文档库 最新最全的文档下载
当前位置:文档库 › 10GE-WAN链路故障总结

10GE-WAN链路故障总结

10GE-WAN链路故障总结
10GE-WAN链路故障总结

WAN传输故障总结

LAN/WAN-PHY是基于IEEE 802.3ae标准的。WAN-PHY控制器只能被用于PTE(Path Terminating Equipment)。当部署作为终端或者路由器间的PTE的EthernetWAN接口时,WAN-PHY不能和PoS(Packet over Sonet)或者EoS(Ethernet over Sonet)终端协同工作。X1在传输设备间时(LTE - Line Terminating Equipment or STE - SectionTerminating Equipment),终端设备可以是分差复用(ADM)或密集波分复用(DWDM) OC-192c POS接口。

采用WAN-PHY的目的是使得10 Gigabit Ethernet兼容于SONET STS-192c的格式速率。因此,WIS(Wan Interface Sublayer)必须被插入到10Gigabit Ethernet物理编码子层中。

10Gigabit Ethernet可用于同步的SONET/SDH传输中,它被透明地在当前的密集波分复用(DWDM)网络,而不是直接让以太网帧和SONET/SDH相映射。在更高的层次上,WIS有以下特征:WIS允许WAN-PHY设备产生以太网数据流,以此来和物理层的OC-192c 或 VC-4-64c负载相联系,而不是让MAC和更高的层来处理。

理论上说,一个10BGBASE-W接口不能直接和SONET/SDH设备协同工作,因为WAN-PHY不能完全兼容于SONET/SDH光电信号参数。在实验中,SONET/SDH 可以和10GBASE-W 接口协同工作。

以下是POS和10GBASE-W的不同之处:

●POS和10GBASE-W不能协同工作,是因为协议体系结构并不一样。POS是基于像PPP这样的

串行协议。以此从帧的角度上讲,逻辑和物理上都不同于以太网。

●从SP的角度上讲,POS是一个3层point-to-point服务,而WAN-PHY却是2层的以太网传输。

因此,WAN-PHY和EoS(Ethernet over SONET)比较起来,封装技术并不是一样的。

POS的光电信号可以和SONET/SDH协议兼容,而WAN-PHY却不能。

●CISCO POS支持APS(Automatic Protection Switching),可以在50毫秒内恢复链路故

障,而WAN-PHY不被支持。

transport

1

transport

2

C1

Te2/14/1/0

在上图表示的①-③处出现链路故障故障时,传输设备会发出不同的信号给数据设备。现结合实际链路测试,对传输告警信号作出总结。

1.在①处出现传输链路路故障时,理论上传输设备OT2会在相同数据流方向上产生lais

告警给下游设备X1,会在相反方向上产生lrdi告警给上游设备XX1。下面是实际的测试记录。

X1:

RP/0/RP0/CPU0:XX-XX-XX-XX#sh controllers wanphy 2/13/1/0 alarms

Fri Jul 27 00:19:33.288 GMT

Interface: wanphy2/13/1/0

Configuration Mode: WAN Mode

SECTION

LOF = 3, LOS = 1, BIP(B1) = 156

LINE

AIS = 3, RDI = 2, FEBE = 488513983, BIP(B2) = 31524

PATH

AIS = 3, RDI = 0, FEBE = 7703, BIP(B3) = 39

LOP = 0, NEWPTR = 0, PSE = 0, NSE = 0

WIS ALARMS

SER = 8, FELCDP = 3, FEAISP = 5

WLOS = 1, PLCD = 0

LFEBIP = 488513983, PBEC = 39, PLMP = 2

Active Alarms[All defects]: lof, path ais, line ais, sef,

Active Alarms[Highest Alarms]: lof

Rx(K1/K2): N/A, Tx(K1/K2): N/A

S1S0 = N/A, C2 = N/A

PATH TRACE BUFFER

Remote IP addr:

BER thresholds: N/A

TCA thresholds: N/A

实际测试结果:X1收到lof, path ais, line ais, sef告警,主要的告警为lof。XX1:

dis transmission-alarm GigabitEthernet 3/0/0

Interface: GigabitEthernet3/0/0

Filter function: disabled

Damping function: disabled

Last reset time: 0-0-0,0:0:0.0

Alarm auais

Status: Down

Flapping count: 0

Alarm b3tca

Status: Down

Flapping count: 704

Alarm lais

Status: Down, If down

Flapping count: 24556

Alarm lof

Status: Down, If down

Flapping count: 8

Alarm lom

Status: Down

Flapping count: 0

Alarm lop

Status: Down

Flapping count: 6

Alarm los

Status: Down, If down Flapping count: 4

Alarm lrdi

Status: Up

Flapping count: 47275

Alarm lrei

Status: Down

Flapping count: 0

Alarm oof

Status: Down

Flapping count: 8

Alarm pais

Status: Down

Flapping count: 0

Alarm prdi

Status: Up

Flapping count: 7500733

Alarm prei

Status: Down

Flapping count: 0

Alarm pplm

Status: Down

Flapping count: 20

Alarm rdool

Status: Down

Flapping count: 0

Alarm rrool

Status: Down

Flapping count: 0

Alarm sdbere

Status: Down

Flapping count: 8

Alarm sfbere

Status: Down

Flapping count: 6

Alarm trool

Status: Down

Flapping count: 0

Alarm puneq

Status: Down

Flapping count: 48

Alarm lcd

Status: Down

Flapping count: 8

Alarm wlnk

Status: Down, If down, Log

Flapping count: 8

lof, path ais, line ais, sef告警。

实际测试结果XX1收到了lrdi,prdi告警,跟预期的结果一致。

结论:

默认配置下X1的10BGBASE-W端口开启了对SF(Signal Failure)告警的支持,也就是收到lof告警,就一定会down端口。

而XX1会收到lrdi、prdi告警,huawei默认未开启对上述告警的支持。因此它不会down 端口。

2.在②处出现传输链路路故障时,理论上传输设备OT1会在相同数据流方向上产生lais

告警给下游设备XX1,会在相反方向上产生lrdi告警给上游设备X1。下面是实际的测试记录。

XX1:

[XX-XX-XX-XX]dis transmission-alarm GigabitEthernet 3/0/0

Interface: GigabitEthernet3/0/0

Filter function: disabled

Damping function: disabled

Last reset time: 0-0-0,0:0:0.0

Alarm auais

Status: Down

Flapping count: 0

Alarm b3tca

Status: Up

Flapping count: 707

Alarm lais

Status: Down, If down

Flapping count: 24556

Alarm lof

Status: Up, If down

Flapping count: 9

Alarm lom

Flapping count: 0

Alarm lop

Status: Up

Flapping count: 7

Alarm los

Status: Down, If down Flapping count: 4

Alarm lrdi

Status: Down

Flapping count: 47278

Alarm lrei

Status: Down

Flapping count: 0

Alarm oof

Status: Up

Flapping count: 9

Alarm pais

Status: Down

Flapping count: 0

Alarm prdi

Status: Down

Flapping count: 7500748

Alarm prei

Status: Down

Flapping count: 0

Alarm pplm

Status: Up

Flapping count: 21

Alarm rdool

Flapping count: 0

Alarm rrool

Status: Down

Flapping count: 0

Alarm sdbere

Status: Up

Flapping count: 9

Alarm sfbere

Status: Up

Flapping count: 7

Alarm trool

Status: Down

Flapping count: 0

Alarm puneq

Status: Down

Flapping count: 48

Alarm lcd

Status: Up

Flapping count: 9

Alarm wlnk

Status: Up, If down, Log

Flapping count: 9

实际测试结果XX1收到了b3tca,lof, lop,oof,pplm,sdbere,sfbere,lcd,wlnk告警,跟预期的结果稍有差异。

X1:

RP/0/RP0/CPU0:XX-XX-XX-XX#sh controllers wanphy 2/13/1/0 alarms

Fri Jul 27 00:29:25.929 GMT

Interface: wanphy2/13/1/0

Configuration Mode: WAN Mode

SECTION

LOF = 4, LOS = 1, BIP(B1) = 205

LINE

AIS = 4, RDI = 3, FEBE = 502390473, BIP(B2) = 42572

PATH

AIS = 4, RDI = 0, FEBE = 62935, BIP(B3) = 54

LOP = 0, NEWPTR = 0, PSE = 0, NSE = 0

WIS ALARMS

SER = 11, FELCDP = 4, FEAISP = 7

WLOS = 1, PLCD = 0

LFEBIP = 502390473, PBEC = 54, PLMP = 6

Active Alarms[All defects]: rdi, path far end ais, path feais,

Active Alarms[Highest Alarms]: rdi

Rx(K1/K2): N/A, Tx(K1/K2): N/A

S1S0 = N/A, C2 = N/A

PATH TRACE BUFFER

Remote IP addr:

BER thresholds: N/A

TCA thresholds: N/A

实际测试结果:X1收到rdi, path far end ais, path feais告警,主要的告警为rdi,跟预期的结果一致。

结论:

XX1会收到b3tca,lof, lop,oof,pplm,sdbere,sfbere,lcd,wlnk告警,huawei默认开启对lof的支持,就一定会down端口。同时wlnk时10GE-WAN端口独有的告警,该告警不可配置,且默认动作是down端口。

默认配置下X1的10BGBASE-W端口未开启了对SD(Signal Degrade)告警的支持,也就是默认收到rdi告警,不会down端口。

3.在①、②处同时出现传输链路路故障时,理论上传输设备OT1和OT2会在相同数据流方向上产生lais告警给下游设备X1和XX1,会在相反方向上产生lrdi告警给上游设备XX1

和X1。下面是实际的测试记录。

X1:

RP/0/RP0/CPU0:XX-XX-XX-XX#sh controllers wanphy 2/13/1/0 alarms

Fri Jul 27 00:35:27.496 GMT

Interface: wanphy2/13/1/0

Configuration Mode: WAN Mode

SECTION

LOF = 5, LOS = 1, BIP(B1) = 221

LINE

AIS = 5, RDI = 4, FEBE = 971779674, BIP(B2) = 45686

PATH

AIS = 5, RDI = 0, FEBE = 60526, BIP(B3) = 57

LOP = 0, NEWPTR = 0, PSE = 0, NSE = 0

WIS ALARMS

SER = 12, FELCDP = 4, FEAISP = 9

WLOS = 1, PLCD = 0

LFEBIP = 971779674, PBEC = 57, PLMP = 6

Active Alarms[All defects]: lof, rdi, path ais, line ais, sef,

Active Alarms[Highest Alarms]: lof

Rx(K1/K2): N/A, Tx(K1/K2): N/A

S1S0 = N/A, C2 = N/A

PATH TRACE BUFFER

Remote IP addr:

BER thresholds: N/A

TCA thresholds: N/A

实际测试结果:X1收到lof, rdi, path ais, line ais, sef,告警,主要的告警为lof。跟预期一致。

XX1:

[XX-XX-XX-XX] dis transmission-alarm GigabitEthernet 3/0/0

Interface: GigabitEthernet3/0/0

Filter function: disabled

Damping function: disabled

Last reset time: 0-0-0,0:0:0.0

Alarm auais

Status: Down

Flapping count: 0

Alarm b3tca

Status: Up

Flapping count: 723

Alarm lais

Status: Down, If down

Flapping count: 24556

Alarm lof

Status: Up, If down

Flapping count: 11

Alarm lom

Status: Down

Flapping count: 0

Alarm lop

Status: Up

Flapping count: 9

Alarm los

Status: Down, If down Flapping count: 4

Alarm lrdi

Status: Down

Flapping count: 47278

Alarm lrei

Status: Down

Alarm oof

Status: Up

Flapping count: 11

Alarm pais

Status: Down

Flapping count: 0

Alarm prdi

Status: Up

Flapping count: 7500903 Alarm prei

Status: Down

Flapping count: 0

Alarm pplm

Status: Up

Flapping count: 23

Alarm rdool

Status: Down

Flapping count: 0

Alarm rrool

Status: Down

Flapping count: 0

Alarm sdbere

Status: Up

Flapping count: 11

Alarm sfbere

Status: Up

Flapping count: 9

Alarm trool

Status: Down

Alarm puneq

Status: Down

Flapping count: 48

Alarm lcd

Status: Up

Flapping count: 11

Alarm wlnk

Status: Up, If down, Log

Flapping count: 11

实际测试结果:XX1收到b3tca,lof, lop, oof, prdi,pplm,sdbere,sfbere,lcd,wlnk 告警。跟预期基本一致。

4.在③处出现传输链路路故障时,虽然这次的测试并未涉及到该项内容。然后仍然可以预期到测试结果。传输设备OT1和OT2不会发告警给上下游设备。XX1在收到los、lof告警后默认会down端口。同时它会将该告警转发给下游路由器X1,同理,X1在收到该告警后,默认会down端口。

通过以上的测试内容,我们不难发现,传输链路的物理层故障,对上层的数据设备影响很大。特别是链路单通情况的发生,会造成流量异常。严重危及到网络正常的数据流量。而且,不同厂家的设备对告警的支持也不尽相同。但是只要清楚了告警信息的分类,以及告警信息产生的原因,再针对该情况做一些配置优化,就可以杜绝该隐患的发生。

下面是具体的优化配置:

●huawei:

interface GigabitEthernet3/0/0

transmission-alarm down laislof lop los lrdipaisprdi

●CISCO:

configure

controllerwanphy 2/13/1/0

reportsd-ber

thresholdsd-ber 7

thresholdsf-ber 4

故障诊断分析方法-结课论文

故障诊断分析方法比较 摘要:小波变换作为信号处理的手段,逐渐被越来越多领域的理论工作者和工 程技术人员重视和应用。在机械系统和电气系统中,故障时常发生,为了诊断 系统是否故障,小波分析是很好的方法。小波分析的方法很多,小波的选择也 很多类,为了研究哪种小波分析方法更加适合于故障检测。论文将通过一个例 子来分别采用功率谱、多分辨小波分析和小波包三种方法进行突发性故障诊断,来研究各自的分析特点。并总结在故障发生时,一个更加好的分析方法。 关键词:故障功率谱多分辨分析小波包分析 正文: 在对机械设备进行故障检测时,通常采用对振动信号进行频谱分析找出奇 异点的方法来实现设备监测。傅里叶变换是频谱分析的主要工具,其方法是研 究函数在傅里叶变换后的衰减以推断函数是否具有奇异性及奇异性的大小,但 傅里叶分析只能确定一个函数奇异性的整体性质而难以确定奇异点空间的位置 分布情况,这一局限性导致了频谱分析不能精确的确定信号的奇异性特点,给 进一步分析信号的规律带来了一定的障碍。 而在傅里叶基础上发展而来的功率谱可以识别不同信号的故障信号。将正 常信号的功率谱与运行过程中不断连续收集的信号功率谱进行对比,功率谱异 常就表示机械系统有故障,不同类型的故障会有不同类型的频谱特征,从故障 信号的功率谱中可以识别故障的类型。 然而利用传统的频谱分析方法只能从频谱图上了解故障信号的所包含的频 率成分,而无法确定具体的频率成分的震动形式。无法对具体的频率成分进行 分析,难以直接描述机械的状态。小波分析是近十年发展起来的一门适用于时 变信号分析的新兴工具,它可以把时域信号变换到时间—尺度域中,在不同尺 度下观察不同的局部化特性。在信号突变时,其小波变换后的系数具有模量极 大值,可通过对模的极大值点的检测来确定故障发生的时间点。在从小波基础 上发展的小波包,对各个子小波空间做出更加细致的分解,其对应的频带被进 一步分解,这使得时—频分析能聚焦于任意的细节,在故障诊断时,可从细节 上分析故障。 很多工作系统正常工作时,工作输出点的采样信号是蠕变信号,当由于多 种原因系统系统故障时,输出信号将产生一突变信号(主要表现在幅度和频率 的变化),信号的突变时刻被称为信号的奇异点。这些奇异点数值包含有重要 的故障信息,因此,对突变信号进行检测和处理,是故障诊断的关键。 因此,本文从功率谱、多分辨分析分析和小波包三种方法进行蠕变信号突发性 故障诊断,并比较总结它们的特点。 实例:由于日常机械中很多振动信号都是由不通频率的正弦余弦波组成的,于 是这里选择的原始信号采用的是单一频率正弦波的形式。为了研究上述三种分 析方法,并且由于还未在先研究阶段中未得到研究机械的信号,为了简化分析

喷码机五大常见故障及解决方法

喷码机五大常见故障及解 决方法 Prepared on 22 November 2020

喷码机五大常见故障解决方法: 1.高压故障,原因,高压传感器检测到高压不平衡。 具体原因:a.有异物碰到高压偏转板。b.高压偏转板脏。c.高压传感器本身太灵敏。解决方法:a&b清洗高压偏转板,然后正常开机即可。c.如果是这种情况,可能会经常报高压故障,但是偏转板却很干净。 2.充电故障 具体原因:a.充电槽上有墨水;b.充电墨点检测故障。解决办 法:a.关闭喷码机(包括电源),清洗充电槽。必要时可以拆下充电槽清洗。清洗彻底后,等充电槽干燥后,重新开机。b.这个故障产生的原因较多,首先从墨水开始。确定墨水的粘度,保质期,当然也要看墨水的品质,然后观察分裂,检查墨路压力,调制电压,并适当的做调整,使分裂良好。这样故障一般都能解决。还有可能是充电槽本身损坏。 3.字符缺损原因是有墨点落到了回收管的边缘,造成回收管挂墨 (回收管积墨) 具体原因:a.墨线位置是否正确。b.墨点分裂是否正常。c.墨水是否正常。d.喷码机接地是否有效(经常被客户和一些工程师忽略)。 4.回收管故障回收管传感器没有检测到有墨水流经回收管。 具体原因:a.墨线不正常(根本没有墨线射出,或墨线偏)。b. 回收管路堵塞。c.回收传感器损坏或者未接通。解决办法:a.检

查供墨回路。清洗喷嘴板,做墨线校正工作。b.回收管路堵塞,可以分段检查回收管堵塞位置。c.检查主板上面回收管传感器接头是否未正确安装。更换回收管传感器。 5.墨水粘度故障因为墨水粘度BFT值超标引起。有些情况下,机 器可以正常使用。但是必须做一些检查。否则可能在使用一段时间后,无法正常打印。 原因:a.墨水BFT目前值大于墨水BFT设置值,墨水粘度过高。 b.墨水BFT目前值小于墨水BFT设置值。墨水粘度过低。处理办 法:a.检查溶剂箱是否有溶剂。检查溶剂添加回路是否正常。b. 是否在很短的时间内多次开机,关机。如果没有在很短的时间内多次开机、关机,应检查溶剂添加回路是否正常。

汽车检测与诊断技术知识点总结复习过程

1.汽车检测与诊断技术是汽车检测技术与汽车故障诊断技术的统称。汽车检测是指为了确定汽车技术状况或工作能力所进行的检查与测量。汽车诊断是指在不解体(或仅拆下个别小件)的情况下,确定汽车的技术状况,查明故障部位及故障原因 2.汽车检测分类 1.安全性能检测 2.综合性能检测 3.汽车故障检测 4.汽车维修检测 汽车维修检测包括汽车维护检测和汽车修理检测,汽车维护检测主要是指汽车二级维护检测,它分为二级维护前检测和二级维护竣工检测。汽车修理检测主要是指汽车大修检测,它分为修理前,修理中及修理后检测 3.随机误差是指误差的大小和符号都发生变化而且没有规律可循的测量误差,不可避免 4.粗大误差是指由于操作者的过失而造成的测量误差 ,可以避免 5.汽车检测系统通常由电源,传感器,变换及测量装置,记录及显示装置,数据处理装置的组成 传感器是一种能够把被测量的某种信息拾取出来,并将其转换成有对应关系的,便于测量的电信号装置 变换及测量装置是一种将传感器送来的电信号变换成易于测量的电压或电流信号的装置 6.检测系统的基本要求:1.具有适当的灵敏度和足够的分辨力 2.具有足够的检测精度另外,检测系统还应具备良好的动态特性 灵敏度是指输出信号变化量与输入信号变化量的比值 分辨力是指检测系统能测量到最小输入量变化的能力,即能引起输出量发生变化的最小输入变化量 7.智能化检测系统的特点:1自动零位校准和自动精度校准 2自动量程切换 3功能自动选择 4自动数据处理和误差修正 5自动定时控制 6.自动故障诊断 7功能越来越强大 8使用越来越方便 8.诊断参数分类 诊断参数可分为三大类:工作过程参数,伴随过程参数,几何尺寸参数 (1)工作过程参数:指汽车工作时输出的一些可供测量的物理量、化学量,或指体现汽车功能的参数,如汽车发动机功率、燃油消耗率、最高车速和制动距离等。从工作参数本身就能表诊断对象总的技术状况,适合于总体诊断 (2)伴随过程参数:伴随过程参数一般并不直接体现汽车或总成的功能,但却能通过其在汽车工作过程中的变化,间接反映诊断对象的技术状况,如工作过程中出现的振动、噪声、发热和异响等。伴随过程参数常用于复杂系统的深入诊断。 (3)几何尺寸参数:几何尺寸参数能够反映诊断对象的具体结构要素是否满足要求,可提供总成、机构中配合零件之间或独立零件的技术状况,如配合间隙、自由行程、圆度和圆柱度等。 9.诊断参数选用原则: (1)单值性 (2)灵敏性 (3)稳定性 (4)信息性 10.诊断参数标准的组成:(1)初始标准值 (2)极限标准值 (3)许用标准值 11.诊断周期 汽车诊断周期是汽车诊断的间隔期,以行使里程或使用时间表示,诊断周期的确定,应满足技术和经济两方面的条件,获得最佳诊断周期。 最佳诊断周期,是能保证车辆的完好率最高而消耗的费用最少的诊断周期。

网络故障排错思路

网络故障排错思路 1、好多故障都是小问题引起的,我们排错的是否容易忽略。比如网络电缆松动是很常见的问题,应检查插头、连接器、电缆、集线器和开关等,小事情可能引起大问题。 2、大多数的网络故障问题是由人为因素(错误)造成的,通过提供网络配置和作用信息或提供这方面的培训,可以杜绝其中的大部分错误。 3、要注意解决问题的方式方法,应利用每次测试时收集到的信息去指导你的测试,如果不能确保你所选择的原始测试环境,就千万不要根据主观臆断转移到另一个测试环境中。 4. 应广开思路、灵活变通,不要认为问题的原因太多,不要认为在应用程序级发现的问题就不是下一级引起的。有些人总认为网络有故障,而另一些人总认为远程端有问题,某些人如此肯定他们知道问题的原因,以致不管测试的结果。千万不要重蹈这些覆辙,应测试每一种可能的情况,根据测试结果决定你的行动。 5、采用几种简单的故障检修工具。对于大多数的TCP/IP 软件问题,用几种简单的工具就足以解决问题,花些时间学习如何使用新的检修工具是值得的。由于很多网络问题的原因都很简单,因而对问题有一个清晰的了解往往就可能找到答案。遗憾的是情况并不总这这样!下面介绍几种简单的工具,可以帮助你去攻克最难解决的问题。 Ping :这个命令工具在Linux/Unix 、Dos、Windows 9x 、Windows NT 等系统下都可以找到。

这一工具可以测试你的系统是否能到达一台远程的主机,这一简单的功能对于测试网络的连接是非常有用的,而与在其中检测到问题的应用程序无关。Ping 允许你下一步是测试网络连接层(较低层)还是应用程序层(较高层)。如果ping 显示分组报文可以到远程系统并返回,用户的问题就可能在较高层中;如果分组报文不能返回传送,那么故障可能在较低的协议层或物理层中。 利用用户的主机名或IP 地址,可先对远程主机使用ping 命令;如果执行成功,就由用户对该主机使用ping 命令;如果也执行成功,那么就应集中精力去分析用户遇到问题的那个应用程序。 如果你的ping 命令执行成功,而用户的ping 命令却失败,就可以集中测试该用户的系统配置文件,以及将你和用户到该远程主机的路径进行比较,找到它们的不同之处。 如果你和用户的ping 命令都失败了,ping 命令显示的出错信息是很有帮助的,可以指导你进行下一步的测试计划。以下是几种基本的出错类型:unknow host 该远程主机的名字不能被DNS(域名服务器)转换成IP 地址,DNS可能出故障、该名字可能是不正确的、你的系统和远程服务器之间的网络可能出毛病。如果你知道该远程主机的IP 地址,可以再试一试ping 命令。如果利用它的IP 地址能达到该主机,问题就可能出在DNS上。 Network unreachable 本地系统没有到达该远程系统的路由。如果在ping 命令中使用IP地址,则利用主机名重新输入ping 命令,这就消除了输入不正确IP 地址的可能性。如果使用路由选择协议,一定要确保它正在运行,并使用nestat 去检查其路由表。

喷码机五大常见故障及解决方法

喷码机五大常见故障解决方法: 1.高压故障,原因,高压传感器检测到高压不平衡。 具体原因:a.有异物碰到高压偏转板。b.高压偏转板脏。c.高压传感器本身太灵敏。解决方法:a&b清洗高压偏转板,然后正常开机即可。c.如果是这种情况,可能会经常报高压故障,但是偏转板却很干净。 2.充电故障 具体原因:a.充电槽上有墨水;b.充电墨点检测故障。解决办法: a.关闭喷码机(包括电源),清洗充电槽。必要时可以拆下充电槽 清洗。清洗彻底后,等充电槽干燥后,重新开机。b.这个故障产生的原因较多,首先从墨水开始。确定墨水的粘度,保质期,当然也要看墨水的品质,然后观察分裂,检查墨路压力,调制电压,并适当的做调整,使分裂良好。这样故障一般都能解决。还有可能是充电槽本身损坏。 3.字符缺损原因是有墨点落到了回收管的边缘,造成回收管挂墨 (回收管积墨) 具体原因:a.墨线位置是否正确。b.墨点分裂是否正常。c.墨水是否正常。d.喷码机接地是否有效(经常被客户和一些工程师忽略)。 4.回收管故障回收管传感器没有检测到有墨水流经回收管。 具体原因:a.墨线不正常(根本没有墨线射出,或墨线偏)。b.回收管路堵塞。c.回收传感器损坏或者未接通。解决办法:a.检查供墨回路。清洗喷嘴板,做墨线校正工作。b.回收管路堵塞,可以分

段检查回收管堵塞位置。c.检查主板上面回收管传感器接头是否未正确安装。更换回收管传感器。 5.墨水粘度故障因为墨水粘度BFT值超标引起。有些情况下,机器 可以正常使用。但是必须做一些检查。否则可能在使用一段时间后,无法正常打印。 原因:a.墨水BFT目前值大于墨水BFT设置值,墨水粘度过高。b. 墨水BFT目前值小于墨水BFT设置值。墨水粘度过低。处理办法: a.检查溶剂箱是否有溶剂。检查溶剂添加回路是否正常。 b.是否在 很短的时间内多次开机,关机。如果没有在很短的时间内多次开机、关机,应检查溶剂添加回路是否正常。

智能故障诊断技术知识总结

智能故障诊断技术知识总结 一、绪论 □ 智能: ■ 智能的概念智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■ 低级智能和高级智能的概念低级智能——感知环境、做出决策和控制行为高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较和推理能力,能根据复杂环境变化做出正确决策和适应环境变化 ■ 智能的三要素及其含义三个基本要素:推理、学习、联想推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □ 故障: ■ 故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况: 1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■ 故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表现出层次性。一般可 分为系统级、子系统级、部件级、元件级等多个层次;高层故障可由低 层故障引起,而低层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互影响,如系统故障常 常由相关联的子系统传播所致。表现为,一种故障可能对应多种征兆,而 一种征兆可能对应多种故障。这种故障与征兆间的复杂关系导致了故障诊 断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性故障的出现通 常都没有规律性,再加上某些信息的模糊性和不确定性,就构成了故障的 随机性。 4可预测性——设备大部分故障在出现之前通常有一定先兆,只要及时捕捉这些征兆信 息,就可以对故障进行预测和防范。 □ 故障诊断: ■ 故障诊断的概念 故障诊断就是对设备运行状态和异常情况做出判断。具体说来,就是在设备没有发生故 障之前,要对设备的运行状态进行预测和预报;在设备发生故障之后,要对故障的原因、 部位、类型、程度等做出判断;并进行维修决策。 ■ 故障诊断的实质及其理解故障诊断的实质——模式识别(分类)问题 ■故障诊断的任务及其含义 故障检测:采用合适的观测方式、在合适部位测取特征信号,即信号测取;采用合适的方法,从特征信号中提取状态征兆,即征兆提取 故障识别:采用合适的状态识别方法与装置,依据征兆而推理识别出设备的有关状

实用电机故障诊断方法总结

交流异步电动机常见故障的分析、诊断及处理 一、异步电动机的故障分析、诊断与处理 电动机的故障大体归纳为电磁的原因和机械的原因两个方面。常见故障分析、诊断与处理如下: 1.异步电动机不能起动: 1.1电动机不能起动,有被拖动机械卡住、起动设备故障和电动机本体故障及其它方面原因: 处理方法:当电动机不能起动的故障时,可使用万用表测量三相电压,若电压太低,应设法提高电压,原因可能有:⑴电源线太细,起动压降太大,应更换粗导线。⑵三角形接线错接成星形接线,又是重载起动,应按三角形接法起动。⑶送电电压太低,应增高电压,达到要求的电压等级。若三相电压不平衡或缺相,说明故障发生在起动设备上。若三相电压平衡,但电动机转速较慢并有异常声响,这可能是负荷太重,拖动机械卡住。此时应断开电源,盘动电动机转轴,若转轴能灵活均衡地转动,说明是负荷过重;若转轴不能灵活均衡地转动,说明是机械卡阻。若三相电压正常而电机不转,则可能是电机本体故障或卡阻严重,此时应使电动机与拖动机械脱开,分别盘动电动机和拖动机械的转轴,并单独起动电动机,即可知道故障所在,作相应的处理。 1.1.1当确定为起动设备故障时,要检查开关,接触器各触头及接线柱的接触情况;检查热继电器过载保护触头的开闭情况和工作电流的调整值是否合理;检查熔断器熔体的通断情况,对熔断的熔体在分析原因后应根据电动机起动状态的要求重新选择;若起动设备内部接线有错,则应按照正确接线改正。 1.1.2 当确定为电动机本体故障时,则应检查定,转子绕组是否接地或轴承是否损坏。绕组接地或局部匝间短路时,电动机虽能起动但会引起熔体熔断而停转,短路严重时电动机绕组很快就会冒烟。 检查绕组接地常采用的方法:用兆殴表检查绕组的对地绝缘电阻,若存在接地故障,兆殴表指示值为零。绕组短路:通常用双臂电桥测直阻的平衡情况,对于绕组接地、匝间短路的处理通常都是重新绕制绕组。 1.1.3其它原因 由于轴承损坏而造成电动机转轴窜位、下沉、转子与定子磨擦乃至卡死时,应更换轴承。 若在严冬无保温,环境较差场所的电动机,应检查润滑脂。 2、鼠笼式电动机起动后转速低于额定值 2.1电动机运行时的转速降低: 2.1.1电源电压;如端电压降低,则电机起动转矩减小,转速降低。若检查是电压太低,则应提高电源电压。电动机接线错误,绕组应是三角形接线而错接成星形的也会使相电压降低。 2.1.2转子电阻;若鼠笼转子导条断裂或开焊,表现为转速和起动转矩下降。导条断裂和开焊,首先可进行直观检查,也可借助于仪表检查。直观检查:就是查看鼠笼导条有没有电弧灼痕,有无断裂和细小裂纹,端环连接是否良好。借助于仪表检查:一种方法是在电动机运行时,看指示电动机定子电流的电流表。在鼠笼转子导条断裂或开焊故障时,电流表指针将来回摆动。对于未装设电流表的电动机,可将电动机的定子绕组串联电流表后接到15-20%Ue(Ue为额定电压)的三相交流电源上,(用三相自耦调压器调压),盘动电动机转轴,随着转子位置不同,定子电流会发生变化,指针突然下降处即导条断裂或开焊处。 2.2若检查是被拖动机械轻微卡住,使转轴转不灵活,也会使电动机勉强拖动负载

关于柴油机故障诊断的总结

关于柴油机故障诊断的总结 关于柴油机故障诊断的总结 关于柴油机故障诊断的总结 柴油发动机应用广泛,处在所属产业链的相对核心的位置。其运行状态的好坏直接关系到成套设备的工作状态。因此,对柴油机运行状态进行实时监测和故障诊断,确保其处于安全、可靠、高效率的工作状态,对提高整套设备的劳动效率,提高产品质量,降低生产成本和能耗具有重大的意义。 柴油机故障诊断和其它类型的机械故障诊断一样,首先必须对故障机理进行研究,以故障信号的检测技术及信号处理技术为基本技术,以故障信号处理和特征提取理论为基本理论,以基于信号处理和特征提取的故障类型识别方法为基本方法。近年来,随着科学技术的发展,柴油机故障诊断技术也经历着从最初的事后维修到定时检测,再到现代故障诊断技术的视情维修。传统的诊断方法虽然简单易行,但是由于其信息量小,精确度不高,成本较高且容易发生误判,故难以满足现代的需求。20世纪80年代,邓聚龙教授提出了灰色系统理论,为研究少数据、贫信息不确定性问题提供了新方法,很好地解决了传统方法的不足之处。进入90年代后,随着人工智能技术的发展,柴油机故障诊断技术进入了智能化的阶段。检测项目增强,软件功能增强,诊断的准确性大为提高。基于专家系统和神经网络的智能化诊断方法为柴油机故障诊断技术的发展提供了新的方向。一、传统的故障诊断技术 传统的柴油机故障诊断技术主要包括热力参数分析法、声振监测、磨粒监测分析法。热力参数分析法中又可以分为通过测定柴油机工作过程的示功图对柴油机

工作过程做综合性的监测的示功图法和利用瞬时转速波动信号对柴油机进行监测和故障诊断的方法。1、热力参数分析法 热力参数分析法是利用柴油机工作时热力参数的变化来判断其工作状态的。这些参数包括气缸压力示功图、排气温度、转速、滑油温度、冷却水进出口温度及排放等。由于这些参数能够很好的反应柴油机的工作情况以及故障特征,具有关联性强、直观且便于分析等优点,因此此种方法得到了广泛的应用。1.1示功图法 示功图是在活塞式柴油机的一个循环中,气缸内气体压力随活塞位移(或气缸内容积)而变化的循环曲线。示功图除了表示作功或耗功的大小以外,还能综合反映了柴油机作出机械功的热力装换过程,故常常用来分析研究以及改善气缸内的工作过程。获取示功图的方法有直接测量法和间接测量法。直接测量法就是直接用压力传感器压力随曲轴转角的变化,然后经过整理表示为曲线形式。间接测量法则通过测量柴油机运行过程中与气缸压力相关的其它量来求的压力而获得示功图的方法。由于间接测量法对柴油机的工作无影响,故目前国内外多采用此方法。虽然这种方法在确定柴油机各类故障时比较全面,但是在现场使用中还存在一些技术问题。如上止点的确定问题、压力传感器的安装及通道效应问题等。 1.2瞬时转速法 柴油机曲轴的瞬时转速波动信号能较理想的反映机器的工作状态和工作质量。通过对瞬时转速波动信号的分析可以得到机器运行状态和相关故障的丰富信息。这种方法的原理是基于柴油机正常工作状态下各缸动力性能的一致性。一旦某一气缸发生故障,这种一致性就会遭到破坏,柴油机的运转平稳性就会变差,转速波动信号将产生严重变形。根据此变形的程度,就能判断出缸内工作过程的好坏。

服务器维修故障诊断思路大全

前言: 相对PC机而言服务器出故障的机率是小多了,但是它的故障给企业也带来了一些影响。作为服务器工程师除要有服务器基础知识以外,还需要具备服务器故障的诊断思路,这样才能最快速的解决问题也可以减少故障停机时间。 本文并不是针对某个厂家服务器故障完全手册,而是根据个人经验总结出来的一些经验思路还有一些总结案例。按照下面思路和方法基本上能够解决目前服务器更换式维修的大多数问题。而且里面的一些操作风险性也不是很大,因为服务器本身就是坏的,最坏的情况下就是它一点都不能工作了呗,(主要确认是否有数据,数据无价啊)而且现在很多厂商都有自己的客服电话关于产品问题打个电话也很方便,所以安心做啦 当然如果服务器在保修期内就打电话让售后工程师上门服务,毕竟顾客就是上帝嘛,但是如果上帝比较着急使用,一般小故障自己解决一下就好了,因为一般报修最快都是第二天(大客户如银行等除外,一般当天还得是晚上才能停机解决) 目录: 一、服务器常见故障分类 二、服务器常见故障现象及其对应排错方法 三、服务器排错基本原则 四、服务器故障需要收集哪些信息 五、服务器硬件故障排错实例 六、服务器软件故障排错实例 七、服务器常见内存故障现象 一、服务器常见故障类型分类: A. 开机无显示 B. 加电BIOS自检阶段故障 C. 系统和软件安装阶段故障和现象 D. 操作系统启动失败 E. 系统运行阶段故障 二、服务器常见故障现象及其对应的排除方法

A.服务器开机无显示(加电无显示和不加电无显示) 1. 检查供电环境 2. 检查电源和故障指示灯(故障指示灯状态,目前很多厂商的服务器都有故障指示灯,或故障诊断卡等。) 3. 按下电源开关时,键盘指示灯是否亮、风扇是否全部转动 4. 是否更换过显示器,尝试更换另外一台显示器 5. 插拔内存,用橡皮擦擦拭一下金手指,如果在故障之前有增加内存,去掉增加的内存尝试 6. 是否添加了CPU,如果有增加CPU尝试去掉 7. 去掉增加的第三方I/O卡包括Raid卡等 8. ClearCMOS (记得使用跳线来清除,尽量不要直接拔电池,每款服务器清除跳线位置不一致,具体找不到电话联系一下厂商客服) 9. 尝试更换主板、内存等主要部件 10.清除静电,将电源线等外插在服务器上的线缆全部拔掉,然后轻按开机键几下 B.加电BIOS自检报错 1. 根据BIOS自检报错信息提示 2. 查看是否外插了第三方的卡或者添加部件,如果有还原基本配置重启 3. 做最小化测试 4. 尝试清除CMOS 5. 看能否正常进入BIOS C. 系统安装阶段故障和现象 1.查看服务器支持操作系统的兼容版本(从厂商能查到兼容性列表) 2.系统安装蓝屏(对蓝屏故障代码诊断) 3.安装在分区格式化的时候找不到硬盘 (阵列驱动没有安装或者没有配置阵列,可以尝试适应引导光盘安装) 4.大于2T的硬盘式应该如何分区(必须使用阵列卡才能实现或者有外插识别卡) (使用阵列卡配置阵列分成一个小于2T的空间,一个大于2T的空间,然后将系统安装在小于2T的上面,安装好系统后在使用GPT方式分区即可) 5.安装过程是死机 (检查兼容性列表---查看硬盘接口选择是否正确---阵列驱动安装是否正确---尝试最小化配置安装检查是否为内存和CPU等问题) 6.引导光盘安装失败

常见网络故障排查

计算机网络故障及其维修方法 目标: 1.常见计算机网络故障检测、分析能力;掌握计算机网络故障维修方法; 2.会配置小型计算机网络系统;了解常见计算机网络故障原因;了解计算机网络故障处理方法; 3.能利用所学知识和经验(灵活性)创造性地解决新问题。 内容: 一、了解常见计算机网络故障原因 (一)硬件故障 硬件故障主要有网卡自身故障、网卡未正确安装、网卡故障、集线器故障等。 首先检查插上计算机I/O插槽上的网卡侧面的指示灯是否正常,网卡一般有两个指示灯“连接指示灯”和“信号传输指示灯”,正常情况下“连接指示灯”应一直亮着,而“信号传输指示灯”在信号传输时应不停闪烁。如“连接指示灯”不亮,应考虑连接故障,即网卡自身是否正常,安装是否正确,网线、集线器是否有故障。 1.RJ45接头的问题 RJ45接头容易出故障,例如,双绞线的头没顶到RJ45接头顶端,绞线未按照标准脚位压入接头,甚至接头规格不符或者是内部的绞线断了。

镀金层厚度对接头品质的影响也是相当可观的,例如镀得太薄,那么网线经过三五次插拔之后,也许就把它磨掉了,接着被氧化,当然也容易发生断线。 2.接线故障或接触不良 一般可观察下列几个地方:双绞线颜色和RJ-45接头的脚位是否相符;线头是否顶到RJ-45接头顶端,若没有,该线的接触会较差.需再重新压按一次;观察RJ-45侧面。金属片是否已刺入绞线之中?若没有,极可能造成线路不通;观察双绞线外皮去掉的地方,是否使用剥线工具时切断了绞线(绞线内铜导线已断,但皮未断)。 如果还不能发现问题,那么我们可用替换法排除网线和集线器故障,即用通信正常的计算机的网线来连接故障机,如能正常通信,显然是网线或集线器的故障,再转换集线器端口来区分到底是网线还是集线器的故障,许多时候集线器的指示灯也能提示是否是集线器故障,正常对应端口的灯应亮着。 (二)软件故障 如果网卡的信号传输指示灯不亮,这一般是由网络的软件故障引起的。 1.检查网卡设置 普通网卡的驱动程序磁盘大多附有测试和设置网卡参数的程序。分别查验网卡设置的接头类型、IRQ、I/O端口地址等参数,若有冲突.只要重新设置(有些必须调整跳线),一般都能使网络恢复正常。

电脑硬件常见的故障检测及处理方法

电脑硬件常见的故障检测及处理方法 掌握一些电脑维修的基本检测方法,是解决电脑故障的必备基础知识。本文总结了电脑使用者在日常的工作、生活中有可能遇到的几种代表性的电脑硬件故障以及处理方法,在遇到电脑故障时,快速判断并处理一些有规律可循的常见故障。 我们在日常生活、工作中肯定会遇到电脑硬件引起的一些故障,这个时候,如果你不懂如何检测及处理硬件故障,则会对我们的生活、工作造成很大的不便;本文就针对我们在使用电脑中常遇到的几种硬件故障,总结了几种代表性的电脑故障及处理方法,希望对大家有一定的帮助; 一、什么是电脑硬件故障 电脑硬件故障是由硬件引起的故障,涉及各种板卡、存储器、显示器、电源等。常见的硬故障有如下一些表现。 ①电源故障,导致系统和部件没有供电或只有部分供电。

②部件工作故障,计算机中的主要部件如显示器、键盘、磁盘驱动器、鼠标等硬件产生的故障,造成系统工作不正常。 ③元器件或芯片松动、接触不良、脱落,或者因温度过热而不能正常运行。 ④计算机外部和内部的各部件间的连接电缆或连接插头(座)松动,甚至松脱或者错误连接。 ⑤系统与各个部件上及印制电路的跳线连接脱落、连接错误,或开关设置错误,而构成非正常的系统配置。 ⑥系统硬件搭配故障,各种电脑芯片不能相互配合,在工作速度、频率方面不具有一致性等。 二、硬件故障的常用检测方法 目前,计算机硬件故障的常用检测方法主要有以下几种。 1.清洁法 对于使用环境较差或使用较长时间的计算机,应首先进行清洁。可用毛刷轻轻刷去主板、外设上的灰尘。如果灰尘已清洁掉或无灰尘,就进行下一步检查。另外,由于板卡上一些插卡或芯片采用插脚形式,所以,震动、灰尘等其他原因常会造成引脚氧化,接触不良。可用橡皮擦去表面氧化层,重新插接好后,开机检查故障是否已被排除。 2.直接观察法 直接观察法即“看、听、闻、摸”。 ①“看”即观察系统板卡的插头、插座是否歪斜,电阻、电容引脚是否相碰,表面是否烧焦,芯片表面是否开裂,主板上的铜箔是否烧断。还要查看是否有异物掉进主板的元器件之间(造成短路)。也应查看板上是否有烧焦变色的地方,印制电路板上的走线(铜箔)是否断裂等。 ②“听”即监听电源风扇、硬盘电机或寻道机构等设备的工作声音是否正常。另外,系统发生短路故障时常常伴随着异常声响。监听可以及时发现一些事故隐患,帮助在事故发生时即时采取措施。 ③“闻”即辨闻主机、板卡中是否有烧焦的气味,便于发现故障和确定短路所在处。 ④“摸”即用手按压管座的活动芯片,查看芯片是否松动或接触不良。

智能故障诊断技术知识总结复习课程

智能故障诊断技术知 识总结

智能故障诊断技术知识总结 一、绪论 □智能: ■智能的概念 智能是指能随内、外部条件的变化,具有运用知识解决问题和确定正确行为的能力。 ■低级智能和高级智能的概念 低级智能——感知环境、做出决策和控制行为 高级智能——不仅具有感知能力,更重要的是具有学习、分析、比较 和推理能力,能根据复杂环境变化做出正确决策和适应 环境变化 ■智能的三要素及其含义 三个基本要素:推理、学习、联想 推理——从一个或几个已知的判断(前提),逻辑地推断出一个新判断(结论)的思维形式 学习——根据环境变化,动态地改变知识结构 联想——通过与其它知识的联系,能正确地认识客观事物和解决实际问题 □故障: ■故障的概念 故障是指设备在规定条件下不能完成其规定功能的一种状态。可分为以下几种情况:

1.设备在规定的条件下丧失功能; 2.设备的某些性能参数达不到设计要求,超出允许范围; 3.设备的某些零部件发生磨损、断裂、损坏等,致使设备不能正常工作; 4.设备工作失灵,或发生结构性破坏,导致严重事故甚至灾难性事故。 ■故障的性质及其理解 1层次性——系统是有层次的,故障的产生对应于系统的不同层次表 现出层次性。一般可分为系统级、子系统级、部件级、 元件级等多个层次;高层故障可由低层故障引起,而低 层故障必定引起高层故障。诊断时可采用层次诊断模型 和诊断策略。 2相关性——故障一般不会孤立存在,它们之间通常相互依存和相互 影响,如系统故障常常由相关联的子系统传播所致。表 现为,一种故障可能对应多种征兆,而一种征兆可能对 应多种故障。这种故障与征兆间的复杂关系导致了故障 诊断的困难。 3随机性——故障的发生常常是一个与时间相关的随机过程,突发性 故障的出现通常都没有规律性,再加上某些信息的模糊 性和不确定性,就构成了故障的随机性。

关于网络故障方面的一些常见的问题及解决方法

关于网络故障方面的一些常见的问题及解决方法 21 号。如果有,必须手工更改这些设备的中断和 I/O 地址设置。 34 、故障现象:在“网上邻居”或者“资源管理器”中只能找到本机的机器名。 故障分析、排除:网络通信错误,一般是网线断路或者与网卡的接触不良,还有 可能是 H u b 的问题。 35

故障现象: 可以访问服务器, 也可以访问 Int ern et , 却无法访问其他的工作站。 故障分析、排除:如果使用了 w i n s 解析,可能是 wins 服务器地址设置不当;检 查网关设置,若双方分属不同的子网而网关设置有误,则可能看到其他工作站;检查 子网掩码设置。 36 、故障现象:网卡在计算机系统无法安装。

故障分析。排除:第一种可能是计算机上安装了许多其他类型的接口卡,造成中 断和 I/O 地址冲突。可以先将其他不重要的卡拿下来,在安装网卡,最后在安装其他 接口卡。第二种可能是计算机中有一些安装不正确的设备,或者有未知设备一项,是 系统不能检测网卡。这时应该删除未知设备中的所有选项,让偶重新启动计算机。第 三种可能是计算机不能识别这一种类型的网卡,一般只有跟换网卡了。 37 、故障现象:局域网上可以 Ping 通 I P

地址,但 P i n g 不通域名? 故障分析、排除: T C P/I P 协议中的“DNS设置”不正确,请检查其中的配置。 对于对等网, “主机”应该填写自己机器本身的名字, “域”不需填写,DNS服务器 应该填自己的IP。对于服务器/工作站网,主机应该填写服务器的名字,域填写局 域网服务器设置的域, DNS 服务器应该填写服务器的 I P 。 38

计算机网络故障的一般识别和解决方法要点

目录 前言 (2) 课题研究的背景 (3) 研究目的 (4) 课题研究主要内容 (5) 逻辑类故障 (6) 物理类故障 (9) 计算机网络中具体故障具体分析 (11) 关于网络故障方面一些常见的问题及解决方法 (15) 个人总结................................................................................................................................... 参考文献...................................................................................................................................

致谢............................................................................................................................................. 前言 在当今这个计算机网络技术日新月异,飞速发展的时代里,计算机网络遍及世界各个角落,应用在各行各业,普及到千家万户,它给人们可谓带来了诸多便利,但是网络故障的普遍存在,也给网络用户带来了很多的烦恼,笔者对常见的网络故障进行了分类和排查方法的介绍,相信对你有所帮助。根据常见的网络故障归类为:物理类故障和逻辑类故障两大类

课题研究的背景 自从网络技术运用的20多年以来,全世界网络得到了持续快速的发展,中国的网络安全技术在近几年也得到快速的发展,这一方面得益于从中央到地方政府的广泛重视,另一方面因为网络安全问题日益突出,网络安全企业不断跟进最新安全技术,不断推出满足用户需求、具有时代特色的安全产品,进一步促进了网络安全技术的发展。从技术层面来看,目前网络安全产品在发展过程中面临的主要问题是:以往人们主要关心系统与网络基础层面的防护问题,而现在人们更加关注应用层面的安全防护问题,安全防护已经从底层或简单数据层

网络故障排除思路

锐捷产品网络故障处理总结内部公开 目录 网络故障排除技术总结 (1) 1.网络故障排除技术概览 (1) 1.1在当今日益复杂的网络中进行故障排除 (1) 1.2网络故障的一般分类 (2) 1.3一般网络故障的解决步骤 (2) 2.网络排错常用诊断工具介绍 (8) 2.1 Ping命令 (8) 2.2 Traceroute 命令 (13) 2.3 Show命令 (18) 2.4 Clear命令 (22) 2.5 Debug命令 (23) 3.故障排除常用方法 (26) 3.1分层故障排除法 (26) 3.2分块故障排除法 (27) 3.3分段故障排除法 (27) 3.4替换法 (29) 4. 故障排除对排错技术人员的要求 (29) 4.1对协议要求有精深的理解 (29) 4.2能够引导客户详细描述出故障现象和相关信息 (29) 4.3充分了解自己所管理和维护的网络 (31) 4.4及时进行故障排除的文档记录和经验总结 (32)

网络故障排除技术总结 1.网络故障排除技术概览 1.1在当今日益复杂的网络中进行故障排除 当今的网络互连环境是日趋复杂的,而且随着需求发展的步伐这种复杂性是日益增长的,主要原因如下: ?现代的网络要求支持更广泛的应用:包括内容上的数据、语音、视频的应用;接入方式上有线,光纤,无线,多协议转换器,逻辑链路的应用;网络结构上二层,三层,二三层混合,VPN等的应用。 ?新业务发展使得网络的的需求不断增长,新技术的不断出现。例如:百兆以太网向千兆、万兆以太网的演进;各种防范攻击技术的出现;提供QoS 能力;IPV6的支持等。 ●新技术的应用同时还要兼顾传统的技术。例如,传统的网络体系结构仍 在某些场合使用。各种协议的发展,使得新网络的建设需要兼容原来的基础而进行改造。 ● 图1-1多样业务的需求和各种先进技术的引入 使网络日益复杂

(完整版)《设备故障诊断-沈庆根》知识点汇总

1.1.设备故障诊断的含义 设备故障诊断是指应用现代测试分析手段和诊断理论方法,对运行中的机械设备出现故障的机理、原因、部位和故障程度进行识别和诊断,并且根据诊断结论,确定设备的维修方案和防范措施。 1.2.设备故障诊断的过程 信号采集→信号处理→故障诊断→诊断决策→故障防治与控制 1.3.设备故障诊断的特性 多样性、层次性、多因素相关性、延时性、不确定性 1.4.三种维修制度 事后维修(故障维修)、定期维修(计划维修)、状态监测维修(预知性维修) 1.5设备故障的类型有哪些 ①结构损伤性故障(裂纹、磨损、腐蚀、变形、断裂、剥落和烧伤) ②运动状态劣化性故障(机械位置不良、刚性不足、摩擦、流体激振、非线性的谐波共振) 1.6设备故障诊断的功能 ①不停机不拆卸的状态下检测 ②可预测设备的可靠性程度 ③确定故障来源,提出整改措施 1.7.设备状态监测与故障诊断的技术和方法 振动信号监测诊断技术(普遍性、信息量丰富、易处理与分析) 声信号监测诊断技术(声音监听法、频谱分析法、声强法) 温度信号监测诊断技术 润滑油的分析诊断技术 其他无损检测诊断技术 1.8.设备故障状态的识别方法 信息比较诊断法、参数变化诊断法、模拟试验诊断法、函数诊断法、故障树分析诊断法、模糊诊断法、神经网络诊断法、专家系统 2.1信号的含义和分类 信号是表征客观事物状态或行为信息的载体 分类:确定性信号与非确定性信号;连续信号和离散信号;能量信号和功率信号;时限与频限信号 2.2.信号时域分解 直流分量和交流分量 脉冲分量 实部分量和虚部分量 正交函数分量 2.3.信号的时域统计 均值 均方值 方差

2.4.时域相关分析 相关系数: 2.5.频谱分析法 利用傅里叶变换的方法对振动的信号进行分解,并按频率顺序展开,使其成为频率的函数,进而在频率域中对信号进行研究和处理的一种过程,称为频谱分析 2.6.振动监测的基本参数振幅、频率、相位 2.7.旋转机械常用的振动信号处理图形 轴心轨迹:轴颈中心相对于轴承座在轴线垂直平面内的运动轨迹 转子振型:转子轴线上各点的振动位移所连成的一条空间曲线 轴颈涡动中心位置:在滑动轴承中,轴颈中心在激扰力作用下是绕着某一中心点运动的 波特图:描述转子振幅和相位随转速变化的关系曲线,纵坐标为振幅和相位,横坐标为转子的转速或转速频率 极坐标图:把转子的振幅与相位随转速的变化关系用极坐标的形式表示出来(直观,方便,清晰,抗干扰) 三维坐标图(级联图、瀑布图):随转速上升,机械振动的基础幅指上升 阶比谱分析:将频谱图上横坐标的每个频率值除以某个参考频率值(读数清晰、周期采样、精度高) 3.1旋转机械的故障类型有哪些 ①转自不平衡②转子不对中③滑动轴承故障④转子摩擦⑤浮动环密封故障 3.2转子不平衡的概念 转子受材料质量、加工、装配以及运行中多种因素的影响,其质量中心和旋转中心线中间存在一定量的偏心距,使得转子在工作时形成周期性的离心力干扰,在轴承上产生动载荷,从而引起机器振动的现象 不平衡产生的离心力大小 3.3转子不平衡振动的故障特征 ①不平衡故障主要引起转子或轴承径向振动,在转子径向测点上得到的频谱图,转速频率成分具有突出的峰值 ②单纯的不平衡振动,转速频率的高次谐波幅值很低,因此在时域上的波形是一个正弦波 ③转子的轴心轨迹形状基本上为一个圆或者椭圆,这意味着置于转轴同一截面上相互垂直的两个探头,其信号相位差接近90° ④转子的进动方向为同步正进动 ⑤除了悬臂转子外,对于普通两端支撑的转子,不平衡在轴向上的振幅一般不明显 ⑥转子振幅对转速变化很敏感,转速下降,振幅将明显下降 3.4转子不平衡振动的原因 ①固有质量不平衡(设计错误、材料缺陷、加工与装配误差、动平衡方法不正确) ②转子运行中的不平衡(转子弯曲、转子平衡状态破坏) 3.5怎样区别转子弯曲不平衡和质量不平衡 ①振幅随转速的变化:质量不平衡与转速之间按照固定的关系式变化,弯曲的没有

网络故障排查报告

网络故障排查报告 XXX局: 局领导您好,最近多个部门反映单位网络非常不稳定,经县信息中心及华晨电脑设备技术有限公司两天的排查,基本上查清故障发生的原因,说明如下: 1、所有的nbc和存储用的是同一个网段和同一个vlan,大概有100多台机器及多台无设 备,广播流量太大,之前更换的TP-link网络交换机经咨询不能满足单位使用要求,每天超负荷工作造成设备主板的芯片元器件加速损坏,网络数据处理不稳定造成了网络塞车现象。 2、公司有部分windowsxp系统防御措施不够,导致工作机中了病毒,造成病毒网络广播, 加重机房交换机负担,这也是原因之一。 综上所述,特提出如下整改方案: 1、购置4台带有网管功能的48口千兆企业交换机,置于路由器之外,保证网络分流稳 定。公司出台严格的网络管理制度 所有的办公电脑必须安装杀毒软件,对于没有安装杀毒软件和防火墙的办公软件必须立刻断网。 所只要涉及到和网络地址的添加必须事先咨询局办公室及办公室相关工作人员,然后由办公室再为他们划分相应的和ip地址。 2、XX局的网络制度一经确定,必须严格遵守。重新划分每层办公室的IP地址,以及将所 有办公电脑作一次深入系统安全检查,保证办公局域网系统安全。 3、尽快将各股室办公电脑的网络IP进行登记,方便日后网络管理。 以上便是本公司对贵局网络不稳定的原因分析及建议解决决方案,妥否,请批示。 维保单位:xx公司 2015年2月12日 以下是建议购置的网络交换机的详细参数配置: 品牌:H3C 型号:H3C LS-S5120-52P-SI-H3 48 价格:5600.00元 产品特点 灵活的千兆接入和集群管理 H3C S5120-SI系列全千兆以太网交换机提供灵活的16/24/48个10/100/1000M自适应电口接入;并且支持非复用的SFP插槽,充分考虑用户的带宽升级的实际情况,既可以支持千兆光模块,也可以支持百兆光模块,保护用户投资。H3C S5120-SI系列硬件支持最大104Gbps交换容量,保证所有端口二层线速交换。 H3C S5120-SI系列交换机采用专利技术允许交换机利用专用互联电缆实现多达16台设备的堆叠,支持不同端口设备的混合堆叠。具有即插即用、单一IP管理。同时大大降低系统扩展的成本,保护了用户投资。

相关文档