条件:(1) 每次实验只有两类对立的结果;(2) n次事件相互独立;(3) 每次实验某类结果的发生的概率是一个常数。 3. 二项分布的累计概率 二项分布下最多发生k例阳性的概率为发生0例阳性、1例阳性、...、直至k 例阳性的概率之和。至少发生k例阳性的概率为发生k例阳性、k+1例阳性、...、直至n例阳性的概率之和。 4. 二项分布的图形 二项分布的图形有如下特征:(1)二项分布图形的形状取决于P 和n 的大小; (2) 当P=0.5时,无论n的大小,均为对称分布;(3) 当P<>0.5 ,n较小时为偏态分布,n较大时逼近正态分布。

相关文档