文档库 最新最全的文档下载
当前位置:文档库 › 霍尔效应疑难

霍尔效应疑难

霍尔效应疑难
霍尔效应疑难

霍尔效应疑难

摘要:当空穴作为载流子时,真实移动的虽然是电子。但是与负载流子—电子不同的是,空穴周围还有着一群的电子等待着跳跃向空穴,他们的运动状态是不能忽略的!!

李老师好,我是谢天佑。我这几天思考了霍尔效应两种载流子的模型后想到一个解决方案。其中在火车上,我只是进行了一些思维对比。就是将那个水桶模型和载流子模型进行了细致的对比,目的是想找到他们间的共性和不同。为了使论证有说服力,更加可靠,我需要知道两种模型的共性共享到了一种什么程度。

今天我想到了一种我认为满意的解释:

半导体一般用的材料是硅和锗,这些元素可以结晶形成金刚石晶格,一种立方体结构,其中一个原子和最靠近的四个原子形成四面体键。而我们讨论的np型半导体是掺杂了杂质的硅Si(或者锗)。N型半导体主要掺杂物质是砷As原子序数33,其最外层电子数是5,其可以失去一个电子与硅形成稳定的晶格结构。而失去的电子就是作为负载流子,在晶体中运动,传播动量和能量。P型半导体主要掺杂物质是铝Al原子序数27,其最外层电子数是3,其可以获得一个电子与硅形成稳定晶格结构。而留下的空穴态作为正载流子,在晶体中运动。下图是一个理想化模型:

P型半导体:

如图是局部的P型半导体的晶格结构。中间失去电子(红点)的是空穴。我们定性考虑空穴在外加磁场中和通入电流(外加电场)情形下移动的情形。

空穴向右方向移动,等效于一个在C处的束缚态电子向左跳跃移动。但是真实情况不是这样的,我们需要考虑一种统计意义上的电子运动图像。即C处电子有各种可能的跳跃方式迁移到空穴位置,同样地,与空穴最靠近的所有八个(原子最外层)电子均有相同的几率跳跃至空穴处。不同的是,当通过电流时,会需要一个电场j=σE驱动载流子移动。而空穴相当于正离子拥有较周围Si原子更高的电势,对于电子而言是更低的能态。并且加了外电场后,C处的电子比A处的电子拥有更高的可能性跳跃至空穴处。而通常一块半导体,拥有

几十亿个原子(Si和Al),微观的可能性将表现为宏观的运动趋势,即电子向左移动得更多,空穴向右移动!

在考虑了电场产生的统计性结果后,我再来叙述其磁场的效果。竟然宏观表现为电子向左移动,那么在微观看来是怎样的呢?

我们知道,当C处出发的电子到达空穴后就没有向左的动量了!(因为电子又进入到了一个束缚态)那么这些动量到哪里去了呢?它会传递动量给其周边的原子,相应地,也把能量传递给了周边的原子。

(附注:在量子力学的计算结果看来,空穴拥有向右的正动量和正能量!这个的原因也可以由上面给出定性解释,不过只是我个人的观点。因为每次电子向左移动都是从束缚态开始,受到电场力的牵引。不过我们正想讨论的是,C处电子怎么能那么顺利地获得向左的动量,主要是C周围的处于激发态的原子给予C能量的。那么空穴的正动量的来源就很清楚了,是源于空穴周围的原子处于激发态的传递,就像波一样!而这个波的叠加,综合起来就表现得十分像一个粒子。从而有了正能量和正动量之说。)

从而我们需要来考虑周边的原子的情况。为了简化讨论,我们来观察空穴上下方的原子。首先对于由C处向空穴移动的电子,他们都会在磁场的作用下受到一个偏向上的力作用(在量子力学中,这就是一种耦合作用,因为是对无数种可能态的作用!)。那么发生跳跃的电子会更多地与上原子发生相互作用。而电子与原子的作用(准确地说是电偶极子),会有一个类似于拖拽的效应,因此电子会释放光子给上原子。从而传递能量给了上原子。上原子比下原子拥有更高的能量。此时,我们知道上下原子都有一定的几率跃迁到空穴位置处。无外场时,宏观效果是空穴几乎不动!而有了外场,上原子外的电子拥有更高的能量以供它逃离束缚态跳跃至空穴处!!从而统计性的结果是,宏观看来,空穴会向上移动。也就是上部积累正电荷,形成上高电势,下低电势的状态!!

参考书籍:

费曼第三卷

格里菲斯—量子力学

维基百科(英文)

主要的模型是我自己想出来的解决方案。因为网络上和教材上都是一笔带过,没有很好地给出细节部分。就连十分权威的《Quantum Mechanics》Griffith著的都没有过多地提及这里的细节!!

霍尔效应实验报告

霍尔效应实验一、实验目的 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is,V H —I M曲线,了解霍尔电势差V H 与霍尔元件工 作电流Is,磁场应强度B及励磁电流IM之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 二、实验仪器 霍尔效应实验仪和测试仪 三、实验原理 运动的带电粒子在磁场中受洛仑兹力的作用而引起偏转,当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场(霍尔电场),这就是霍尔效应的本质。由于产生霍尔效应的同时,伴随多种副效应,以致实测的霍尔电场间电压不等于真实的V H 值,因此必需设法消除。根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。具体的做法是Is和B(即I M)的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的Is和B(即I M)时的V1,V2,V3,V4, 1)+I s+B V1 2)+I s-B V2 3)-I s-B V3 4)-I s+B V4 然后求它们的代数平均值,可得: 4 4 3 2 1 V V V V V H -+ - = 通过对称测量法求得的VH误差很小。

四、实验步骤 1.测量霍尔电压VH与工作电流Is的关系 1)先将Is,I M都调零,调节中间的霍尔电压表,使其显示为0mV。 2)将霍尔元件移至线圈中心,调节IM =0.45A,按表中所示进行调节, 测量当I M正(反)向时, I S正向和反向时的V H值填入表1,做出V H -I S 曲线。 表1 VH-IS 关系测量表 IM =0.45A 2.测量霍尔电压V H与励磁电流I M的关系 1)先将Is调节至4.50mA。 2)调节励磁电流I M如表2,分别测量霍尔电压V H值填入表2中。3)根据表2中所测得的数据,绘出I M—V H曲线

大学物理仿真实验——霍尔效应

大学物理实验报告 姓名:wuming 1目的:(1)霍尔效应原理及霍尔元件有关参数的含义和作用 (2)测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流I M之间的关系。 (3)学习利用霍尔效应测量磁感应强度B及磁场分布。 (4)学习用“对称交换测量法”消除负效应产生的系统误差。 2简单的实验报告数据分析 (1)实验原理 霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如下图(1)所示,磁场B 位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动。由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时,f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。设电子按平均速度V,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: f L=-e V B 式中:e 为电子电量,V为电子漂移平均速度,B为磁感应强度。 同时,电场作用于电子的力为: f E H H eV eE- = - =l

霍尔效应的原理及应用

学号:1003618095河南大学民生学院毕业论文 (2014届) 年级2010级 专业班级电子信息科学与技术 学生姓名范博 指导教师姓名翟俊梅 指导教师职称副教授 论文完成时间2014-04-22 河南大学民生学院教务部 二○一三年印制

目录 目录 摘要 (1) 一霍尔效应 (2) 1.1经典霍尔效应 (2) 1.2经典霍尔效应误差 (3) 二量子霍尔定律 (3) 三霍尔元件 (6) 3.1霍尔器件 (6) 3.2霍尔元件 (7) 3.3霍尔元件的特点 (8) 四霍尔效应的应用 (8) (1)工程技术中的应用 (9) (2)日常生活中的应用 (10) (3)科学技术中的应用 (11) 五结语 (11) 六参考文献 (12)

霍尔效应的原理及应用 范博 (河南大学民生学院,河南开封,475004) 摘要 霍尔效应是电磁效应,这种现象是美国的物理学家霍尔于1879年在校读研期间将载流子的导体放入磁场中的做受力作用实验的时候发现的。实验中电流垂直在导体的外磁场并通过导体时,导体垂直磁场与电流两个方向的端面之间就会产生出一种电势差,产生的这种现象就是霍尔效应。在实在验中产生的电势差被名为霍尔电势差。 Principle and Application of Hall effect Abstract:Hall effect is a kind of electromagnetic effect,This phenomenon is caused by the American physicist A-H-Hall in 1879 when the carriers do during graduate conductors in a magnetic field by the force of the experimental findings.When the current is perpendicular to the external magnetic field and through the conductor, the conductor is perpendicular to the magnetic field and electric current produces electric potential difference between the two direction of end face, this phenomenon is called the hall effect. The electric potential difference caused by experiment have been called hall electric potential difference.

霍尔效应

实验 霍尔效应 霍尔效应是磁电效应的一种。在匀强磁场中放一金属薄板,使板面与磁场方向垂直,在金属薄板中沿着与磁场垂直的方向通电流时,金属薄板的两侧面间会出现电势差。这一现象是霍尔(A.H.Hall ,1855-1938)于1879年发现的。 一、实验目的 1、 了解霍尔效应实验原理 2、 学习用对称法消除负效应的影响,测量H s V I -和 H M V I -曲线。 3、 确定试样的导电类型,载流子浓度以及迁移率。 二、 实验室提供的仪器和用具 霍尔效应测试仪(TH--H 型);霍尔效应实验仪 (TH--H 型); 配套专用线六根。 三、仪器简介 霍尔效应测试仪(TH--H 型)面板如图1,霍尔效应实验仪 (TH--H 型) 面板如图2 测试仪说明和使用注意事项: (1)图1中测试仪的“I S 输出”是霍尔器件工作电流源,“I M 输出”是电磁铁励磁电流源。面板上的“I S 输出”、“I M 输出”和“V H 、V O 输入”三对接线柱应分别与实验仪上的三对相应的接线柱正确连接,严禁将测试仪I M 输出错误接到实验仪的I S 输入或V H 、V O 输出处,否则通电后霍尔器件将遭损坏。 (2)测试仪开机前应将I S 、I M 调节旋钮逆时针方向旋到底,使其输出电流趋于最小状态后,方可开机。测试仪接通电源后,预热数分钟即可进行实验。顺时针调节I S 、I M 调节旋钮即可增加输出电流。 (3)关机前应再次将I S 、I M 调节旋钮逆时针方向旋到底,使其输出电流趋于0后,方可切断电源。 霍尔效应实验仪说明和使用注意事项: (1)图2中的霍尔片样品为N 型半导体硅单晶片,厚度b=0.5mm ,宽度a=4.0mm ;电磁铁的磁感应强度B 由磁铁上参数和输入电流算出,例如B=I M ×( )KGS/A=( )T 注:1T=104GS 四、实验原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛伦兹力作用而引起的偏转。当带电粒子(电子或者空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚集,从而形成附加的横向电厂,即霍尔电场。

霍尔效应实验报告98010

霍尔效应与应用设计 摘要:随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。本文主要通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。 关键词:霍尔系数,电导率,载流子浓度。 一.引言 【实验背景】 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,称为霍尔效应。 如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz )、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。 【实验目的】 1. 通过实验掌握霍尔效应基本原理,了解霍尔元件的基本结构; 2. 学会测量半导体材料的霍尔系数、电导率、迁移率等参数的实验方法和技术; 3. 学会用“对称测量法”消除副效应所产生的系统误差的实验方法。 4. 学习利用霍尔效应测量磁感应强度B 及磁场分布。 二、实验内容与数据处理 【实验原理】 一、霍尔效应原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。如图1所示。当载流子所受的横电场力与洛仑兹力相等时,样品两侧电荷的积累就达到平衡,故有 B e eE H v = 其中E H 称为霍尔电场,v 是载流子在电流方向上的平均漂移速度。设试样的宽度为b , ? a

厚度为d ,载流子浓度为n ,则 bd ne t lbde n t q I S v =??=??= d B I R d B I ne b E V S H S H H =?= ?=1 比例系数R H =1/ne 称为霍尔系数。 1. 由R H 的符号(或霍尔电压的正负)判断样品的导电类型。 2. 由R H 求载流子浓度n ,即 e R n H ?= 1 (4) 3. 结合电导率的测量,求载流子的迁移率μ。 电导率σ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = (5) 即σμ?=H R ,测出σ值即可求μ。 电导率σ可以通过在零磁场下,测量B 、C 电极间的电位差为V BC ,由下式求得σ。 S L V I BC BC s ?= σ(6) 二、实验中的副效应及其消除方法: 在产生霍尔效应的同时,因伴随着多种副效应,以致实验测得的霍尔电极A 、A′之间的电压为V H 与各副效应电压的叠加值,因此必须设法消除。 (1)不等势电压降V 0 如图2所示,由于测量霍尔电压的A 、A′两电极不可能绝对对称地焊在霍尔片的两侧,位置不在一个理想的等势面上,Vo 可以通过改变Is 的方向予以消除。 (2)爱廷豪森效应—热电效应引起的附加电压V E 构成电流的载流子速度不同,又因速度大的载流子的能量大,所以速度大的粒子聚集的一侧温度高于另一侧。电极和半导体之间形成温差电偶,这一温差产生温差电动势V E ,如果采用交流电,则由于交流变化快使得爱延好森效应来不及建立,可以减小测量误差。 (3)能斯托效应—热磁效应直接引起的附加电压V N

霍尔效应

霍尔效应 一、简介 霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。流体中的霍尔效应是研究“磁流体发电”的理论基础。 二、理论知识 1. 1. 霍尔效应 将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。H V 称为霍尔电压。 (a) (b) 图1 霍尔效应原理图 实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即 d IB R V H H =(1) 或 IB K V H H =(2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。 如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B 中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为 j eVB B V e B V q F m -=?-=?=(3) 式中V 为电子的漂移运动速度,其方向沿X 轴的负方向。e 为电子的电荷量。m F 指向Y 轴的负方向。自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正 电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场H E (即霍尔电场),使运动电子受

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验 (FB510A型霍尔效应组合实验仪)(亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?

霍尔效应法测量磁场

霍尔效应测磁场 霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效 应。1879年美国霍普金斯大学研究生霍尔在研究金属导电机理时发现了这种电磁现象,故称霍尔效应。后来曾有人利用霍尔效应制成测量磁场的磁传感器,但因金属的霍尔效应太弱而未能得到实际应用。随着半导体材料和制造工艺的发展,人们又利用半导体材料制成霍尔元件,由于它的霍尔效应显著而得到实用和发展,现在广泛用于非电量的测量、电动控制、电磁测量和计算装置方面。在电流体中的霍尔效应也是目前在研究中的“磁流体发电”的理论基础。近年来,霍尔效应实验不断有新发现。1980年原西德物理学家冯·克利青研究二维电子气系统的输运特性,在低温和强磁场下发现了量子霍尔效应,这是凝聚态物理领域最重要的发现之一。目前对量子霍尔效应正在进行深入研究,并取得了重要应用,例如用于确定电阻的自然基准,可以极为精确地测量光谱精细结构常数等。 在磁场、磁路等磁现象的研究和应用中,霍尔效应及其元件是不可缺少的,利用它观测磁场直观、干扰小、灵敏度高、效果明显。 【实验目的】 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H—Is,了解霍尔电势差V H与霍尔元件工作电流Is、磁感应强度B之间的关系。 3.学习利用霍尔效应测量磁感应强度B及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 【实验原理】

霍尔效应从本质上讲,是运动的带电粒子在磁场中受洛仑兹力的作 用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。如图13-1所示,磁场B位于Z的正向,与之垂直的半导体薄片上沿X正向通以电流Is(称为工作电流),假设载流子为电子(N型半导体材料),它沿着与电流Is相反的X负向运动 。 由于洛仑兹力f L作用,电子即向图中虚线箭头所指的位于y轴负方向的B侧偏转,并使B侧形成电子积累,而相对的A侧形成正电荷积累。与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力f E的作用。随着电荷积累的增加,f E增大,当两力大小相等(方向相反)时, f L=-f E,则电子积累便达到动态平衡。这时在A、B两端面之间建立的电场称为霍尔电场E H,相应的电势差称为霍尔电势V H。 设电子按均一速度,向图示的X负方向运动,在磁场B作用下,所受洛仑兹力为: 式中:e 为电子电量,为电子的漂移平均速度,B为磁场的磁感应强度。 同时,电场作用于电子所受电场力为: 式中:E H为霍尔电场强度,V H为霍尔电势,l为霍尔元件宽度当达到动态平衡时:  (13-1) 设霍尔元件宽度为l,厚度为d ,载流子浓度为 n ,则霍尔元件的工作电流为

霍尔效应实验仪原理及其应用

一、实验名称: 霍尔效应原理及其应用 二、实验目的: 1、了解霍尔效应产生原理; 2、测量霍尔元件的H s V I -、H m V I -曲线,了解霍尔电压H V 与霍尔元件工作电流s I 、直 螺线管的励磁电流 m I 间的关系; 3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度B 及分布; 4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04型霍尔效应实验仪(仪器资产编号) 四、实验原理: 1、霍尔效应现象及物理解释 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力 B f 作用而引起的偏转。 当带电 粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1所示。 半导体样品,若在x方向通以电流s I ,在z方向加磁场B ,则在y方向即样品A、A′电 极两侧就开始聚积异号电荷而产生相应的电场H E ,电场的指向取决于样品的导电类型。显然, 当载流子所受的横向电场力 E B f f <时电荷不断聚积,电场不断加强,直到 E B f f =样品两侧电 荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压) H V 。

设 H E 为霍尔电场,v 是载流子在电流方向上的平均漂移速度; 样品的宽度为b ,厚度为d , 载流子浓度为n ,则有: s I nevbd = (1-1) 因为 E H f eE =,B f evB =,又根据E B f f =,则 1s s H H H I B I B V E b R ne d d =?= ?= (1-2) 其中 1/()H R ne =称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出H V 、B 以及知道s I 和d ,可按下式计算3 (/)H R m c : H H s V d R I B = (1-3) B I U K S H H /= (1—4) H K 为霍尔元件灵敏度。根据RH 可进一步确定以下参数。 (1)由 H V 的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1所示的 s I 和B 的方向(即测量中的+ s I ,+B ),若测得的 H V <0(即A′的电位低于A的电位), 则样品属N型,反之为P型。 (2)由 H V 求载流子浓度n ,即 1/() H n K ed =。应该指出,这个关系式是假定所有载流 子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入3/8π的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。 (3)结合电导率的测量,求载流子的迁移率μ。电导率σ与载流子浓度n 以及迁移率μ之间有如下关系:

霍尔效应

第三章 霍尔效应计算公式 在本章开始之前,我们首先来回顾一下霍尔效应的几个参数。霍尔效应主要有面电阻率,体电阻率,面霍尔系数,体霍尔系数,面载流子浓度,体载流子浓度,霍尔迁移率这么几个参数。 体电阻率是材料直接通过泄漏电流的能力的度量。体电阻率定 义为边长1厘米的立方体材料的电阻,单位为。面电阻率定义为 材料表面的电阻,单位为(通常称为方块电阻)。 体霍尔系数,它表示材料产生霍尔效应的本领大小,单位为。 面霍尔系数单位为。 体载流子浓度单位为,面载流子浓度单位为。 霍尔迁移率指载流子(电子或空穴)在单位电场作用下的平均 漂移速度,即载流子在电场作用下运动速度的快慢的量度,单 位为。 霍尔效应的测量主要使用两种单位制:国际单位制(SI)和被称 为“实验室单位”的单位制、实验室单位制混合了国际单位制、CGS静电制和CGS电磁制。 下文的公式都采用实验室单位制。在测试软件里,为了数据录入更方便,一般都使用实验室单位制。 在所有的例子中,电压以伏特(V)为单位,电流以安培(A)为单位,电阻为欧姆(Ω)为单位。其他量的单位都以括号内的为准。以下是标号的含义。 ,V表示电压,左上角的表示施加在样品上的电流正负方向;右 下角前两个数字ij表示电流从电极i流进(I+),从电极j流出 (I-);后两个数字表示电极k(V+)和电极l(V-)之间的电压

之差,即;括号内表示施加在样品上的磁场大小和方向。 ,I表示电流,左上角表示电流方向,右下角两个数字ij表示电 流从电极i流进(I+),从电极j流出(I-);括号内表示施加在 样品上的磁场大小和方向,方向定义见图3.1,即从上面观测, 磁场方向垂直于样品且指向观测者,这个方向为正。 图3.1 磁场方向定义 下面分别介绍Van der Pauw法和Hall Bar法的实际测量计算公式。3.1 Van der Pauw法 1958年,范德堡(Van der Pauw,L.J)发表了两篇论文,《A method of measuring specific resistivity and Hall effect of discs of arbitrary shape》和《A method of measuring specific resistivity and Hall coefficient on lamellae of arbitrary shape》,阐述了一种测量了电阻率和霍尔系数的新的方法,从理论上证明了这种针对单连通任意形状均匀等厚薄片样品的测量方法。 Van Der Pauw法能计算出一个任意形状但扁平的样品的电阻率,载流子浓度和迁移率,当然样品需要满足以下条件, 接触点在样品的周围; 接触点从分的小;

霍尔效应

霍尔效应 1879年,24岁的美国人霍尔在研究载流导体在磁场中所受力的性质时看,发现了一种电磁效应,即如果在电流的垂直方向加上磁场,则在同电流和磁场都垂直的方向上将建立一个电场。这个效应后来被称为霍尔效应。产生的电压(U H),叫做霍尔电压。好比一条路, 本来大家是均匀的分布在路面上, 往前移动。当有磁场时, 大家可能会被推到靠路的右边行走,故路(导体) 的两侧, 就会产生电压差。这个就叫“霍尔效应”。根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能,广泛地应用于工业自动化技术、检测技术及信息处理等方面。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。 许多人都知道,轿车的自动化程度越高,微电子电路越多,就越怕电磁干扰。而在汽车上有许多灯具和电器件,尤其是功率较大的前照灯、空调电机和雨刮器电机在开关时会产生浪涌电流,使机械式开关触点产生电弧,产生较大的电磁干扰信号。采用功率霍尔开关电路可以减小这些现象。 实验目的 1. 了解霍尔效应实验原理 2. 测量霍尔电流与霍尔电压之间和励磁电流与霍尔电压之间的关系 3. 学会用霍尔元件测量磁场分布的基本方法 4. 学会用“对称测量法”消除负效应的影响 实验原理 1. 霍尔效应 霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机构时发现的。当电流I沿X轴方向垂直于外磁场B(沿Z方向)通过导体时,在Y方向,即导体的垂直于磁场和电流方向的两个端面之间会出现电势差V H,如图1所示,这现象称为霍尔效应。这个电势差也被叫做霍尔电压。

大学物理实验报告霍尔效应

大学物理实验报告霍尔效应 一、实验名称:霍尔效应原理及其应用二、实验目的:1、了解霍尔效应产生原理;2、测量霍尔元件的、曲线,了解霍尔电压与霍尔元件工作电流、直螺线管的励磁电流间的关系;3、学习用霍尔元件测量磁感应强度的原理和方法,测量长直螺旋管轴向磁感应强度及分布;4、学习用对称交换测量法(异号法)消除负效应产生的系统误差。 三、仪器用具:YX-04 型霍尔效应实验仪(仪器资产编号)四、实验原理:1、霍尔效应现象及物理解释霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直于电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场。对于图1 所示。半导体样品,若在x 方向通以电流,在z 方向加磁场,则在y 方向即样品A、A′电极两侧就开始聚积异号电荷而产生相应的电场,电场的指向取决于样品的导电类型。显然,当载流子所受的横向电场力时电荷不断聚积,电场不断加强,直到样品两侧电荷的积累就达到平衡,即样品A、A′间形成了稳定的电势差(霍尔电压)。设为霍尔电场,是载流子在电流方向上的平均漂移速度;样品的宽度为,厚度为,载流子浓度为,则有:(1-1) 因为,,又根据,则(1-2)其中称为霍尔系数,是反映材料霍尔效应强弱的重要参数。只要测出、以及知道和,可按下式计算:(1-3)(1-4)为霍尔元件灵敏度。 根据RH 可进一步确定以下参数。(1)由的符号(霍尔电压的正负)判断样品的导电类型。判别的方法是按图1 所示的和的方向(即测量中的+,+),若测得的 <0(即A′的电位低于A 的电位),则样品属N 型,反之为P 型。(2)由求载流子浓度,即。应该指出,这个关系式是假定所有载流子都具有相同的漂移速度得到的。严格一点,考虑载流子的速度统计分布,需引入的修正因子(可参阅黄昆、谢希德著《半导体物理学》)。(3)结合电导率的测量,求载流子的迁移率。电导率与载流子浓度以及迁移率之间有如下关系:(1-5)2、霍尔效应中的副效应及其消除方法上述推导是从理想情况出发的,实际情况要复杂得多。产生上述霍尔效应的同时还伴随产生四种副效应,使的测量产生系统误差,如图 2 所示。 (1)厄廷好森效应引起的电势差。由于电子实际上并非以同一速度v 沿y 轴负向运动,速度大的电子回转半径大,能较快地到达接点3 的侧面,从而导致3 侧面较4 侧面集中较多能量高的电子,结果3、4 侧面出现温差,产生温差电动势。 可以证明。的正负与和的方向有关。(2)能斯特效应引起的电势差。焊点1、2 间接触电阻可能不同,通电发热程度不同,故1、2 两点间温度可能不同,于是引起热扩散电流。与霍尔效应类似,该热扩散电流也会在 3、4 点间形成电势差。 若只考虑接触电阻的差异,则的方向仅与磁场的方向有关。(3)里纪-勒杜克效应产生的电势差。上述热扩散电流的载流子由于速度不同,根据厄廷好森效应同样的理由,又会在3、4 点间形成温差电动势。的正负仅与的方向有关,而与的方向无关。(4)不等电势效应引起的电势差。由于制造上的困难及材料的不均匀性,3、4 两点实际上不可能在同一等势面上,只要有电流沿x 方向流过,即使没有磁场,3、4 两点间也会出现电势差。的正负只与电流的方向有关,而与的方向无关。综上所述,在确定的磁场和电流下,实际测出的电压是霍尔

霍尔效应

霍尔效应 摘要:霍尔效应是霍尔--德国物理学家于1879年在他的导师罗兰的指导下发现的这一效应,这一效应在科学实验和工程技术中得到广泛应用。可以用它测量磁场、半导体中载流子的浓度及判别载流子的极性,还可以利用这一原理作成各种霍尔器件,已广泛地应用到各个领域中。近年来霍尔效应得到了重要发展,冯·克利青发现了量子霍尔效应,为此,冯·克利青获得1985年度诺贝尔物理学奖。关键词: 霍尔效应副效应霍尔电压直流电压高精度的隔离传送和检测直流电流高精度的隔离检测监控量越限时准确的隔离报警 引言:利用霍尔效应电压与磁场的线性关系可知,通过测量元件两端的电压,可以得知空间某区域的磁场分布及其此处的磁感应强度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽、寿命长、可靠性高等优点,已广泛用于非电量测量和信息处理等方面。 正文:通过自己多次到实验室去体验并做了这些试验,本试验共有4个实验--霍尔效应、直流电压高精度的隔离传送和检测、直流电流高精度的 隔离检测和监控量越限时准确的隔离报警。现在把实验内容及其结 论在下面做详细介绍: 一、霍尔效应试验 实验目的:认识霍尔效应并懂得其机理;研究霍尔电压与工作电流的关系;研究霍尔电压与磁场的关系;了解霍尔效应的副效应及消除方法。 实验原理:霍尔元件是根据霍尔效应原理制成的磁电转元件,如图所示

图1.1 霍尔效应磁原理 图1.2 霍尔效应磁电转换 在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度 d 成反比,即 d IB R V H H =(1.1)或 IB K V H H =(1.2)式(1.1)中H R 称为霍尔系数, 式(1.2)中H K 称为霍尔元件的灵敏度,单位为mv /(mA ·T)。如图1.1所示, 一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B 中,在 X 轴方向通以电流I ,则其中的载流子—电子所受到的洛仑兹力为 j eVB B V e B V q F m -=?-=?=(1.3)。即b V e eVB H =得 VBb V H =(1.5)此时B 端电位高于A 端电位。若N 型单晶中的电子浓度为n ,则流过样片横截面的电流 I =nebdV (1.6) 得 nebd I V = (1.7)将(1.6)式代入(1.5)式得 IB K d IB R IB ned V H H H === 1 (1.8)式中ne R H 1=称为霍尔系数,ned K H 1=称为 霍尔元件的灵敏度,一般地说,H K 愈大愈好,以便获得较大的霍尔电压H V 。 由(1.8)式可知,如果霍尔元件的灵敏度H R 已知,测得了控制电流I 和产生的霍尔电压H V ,则可测定霍尔元件所在处的磁感应强度为H H IK V B = 。霍尔效应实

霍尔效应实验报告

大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

霍尔效应的应用实验报告

一、 目的: 1.霍尔效应原理及霍尔元件有关参数的含义和作用 2.测绘霍尔元件的V H —Is ,V H —I M 曲线,了解霍尔电势差V H 与霍尔元件工作电流Is ,磁场应强度B 及励磁电流IM 之间的关系。 3.学习利用霍尔效应测量磁感应强度B 及磁场分布。 4.学习用“对称交换测量法”消除负效应产生的系统误差。 二、 器材: 1、实验仪: (1)电磁铁。 (2)样品和样品架。 (3)Is 和I M 换向开关及V H 、V ó 切换开关。 2、测试仪: (1)两组恒流源。 (2)直流数字电压表。 三、 原理: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图15-1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样 A-A / 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)() (N 0)(型型?>?

霍尔效应实验报告

南昌大学物理实验报告 课程名称:普通物理实验(2) 实验名称:霍尔效应 学院:专业班级: 学生姓名:学号: 实验地点:座位号: 实验时间:

一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法; 2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法; 二、 实验仪器: 霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻 器、双路直流稳压电源、双刀双掷开关、连接导线15根。 三、 实验原理: 1、霍尔效应 霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。 当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E . 如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。 显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场

力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有: e H E =-B v e 其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I = 由上面两式可得: d B I R d B I ne b E V S H S H H == =1 (3) 即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。比列系数ne R H 1 = 称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。只要测出H V 以及知道S I 、B 和d 可按下式计算H R : 410?= B I d V R S H H 2、霍尔系数H R 与其他参量间的关系 根据H R 可进一步确定以下参量: (1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。 (2)由H R 求载流子浓度n.即e R n H 1 = 这个关系式是假定所有载流子都具有相同的漂移速度得到的。 (3)结合电导率的测量,求载流子的迁移率μ与载流子浓度n 以及迁移率μ之间有如下关系 μσne = 即μ=σH R ,测出σ值即可求μ。 3、霍尔效应与材料性能的关系

霍尔效应原理与实验

霍尔效应 一、简介 霍尔效应是磁电效应的一种,这一现象是霍尔(A.H.Hall ,1855—1938)于1879年在研究金属的导电机构时发现的。后来发现半导体、导电流体等也有这种效应,而半导体的霍尔效应比金属强得多,利用这现象制成的各种霍尔元件,广泛地应用于工业自动化技术、检测技术及信息处理等方面。霍尔效应是研究半导体材料性能的基本方法。通过霍尔效应实验测定的霍尔系数,能够判断半导体材料的导电类型、载流子浓度及载流子迁移率等重要参数。流体中的霍尔效应是研究“磁流体发电”的理论基础。 二、理论知识准备 1. 1. 霍尔效应 将一块半导体或导体材料,沿Z 方向加以磁场B ,沿X 方向通以工作电流I ,则在Y 方向产生出电动势H V ,如图1所示,这现象称为霍尔效应。H V 称为霍尔电压。 X (a) (b) 图1 霍尔效应原理图 实验表明,在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度d 成反比,即 d IB R V H H =(1) 或 IB K V H H =(2) 式(1)中H R 称为霍尔系数,式(2)中H K 称为霍尔元件的灵敏度,单位为mv / (mA ·T)。产生霍尔效应的原因是形成电流的作定向运动的带电粒子即载流子(N 型半导体中的载流子是带负电荷的电子,P 型半导体中的载流子是带正电荷的空穴)在磁场中所受到的洛仑兹力作用而产生的。 如图1(a )所示,一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B 中,在X 轴方向通以电流I ,则其中的载流子——电子所受到的洛仑兹力为 j eVB B V e B V q F m -=?-=?=(3) 式中V 为电子的漂移运动速度,其方向沿X 轴的负方向。e 为电子的电荷量。m F 指向Y 轴的负方向。自由电子受力偏转的结果,向A 侧面积聚,同时在B 侧面上出现同数量的正 电荷,在两侧面间形成一个沿Y 轴负方向上的横向电场H E (即霍尔电场),使运动电子受 到一个沿Y 轴正方向的电场力e F ,A 、B 面之间的电位差为H V (即霍尔电压),则 j b V e j eE E e E q F H H H H e ==-==(4)

霍尔效应原理范德堡法原理说明

一、霍尔效应简介 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普斯金大学研究生霍尔于1879年发现的,后被称为霍尔效应。随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽(高达10GHz)、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。 二、霍尔效应测试原理 1. 范德堡方法 范德堡方法可以用来测量任意形状的厚度均匀的薄膜样品。在样品侧边制作四个对称的电极,如图1所示。 图1 范德堡方法测量示意图 测量电阻率时,依次在一对相邻的电极通电流,另一对电极之间测电位差,得到电阻R,代入公式得到电阻率ρ。

其中d 为样品厚度,f 为范德堡因子,是比值R AB,CD /R BC,AD 的函数。 以上便是范德堡方法侧量薄膜材料电阻率的方法,这种方法对于样品形状没 有特殊的要求,但是要求薄膜样品的厚度均匀,电阻率均匀,表面是单连通的, 即没有孔洞。此外,A,B,C,D 四个接触点要尽可能小(远远小于样品尺寸),并 且这四个接触点必须位于薄膜的边缘。 不过在实际测量中,为了简化测量和计算,常常要求待测薄膜为正方形,这 是由于正方形具有很高的对称性,正方形材料的四个顶点从几何上是完全等效, 因而可推知电阻值R AB,CD 和R BC,AD 在理论上也应该是相等。查表可知当 R AB,CD /R BC,AD =1时,f=1。因此,最终电阻率的公式即可简化为: 2ln ,CD AB dR πρ= (1) 2 霍尔效应基本原理 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的 偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直 电流和磁场的方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电 场。对于图2所示的N 型半导体试样,若在X 方向的电极B 、D 上通以电流Is , 在Z 方向加磁场B ,试样中载流子(电子)将受洛仑兹力: B v e F g = (2) 其中e 为载流子(电子)电量,v 为载流子在电流方向上的平均定向漂移速 率,B 为磁感应强度。无论载流子是正电荷还是负电荷,F g 的方向均沿Y 方向, 在此力的作用下,载流子发生便移,则在Y 方向,即试样A 、C 电极两侧就开 始聚积异号电荷而在试样A 、C 两侧产生一个电位差V H ,形成相应的附加电场E ——霍尔电场,相应的电压V H 称为霍尔电压,电极A 、C 称为霍尔电极。电场 的指向取决于试样的导电类型。N 型半导体的多数载流子为电子,P 型半导体的 多数载流子为空穴。对N 型试样,霍尔电场逆Y 方向,P 型试样则沿Y 方向。

相关文档
相关文档 最新文档