文档库

最新最全的文档下载
当前位置:文档库 > 传热习题

传热习题

1. 一双层玻璃窗系由两层厚度为3mm 的玻璃组成,其间空气隙厚度为6mm 。设面向室内的玻璃表面温度与面向室外的玻璃温度分别为20℃和-15℃。已知玻璃的导热系数为0.78W/m.℃,空气的导热系数为0.025W/m.℃,玻璃窗的尺寸是670×440mm 。,试确定该双层玻璃窗的热损失。如果采用单层玻璃窗,其他条件不变,其热损失是双层玻璃窗的多少倍?

由多层平板壁导热公式有

()12

11222015t t q 141.3w /2/0.006/0.0252*0.003/0.78

δλδλ---=

==++

Q Aq 141.3*0.67*0.44=41.66w ==

单层玻璃时:

()12222015t t q 9100w /0.003/0.78

δλ---=

== 故有q 单/q 双=9100/141.3=64.4

所以单层玻璃时的热损失是双层玻璃时的64.4倍。

2热电偶的热接点近似认为是直径0.5mm 的球形,热电偶材料的

ρ=8930kg/m3,c=400J/kg.℃, 导热系数

λ=48.5W/m.℃。热电偶初始温度为25℃,突然将其放入120℃的气流中,热电偶表面与气流间对流换热系数

h=95W/m.℃,试求热电偶的过余温度达到初始过余温度的1%时所需的时间为多少?这时热电偶的指示温度为多少?

解:判断本题能否利用集总参数法:

()

i 0.0002595h v /A hr /3

3B 0.000160.033348.5

λ

λ

?=

=

=

= 可用集总参数法。

1hA 9530.31915s cV 89304000.00025ρ-?==?? 由()0

exp 0.319151%θ

τθ=-=,解得τ=14.4s 0t t t 120

1%t t 25120

∞∞--==--,解得t=119.05℃,即此时热电偶指示温度为119.05℃。

1.有一水平管道直径为200mm ,分别包有=0.04W/m ·K ,和=0.05 W/m ·K 的保温材料,厚度分别为20mm 和30mm ,

管内流有50℃的空气,流速为10m/s ,管外大气温度为10℃。(管道厚度很薄,可以忽略不计)求:1.管内的对流换

热系数。

2.管外的对流换热系数。

3.每米管道总的热阻。

4.每小时5m 长管段的散热量。

5.管内流体流过3000米温度降为多少?

备注:1.管内流动的对流换热实验关联式:

2.管外横掠的对流换热实验关联式:

3.管外自然对流换热实验关联式

:

传热习题

传热习题

(注:此关联式中定性温度取管外流体温度,

中的Δt=5℃,

其中体积膨胀系数可以按管外为理想气体计算:α=1/(273+t ) 4.空气的热物性:

传热习题

两平行大平壁的发射率各为0.5和0.8,如果中间加入一片两面发射率均0.05的铝箔,计算辐射换热减少的百分数。 、解:

无遮热板时,单位面积的辐射换热量:

传热习题

传热习题

有遮热板时,单位面积的辐射换热量:

传热习题

传热习题

辐射热减少的百分数将为:

传热习题

3.有一房间长4米,宽3米,地板和天花板之间的距离为2.5米,房间的四个墙壁是绝热的,由于使用电阻加热器使地板表面保持均匀温度T1为30℃,天花板的表面温度T2为12℃并有热损失,若所有表面的黑度为0.9,试画出辐射网络图并求由于辐射造成房间的热损失是多少?

(已知.0.29X =地板天花板,..0.71X X ==地板墙壁天花板墙壁;黑体辐射常数σ=8

5.6710-?()

24/W m K )

房间可以看成三个表面组成的封闭体,其中一个是重辐射面。 计算网络中的各热阻值:

1111A εε-=

10.9

0.009260.912

-=?m -2 2221A εε-=10.9

0.009260.912-=?m -2

1

1.1

2..11A X A X A X -??++ ???

地板天花板地板墙壁天花板墙壁=1

110.290.710.71-??++ ?

??=0.645 m -2

房间热损失为:

12

1

1

11

21.1222..11

111

b b E E q A A X A X A X A εεεε--=

-+??-+++ ?

??地板天花板地板墙壁

天花板墙壁

=()()44

81

12 5.671030328570310.91

0.91

110.90.290.710.710.9W --??

??-??=-+-??+++ ?

??

建筑物大玻璃窗的尺寸为1m ×2m ,厚度为δ=4mm 。如果其内、外表面温度分别为t w1=20℃、t w2=5℃。玻璃的导热系

数为λ=0.76W/(m.K),试求通过玻璃的散热损失。

由富利叶公式q=-λdt/dx,将上式对x 从0到δ积分得

q=λ(t w1- t w2)/ δ

将已知条件代入得:

q=0.76×(20-5)/0.004=2850W/㎡ 通过整个玻璃的散热损失为

Φ=q ×A=2850×1.2=3420W

2.有一根直径D 为25mm 的圆管,它的表面温度Ts 保持在100℃,用它把流水温度从T f1为30℃加热到为T f270℃。水的流量m 为1kg/s 。试求需管子多长?(迪图斯-贝尔特公式:0.8

0.0.023f e f r f N u R

P =;齐德公式:

0.14

0.81/30.027f f rf

s u Nu R P u ??= ???

;水在50℃的参数为:()4181/p c J kg K = ,6254810/N s m μ-=? , 3.56r P =,

()0.643/k W m K = ,6227910/s N s m μ-=? )

46

44

Re 9.29100.02554810

m D πμπ-=

==???? 所以是湍流。

因为温差大

于30

℃,

故选用齐德公式。

0.14

0.81/30.027f f rf

s u Nu R P u ??= ???

=()()

0.14

0.8

1/3

45480.0279.2910

3.56427279??????= ???

因此,()24270.643

/10.982/0.025

h Nu D W m k λ?=?=

= …

()5211418140 1.6710p f f q mc T T W =-=??=? …

()

()()2

121/f f m s f s f T

T T n T T T T -?=

??--??

=47.2℃

所需管子长度为:

5

1.6710 4.10.02510.98247.2

m q L m Dh T ππ?===????

求下图所示,几何图形的角系数 1.2X 和 2.1X 。

加一条辅助线,如图虚线所示。 由角系数的完整性有

1.2X + 1.3X =1,又由几何图形的对称性知 1.2X = 1.3X 故有 1.2X = 1.3X =0.5 由角系数的相对性,

2.1X

传热习题

=1 1.220.50.707A X A ==

传热习题

传热习题

减少热损失和保证安全工作条件,在外直径为133mm 的蒸汽管道外侧覆盖保温层。蒸汽管外壁温度为400℃,按电厂操作规定,保温材料外侧温度不得超过50℃。如果采用导热系数为0.0887 W/(m2·K)的水泥珍珠岩制品做保温材料,并把每米管道的热损失Q/L 控制在465 W/m 以下,保温层厚度应为多少毫米? 解:每米长的热量

传热习题

传热习题

解得:d2=202.3mm

则保温层厚度为 (202.3-87)/2=34.6mm

有一架空蒸汽管道,管道内径为φ=300mm ,管壁厚度5mm ,其导热系数为36 W/(m ·K)。外包有λb=0.04 W/ (m ·K)的保温材料,厚度为40mm ,管道内流有130℃的干饱和蒸汽,流速为41m/s ;外有空气以2m/s 横掠管道,温度为10℃。 求:1、管内对流表面传热系数。 2、管外对流表面传热系数。

3、每m蒸汽管道的总热阻及表面传热系数。

4、每小时每米蒸汽管道的散热量。

传热习题

?管内流动的对流换热实验关联式

传热习题

?管外横掠的对流换热实验关联式

传热习题

?管外自然对流换热实验关联式

以上三式定性温度均取流体已知温度。

?空气的热物性:

kJ/k℃)W/m℃(kg/m·s)5、干饱和蒸汽热物性

kJ/k℃)W/m℃(kg/m·s)

四、综合题

1) 定性条件已知,由题意知

传热习题

传热习题

传热习题

?定性条件已知,由题意知

传热习题

传热习题

传热习题

传热习题

3) 1m长管道的热阻

总的传热阻共有四部分组成:管道内流体与管道内壁的对流换热热阻,管道内壁到外壁间的导热热阻,管道外壁与保温层外层的导热热阻和和空气对流换热的热阻.

传热习题

每m长管道的总的表面传热系数

传热习题

4) 散热量

传热习题