文档库 最新最全的文档下载
当前位置:文档库 › 混合动力客车与常规客车排放对比研究

混合动力客车与常规客车排放对比研究

混合动力客车与常规客车排放对比研究
混合动力客车与常规客车排放对比研究

2010年(第32卷)第3期

汽 车 工 程A utomo ti ve Eng i nee ri ng

2010(V o.l 32)N o .3

2010040

混合动力客车与常规客车排放对比研究

原稿收到日期为2009年5月27日,修改稿收到日期为2009年12月31日。

李孟良1

,聂彦鑫2

,高继东1

,李 洧1

,过学迅

2

(1 中国汽车技术研究中心,天津 300162; 2 武汉理工大学汽车工程学院,武汉 430070)

[摘要] 利用车载测试系统,对混合动力客车及常规客车进行了整车排放测试,分析了混合动力客车在各典型行驶工况下的排放特征和车辆排放率随行驶力的变化关系。试验结果表明,混合动力车及常规车怠速工况时污染物排放贡献率最低,加速工况时污染物排放贡献率总体最高;常规车各污染物排放率随行驶力变化呈先下降后升高的趋势;混合动力车因其复杂的工作模式而导致复杂的变化趋势。该混合动力客车节能环保性能良好,比较适合在我国城市运行,但仍须加强怠速及加速工况的排放控制。

关键词:混合动力客车;排放;行驶力

A Co mparati ve St udy on Em issi ons ofH ybri d E lectri c Bus and Conventi ona l Bus

LiM engli a ng 1

,N ie Yanxin 2

,G ao Ji d ong 1

,L iW ei 1

&Guo Xuexun

2

1 Ch i na Au t o m otive T ec hnology and R esearch C e n ter ,Tianji n 300162;

2 S chool o f Au t o m obile Eng i n e ering,W uhan University of Tec hn ology,W uhan 430070

[Abstract] By usi n g on board test syste m,veh icle e m ission test on hybri d e lectric bus and conventi o na l bus is conducted to analyze the e m ission features o f hybri d e lectric bus i n typ ica l dri v i n g cond itions and the re lati o nship bet w een vehic l e e m ission rate and driving po w er .The test results sho w that for both hybr i d electric bus and conven

ti o na l bus ,the contribution rate o f po ll u tant e m i s sion is lo w est in i d l e mode and is h i g hest i n accelerati o n m ode .W ith the i n crease of dri v i n g po w er ,the e m issi o n rates o f all po ll u tan ts fro m conventional veh icles have a chang i n g trend of do w nward first and t h en upw ar d,but for hybri d e lectric vehicles ,the chang i n g trend of e m issi o n rate is rather co m plicated due to its co m p l e x w orking m ode .The resu lts also i n d icate tha t t h e hybrid e lectric busm entioned has a good perfor m ance i n both ener gy sav i n g and env ironm ental protection ,and is relatively su itable for operati n g in t h e c ities i n Ch i n a ,but it i s still a m ust to strengthen e m issi o n contro l i n idle and accelerati o n m odes .

K eyw ords :hybrid electric bus ;e m ission ;dr i v i n g power

前言

随着汽车保有量的不断增加及石油资源匮乏,节能与环保成为当今全球汽车工业发展的两大主题

[1]

。各国争相研制与开发新能源汽车,如电动汽

车。其中融合传统内燃机汽车和纯电动汽车优点的混合动力电动汽车得到了各国重视。混合动力电动

汽车采用发动机和电机两套动力驱动系统,既继承了纯电动车辆作为 绿色汽车 节约能源和超低排放的优点,又弥补了纯电动车辆续驶里程不足的缺

点。而混合动力系统最适合也最有潜力应用于客车

(混合动力客车H EB ,hybri d e lectric bus),尤其是城市客车。城市公共交通拥挤,客车时走时停行车速度慢,传统的内燃机汽车燃油消耗大,污染严重,而混合动力电动系统则可以发挥其优势。根据国外相关文献,混合动力汽车的燃油消耗指标与装备同类

型发动机的传统汽车相比平均降低30%~40%,尾气排放指标平均降低50%~60%。我国也进行了类似的轻型混合动力车与传统车的排放对比研究

[2]

。但是国内缺少对大型客车特别是大型混合动

力客车整车排放测试的研究,从而无法评价其节能

!194 !汽 车 工 程2010年(第32卷)第3期

减排性能,也不能为其尾气排放预测提供技术支持。

文中利用车载测试系统,对大型混合动力客车及常规客车在 中国典型城市公交循环工况 下的瞬时尾气排放进行测试,比较了两客车各典型工况的排放特性,研究了两客车行驶工况与排放之间的关系,从而为大型混合动力客车排放控制提供参考,也为大型客车尾气排放预测提供技术支持。

1 试验设计

1 1 试验测试系统

车载测试系统主要由车载工况跟踪系统OB DCTS(on broad dri v i n g cycle trace syste m )

[3]

及便携

式排放测试系统PE M S (portable e m ission m easure

m ent syste m )[4]

两部分组成,如图1所示。

OB DC TS 用来跟踪和复现指定的车辆行驶工况,如 中国典型城市公交循环工况 。OBDCTS 主要由非接触式光电速度传感器、车辆信号处理仪和装有数据信号处理软件的OBDCTS 外接电脑组成。使用时将外接电脑放置在驾驶室,

驾驶员根据复现

图1 车载测试系统

的预定工况操作车辆,从而保证车辆多次重复运行在相同的工况上。

PE M S 由车载气态污染物测量仪OBS-2200和车载颗粒物测量仪ELPI 组成,测试工况的排放瞬时数据,如排气流量,H C 、CO 、NO x 和CO 2的体积分数及颗粒物P M 的质量分数等。

1 2 试验车辆

文中研究的车辆为混合动力客车和常规客车。该混合动力客车为混联式混合动力电动汽车(split hybrid electric veh icle ,PS H EV),它综合了串联式和并联式混合动力车的结构特点及使用优点,且使用超级电容作为动力电池组,它具有瞬态响应快,能够快速充放电(比功率高达4k W /kg),循环使用寿命长(可以达到10万次)等特点。该混合动力客车使用以速度为主要参数的控制策略,即当车速在0~22km /h 时,发动机保持稳定运转但不参与驱动,车辆完全靠电机驱动。当车速超过22km /h 后,电控离合器将自动接合,发动机与电机一起加速驱动车辆行驶。在交通特别堵塞的城市道路,城市客车的车速基本上都在20km /h 以内

[5]

,该混合动力客车

非常适合在这样的路段上行驶。

选择与混合动力客车的外形尺寸、整备质量及最高车速基本相同的常规客车与之相比较,基本参

数见表1。

表1 试验车辆参数

参数混合动力客车

常规客车驱动型式

混联常规外形尺寸(长/宽/高)/c m

1198/254/3181198/254/305发动机型号ISBE 18532

I SBE 22031

发动机排量/L 5 95 9额定功率/k W 136162电机功率/k W 65/电池型式超级电容/电池电压/V 260~380/电池容量/A !h 41 25/整备质量/kg 1219011200最高车速/km !h -1

80

80

1 3 测试方法

目前国内大型混合动力车辆只有能量消耗量试验方法,没有污染物排放试验方法,文中参照?GB /T19754#2005重型混合动力电动汽车能量消耗量试验方法?[6]

及?美国SAE #J2711标准混合动力重型车辆排放性能测试?[7]

,进行指定工况下的混合动

力车的场地排放测试。试验时对车辆进行配重,为

车辆载质量的65%。

2010(V o.l 32)N o .3李孟良,等:混合动力客车与常规客车排放对比研究!195 !

该测试在北京通县交通部公路试验场内进行。测试工况采用国家863计划电动汽车课题成果 中国典型城市公交循环工况 [8]

,基本参数如表2所示。该工况基于北京、上海和广州3个城市公交车运行工况特征开发,非常适用于公交车性能的研究。

表2 中国典型城市公交循环工况

循环次数行驶时间/s 行驶距离/k m 平均车速/km !h

-1

最高车速/km !h -1

2

2628

11 615 960最高加速度/m !s

-2最大减速度/m !s -2怠速时间/s 怠速时间

比例/%0 914

1 543

762

29 0

2 试验结果处理

按照试验设计,分别对混合动力客车及常规客车进行3次车载尾气检测。对这6次车载测试设备收集的车辆排放初始数据及行驶工况初始数据进行

时间同步匹配,然后对数据进行质量控制(如缺失值插值处理等),从而保证数据的精度。试验测试得到完整的工况数据(速度、加速度)及与之相对应的各种排放物(HC 、CO 、NO x 、CO 2和P M )的瞬时排放率,图2为两车的NO x 排放率及车速曲线。

图2 两客车的NO x 排放率及车速曲线

对每次测试的跟踪工况数据与目标工况数据进行相关性分析。经相关性计算,两辆车的工况跟踪相关系数R 2

均达到0 98以上,表明各次测试工况跟踪有效,即测试结果能很好地反映其在我国城市运行时的排放情况。

对瞬时排放率进行积分可以得到总排放量,对瞬时速度进行积分可以得到行驶里程,进而得到混合动力车及常规车的排放因子及平均排放率。图3为 中国典型城市公交循环工况 下两辆客车的污染物排放因子对比图。

图3 两客车的污染物排放因子对比

3 分析与讨论

由图3可以看到,混合动力客车的各种污染物排放因子均低于常规客车,其中H C 和NO x 排放因子为常规客车的85%,CO 排放因子为常规客车的48 8%,P M 排放因子仅为常规客车的22%。在尾气检测的同时记录了混合动力客车和常规客车的油耗数据。混合动力客车的油耗为常规客车的75 5%。这从总体上反映了混合动力客车具有良好的节能减排性能。在相对于常规客车的尾气减排量中,混合动力客车经过减少油耗的技术方式的贡献率约为27%,其它减排技术的贡献率在73%左右。同时也可看到,混合动力客车及常规客车的P M 排放因子均较低,这是因为在测试过程中使用了标准的试验用柴油,它有较低的硫含量,从而减少了硫酸颗粒物的形成。对于在中国城市运行的公交车,不仅要加强柴油机的燃烧优化和对NO x 、P M 进行后处理(如柴油机颗粒捕集器DPT,选择性催化还原技术SCR),也要加强对H C 及CO 必要的后处理(柴油机氧化催化器DOC )。

3 1 各典型工况排放分析

为了更好地研究混合动力客车的减排特性,将测试工况划分为怠速、匀速、加速和减速4种典型工况

[9]

。混合动力客车因其驱动系统及控制策略的复

杂性,在4种典型工况下的排放贡献率与常规客车有很大不同,如图4所示。

混合动力客车及常规客车在怠速工况污染物排放贡献率最低,且混合动力客车怠速排放贡献率低于常规客车。其中混合动力客车在怠速工况时CO 及P M 排放贡献率仅为0~4%,远低于常规客车的排放贡献率。按照该混合动力客车的控制策略,车辆怠速时发动机稳定工作在低怠速区(因为此时发

!196

!汽 车 工 程2010年(第32卷)第3期

图4 两客车的各典型工况排放贡献率

动机不驱动车辆,仅由电动机驱动车辆起步),只有当电池电量不足时,才提高发动机的转速及转矩输出给电池组充电,此时造成了一定量的污染物排放(特别是H C及NO x)。作者认为该混合动力客车在怠速工况时,如能使用自动启停技术(该混合动力客车具有独立的电机驱动系统,因此在技术上是可行的),其怠速排放将能进一步减少。混合动力客车在加速时各种排放贡献率最高,占总排放的44%以上;常规客车在加速时HC、C O和NO x排放贡献率最高(常规客车在加速时的P M排放贡献率略低于减速工况),占总排放量的32%以上。该混合动力客车虽然通过混合驱动模式降低了各污染物的排放总量,但是也使加速工况的污染物排放贡献率大幅增加,说明其在加速过程中减排效果较差。混合动力客车在匀速工况时HC、CO和P M排放贡献率比常规客车低4个百分点,NO x排放贡献率略高于常规客车。作者分析认为匀速时该混合动力客车仅由发动机独立驱动,当动力电池组电量不足时,发动机带动电机发电,从而导致污染物排放量的增多,特别是NO x。混合动力客车在减速工况时污染物排放贡献率比常规客车低6~10个百分点。由图2可以看到两客车在不同工况下的NO x排放率变化情况。

3 2 行驶力与排放分析

汽车道路排放特性与行驶工况有着内在的关联。为了分析车辆排放和行驶工况的具体相关性,各国的学者提出了各种各样的分析方法,如采用速度和排放的关系分析,或加速度和排放的关系分析。最近更多的学者提出了使用车辆比功率(veh icle specific po w er,VSP)参数来表征车辆工况和排放关系的分析方法。其中VSP具有与排放更高的相关性而受到越来越多的关注。美国Ji m enez提出的VSP 公式为

VSP=v(1 1a+9 81S+0 132)+0 302%10-3v3式中:v为速度,a为加速度,S为道路坡度。

大量研究表明,车辆VSP能够真实地反映车辆运行工况与污染物排放量之间的关系。因本次测试是在标准实验场地进行的,其S约为0。所以文中分析舍弃道路坡度的影响,而引入参数行驶力K进行分析。行驶力K定义为

K=va

行驶力的单位为m2/s3。

从VSP表达式可看到,对VSP影响最大的就是速度v及加速度a两个参数,所以使用行驶力K进行工况与排放关系的分析也是一种较好的选择。

对测试得到的行驶力进行数据分析发现,行驶力主要分布在-5~5m2/s3之间,占总工况的90%以上。因此,选取行驶力K值以1m2/s3为间隔进行划分,范围为-5~5m2/s3。图5和图6为两客车污染物排放率随行驶力K的变化曲线。

图5 常规客车污染物排放率随行驶力变化曲线

由图5可看到,常规车随行驶力变化趋势比较简单,整体呈V形。当K<0时,随着行驶力的增大,各种污染物排放率逐渐减小;当K>0时,随着行驶力的增大,各种污染物排放率逐渐增大;当K=0时,各种污染物排放率最低。这是因为在K=0时,常规客车处于怠速或匀速工况,此时发动机工作稳定,各种污染物排放率均较低。车辆大减速及大加速均使发动机处于极为不利的工况,从而导致各种

2010(V o.l32)N o.3李孟良,等:混合动力客车与常规客车排放对比研究!197

!

图6 混合动力客车污染物排放率随行驶力变化曲线

污染物的大量形成。由图6可看到,混合动力客车随着行驶力变化趋势比常规客车复杂,这可能是因为混合动力具有多种工作模式,从而导致这种差异。当K<0时,随着行驶力的增加,HC排放率基本保持不变,P M排放率逐渐减小,NO x排放率逐渐增大。作者分析认为,此时混合动力客车处于再生制动能量回收模式,从而导致这种复杂的变化关系。当K >0时,随着行驶力的增加,HC、P M和NO x均逐渐增大,但当行驶力进一步增大时,污染排放率变化趋势更加复杂,作者认为此时处于发动机及电机共同驱动的混合驱动模式,从而导致这种复杂变化的出现。

4 结论

利用车载测试技术对混合动力客车及常规客车在 中国典型城市公交工况下进行实时排放测试。测试表明,应用车载测试技术可以很好地对车辆进行道路测试,从而为车辆实时排放特性的研究提供技术支持。

(1)混合动力客车的污染物排放因子均低于常规客车。混合动力客车H C排放因子为0 197g/km, CO排放因子为4 439g/km,NO x排放因子为10 427 g/km,P M排放因子为0 140g/km。对城市公交车应加强对CO、NO x和P M的后处理。

(2)混合动力客车和常规客车在怠速工况污染物排放贡献率最低,且混合动力客车怠速排放贡献率低于常规客车。混合动力客车在加速时各种排放贡献率最高,占总排放的44 0%以上;常规客车在加速时H C、CO和NO x排放贡献率最高,占总排放量的32%以上。混合动力客车在匀速工况时H C、CO和P M排放贡献率比常规客车低4个百分点左右,NO x排放贡献率略高于常规客车。混合动力客车怠速及加速工况的排放控制需进一步加强,如采用自动启停技术。

(3)常规客车各污染物排放率随行驶力变化趋势比较简单,整体呈V形,其中K=0时,排放率最低。混合动力客车排放随着行驶力变化较为复杂,这可能是因为混合动力客车具有多种工作模式,从而导致这种差异。排放特性研究也为大型客车尾气排放预测提供技术支持。

参考文献

[1] 孙逢春,何洪文.混合动力车辆的归类方法研究[J].北京理工

大学学报,2002,22(1):40-44.

[2] 宋国华,于雷,等.混合动力车与传统汽车的排放对比试验研究

[J].汽车工程,2007,29(10):865-869.

[3] 李孟良,马志雄,朱西产,等.典型城市车辆实际行驶工况的研

究[R].天津:中国汽车技术研究中心,2004.

[4] 李孟良,刘伏萍,陈燕涛,等.基于PEM S的混合动力客车排放

和油耗性能评价[J].江苏大学学报(自然科学版),2006,27

(1).

[5] 张富兴,李孟良,等.车辆行驶工况运动学水平的研究[J].武

汉理工大学学报(交通科学与工程版),2005,29(5).

[6] GB/T19754#2005重型混合动力电动汽车能量消耗量试验方

法[S].2005.

[7] SAE J2711#2002.Recomm ended Practi ce forM eas u ri ng Fu elE

cono m y and Em issi ons ofH yb ri d E lectric and Con ven ti onalH eavy

Du t y Veh i cles[S].2002.

[8] 朱西产,李孟良,马志雄,等.车辆行驶工况开发方法[J].江苏

大学学报(自然科学版),2005,26(2):110-113.

[9] L iM engli ang,W ang Li nghu.i H eavy duty H ybri d V eh i cle Em i s

s i on Con trastR esearch Under Fou r D i ff eren tM odes[C].Proceed

i ngs of2008IEEE V eh i cle Po w er and Propu l s i on Conference.H ar

b i n,Ch i n a,S epte m ber3-5,2008.

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展, 汽车保有量逐年增加汽车尾气对空气的污染也日益加重, 这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题, 使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长, 动力性好的优点, 又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1 国外发展现状

20世纪90年代以来,世界许多著名汽车生产 厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV 的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997 年8 月推出其第一款混合动力 汽车Toyota Coaster Hybrid EV minibus, 同年12 月,推出Toyota Prius(普锐斯)这是世界第一款 大量生产的混合动力汽车。自第一代Prius 开始销 售以来,截止到中Prius 标准型每升汽油可行驶35.5 公里。到2010 年7 月31 日,累计销量已超过268 万辆。目前市场上正热销的两款车型分别为 丰田Prius 和本田Insight 。在2010年4 月份举 办的北京车展上,共有8 款日系混合动力汽车展出, 其中丰田第三代普锐斯性能最优越,本田Insight 被 认为同级中最省油,本田CR-Z 具有运动风格受到人 们的关注。日本国内对混合动力汽车产业有长期的发展规划,政府大力扶持产业技术发展,出台一系列税收优惠政策及奖励措施,促进混合动力汽车销售,拉动内需;规划长远发展战略。 美国三大汽车公司原来只是小批量生产、销售过电动汽车,而混合动力和燃料电池电动汽车还未能实现产业化,日本的混合动力电动汽车在美国市场上占据了主导地位。美国能源部与三大汽车公司于1993 年签订了混合动力电动汽车开发合同,并于1998年在北美国际汽车展上出了样车。2005年9 月通用汽车、戴姆勒·克莱斯勒与宝马集团签署了关于构建全球合作联盟,以共同开发混合动力推进系统的合作。2009 年美国混合动力汽车销量达到 29.032 万辆虽然占美国汽车市场份额只有2.8%,但从2005 年起呈逐年上升趋势预计,美国的混合动力汽车2013 年将达到 87.2 万辆,市场占有率将达到5%。 1.2 国内发展现状目前,我国在新能源汽车的自主创新过

混合动力汽车概述

龙源期刊网 https://www.wendangku.net/doc/1b11225860.html, 混合动力汽车概述 作者:吴俊锋 来源:《学习与科普》2019年第08期 摘要:为解决能源问题和环境问题,在传统的内燃机汽车和纯电动汽车进行过渡,混合 动力汽车在此背景下不断发展。混合动力汽车是指燃油动力加电力的汽车。它的混合动力总成主要包括发动机和电动机,结合发动机和电动机各自的优点;内置动力分离装置的混合动力专用变速器、镍氢電池组和动力控制总成等部件。 关键词:混合动力汽车串联式并联式混联式 混合动力汽车拥有两种或者两种以上的动力源。根据不同的动力源的布置方式,混合动力汽车主要可以分为串联式混合动力汽车、并联式混合动力汽车和混联式混合动力汽车。典型的是串联和并联两种构型方式,两者的主要不同之处在于动力源和车轮的连接方式的不同,混联式构型则是融合了以上两种构型方式的优点。 1. 串联式混合动力汽车 在串联式混合动力汽车当中,通常是将发动机和发电机这两个部件做成一体,组成APU。发动机带动发电机发电,所产生的电能通过控制器直接送到发动机,有发动机产生驱动力矩从而驱动汽车。电池实际上起到平衡发动机-发电机组输出功率和电动机输入功率的作用:当发电机发出的功率高于电动机所需要的功率时(当汽车减速滑行、低速行驶或者短时停车等工况),控制器控制发电机向电池充电;当发电机发出的功率低于电动机所需要的功率时(当汽车起步、加速、高速行驶和爬坡等工况),电池则会向电动机提供额外的电能。 串联式混合动力汽车的传动形式和其他种类的混合动力汽车的传动形式(并联、混联)相比较,具有自己明显的特点和优势: 1.发动机和发电机、传动系之间没有直接的机械连接,使整车布置的自由度较大,同时也使得发动机的工作状态不会受到汽车行驶状态的影响,发动机能够保持在稳定、高效、低排放的运行状态下工作,使得汽车具有良好的燃油经济性和较低的污染物排放。 2.在串联式混合动力汽车上,由于发动机带动发电机所产生的电能和电池组输出的电能共同带动电动机来驱动汽车行驶,电力驱动式其唯一的驱动模式,因而控制技术比较简单。 3.串联传动形式的驱动模式决定了电动机的功率应该接近或者等于汽车所需要的最大驱动功率,因此电动机的功率较大,外形和质量也都较大。所以串联布置形式在中小汽车上不容易实现。

混合动力汽车发展现状及趋势

混合动力汽车发展现状及趋势 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题,使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电机组。这样既利用了发动机持续工作时间长,动力性好的优点,又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1国外发展现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款大量生产的混合动力汽车。自第一代Prius 开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到2010年7月31日,累计销量已超过268万辆。目前市场上正热销的两款车型分别为丰田Prius和本田Insight。在2010年4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最

混合动力汽车

作业混合动力汽车的类型特点关键零部件的选型(发动机电机电池)动力匹配原理及能量控制策略 混合动力汽车类型 从能量流到混合动力系统输出轴的流经路线,可将混合动力汽车分为串联式、并联式、混联式和复合联接式四种。 1.串联式(SHEV)驱动系统的典型结构与基本组成部件如下所示,主要由发动机、发电机和电动机组成,原动机一般为高效内燃机。发动机直接驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。电池在发动机输出和电动机需求功率间起到调峰调谷的作用。为了满足汽车在起动、加速时的大功率需求,在串联式结构中还有加超级电容等功率密度较大的蓄能装置,在制动能量回收时也起到快速回收能量的作用。 图表1串联式 2.并联式(PHEV)的布置如下所示,其特点是动力系有两种动力源——发动 机和电动机。当汽车加速、爬坡时,电动机和发动机能够同时向传动系提供动力;一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。并联式HEV 能设置成用发动机在高速公路行驶模式,加速时由电动机提供额外动力。 图表2并联式 3.混联式(SPHEV)如下所示,这种布置形式包含了串联式和并联式的特点, 即功率流既可以象串联式流动,又可象并联式流动。它的动力系统包括发动机、发电机和电动机。根据助力装置不同,它又可分为发动机为主和电机为主两种。在发动机为主形式中,发动机作为主动力源,电机为辅助动力源,日产公司(Nissan)Tino属于这种情况。在电机为主形式中,发动机作为辅助动力源,电机为主动力源,Toyota Prius HEV就属于这种情况。这种结构的优点是控制灵

活方便,缺点是结构相对复杂。 图表3混联式 4.复合联接式(CHEV)的布置形式的混合动力汽车结构相对复杂,主要出现在双轴驱动的HEV中。在这种联结形式中,HEV前轴和后轴之间没有传动轴连接,它们分别由动力部件驱动,从而实现四轮驱动,如图卜5所示,。它的动力系统由一个完整的前述混合动力系统和独立的轮毂电机组成。根据布置位置不同,复合式分为两种。一种是前轴由混动系统驱动,后轴由电机驱动型,丰田公司的Prius THS-C采用的就是这种形式;另一种是前轴由电机驱动,后轴由混动系统驱动,通用公司的Precept HEV采用这种形式。这种四轮驱动的缺点是结构复杂,成本较高;优点是动力性和越野性能好,尤其在制动时,前后轴电机都可同时作为发电机回收制动能量给蓄电池充电。这种双轴驱动系统的特有的特点是轴平衡能力,在混合驱动端车轮滑动时,该端的电机能作为发电机来吸收发动机过剩的输出功率。 图表4复合联结式 混合动力汽车特点 混合动力汽车同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。通过在混合动力汽车上使用电机,使得动力系统可以按照整车的实际运行工况要求灵活调控,而发动机保持在综合性能最佳的区域内工作,从而降低油耗与排放。

国内外混合动力汽车发展概况

一、混合动力汽车概述 1.1混合动力汽车 通常所说的混合动力一般指油电混合动力,即燃料(汽油,柴油)和电能的混合。混合动力汽车(Hybrid Electrical Vehicle, 简称HEV) 是指同时装备两种动力来源——热动力源(由传统的汽油机或者柴油机产生)与电动力源(电池与电动机)的汽车。 1.2混合动力汽车分类 1.2.1 只用电动马达驱动行驶的电动汽车“串联方式”。燃料发动机只作为动力源,汽车只靠电动马达驱动行驶,驱动系统只是电动马达。以发动机为主动力,电动马达 作为辅助动力的“并联方式”。 这种方式主要以发动机驱动行 驶,利用电动马达所具有的再 启动时产生强大动力的特征, 混联式(PSHEV) 在低速时只靠电动马达驱动 行驶,速度提高时发动机和电 动马达相配合驱动的“串联、 并联方式”。启动和低速时是 只靠电动马达驱动行驶,当速

1.2.2按照车辆对电能的依赖程度分类 二、国外混合动力汽车发展现状 2.1日本混合动力汽车市场发展现状

2.1.1日本混合动力汽车市场销量 丰田汽车在1997年推出了混合动力车型,到2012年4月份在日本累计销售170万辆,其中丰田普锐斯系列混动车型销量达137万辆。本田从1999年开始销售混动车型,到2009年1月累计销售25239辆,而本田Insight车型在2010年3月推出之后的一年内销量就突破10万辆 2.1.2日本混合动力政策

2.1.3日本混合动力代表车型介绍 丰田公司第一代普锐斯上市 1997 2001 2009 2012 2020

Toyota Prius α-2012 Toyota Prius c-2011 Honda Insight-2012 Honda Civic-2011 尺寸(长×宽×高)4615×1775×1574mm 4000×1690×1450mm 4376×1695×1425mm 4504×1754×1430mm 混合动力模式全混+行星齿轮全混中混中混-第四代IMA混合动力系统发动机 1.8 L 2ZR-FXE I4 Dual VVT-i 73Kw/5200rpm 1.5L 1NZ-FXE VVT-i I4 54KW 1.3 L LDA series I4 i-VTEC 73kw/5800rpm 1.5-liter i-VTEC 发动机 69kw/6000rpm 电动机60kw 45kw 直流无刷电机,10kw - 电池类型201V镍氢电池- 镍氢蓄电池锂离子电池百公里油耗 5.6L 2.86L 5.6L 5.3L 2.2美国混合动力汽车市场发展现状 2.2.1美国市场混合动力车型销量 美国作为全世界最大的混合动力市场,到2011年5月累计市场销量已突破200万辆。从1999年至2012年5月混合动力轿车及SUV车型总销量达到2,303,825辆,其中丰田普锐斯系列车型销量为1,175,034辆,占51%的市场份额。

并联式式混合动力汽车的全速控制策略

并联式式混合动力汽车的全速控制策略 摘要:并联式混合动力汽车综合了传统汽车和电动汽车的优点,不仅具有低油耗、低排放等优点,而且续驶里程不受限制,是目前最有希望替代传统汽车的方案。因此,对混合动力汽车关键技术的研究具有非常重要的应用价值。利用瞬态优化控制策略,通过对发动机、电动机、电动机在不同功率进行分配组合,来确定混合动力系统最佳工作模式和工作点切换。本文利用混合动力汽车的数学模型,在MATLAB/Simulink环境中建立了前向仿真模型,进行整车控制策略的研究,并对全速范围的运行控制策略进行了验证。 关键词:并联式混合动力汽车 MATLAB/Simulink 全速范围1 引言 并联式混合动力电动汽车主要由发动机、电动/发电机、电池组、能量管理系统等部件组成,与串联式混合动力电动汽车不同的是,发动机和电动/发电机以机械能叠加的方式来驱动汽车,可以组合成不同的功率输出模式。发动机功率和电动/发电机功率约为电动汽车所需最大驱动功率的50%~100%,其能量利用率高。因此,可以采用小功率的发动机与电动/发电机,使得整个动力系统的装配尺寸、质量都较小,造价也更低,行程也可以比串联式混合动力电动汽车的长些,但布置结构相对复杂,实现形式也多样化,其特

点更加接近内燃机汽车。并联式式混合动力驱动系统通常应用在小型混合动力电动汽车上。 因此,并联式驱动系统最适合在城市间道路和高速公路上行驶,工况稳定,发动机经济性和排放性都会有所改善,和混联式混合动力电动汽车相比较而言结构简单,价格也容易被广大消费者接受,因此,在电池技术问题没有得到很好的解决的情况下,它有望在不久的将来成为汽车商业的主流产品。 2 并联式式混合动力汽车的关键技术 混合动力汽车兼具传统燃油汽车和纯电动汽车的优点,是二者的完美结合,这个结合的纽带就是混合动力汽车的整车控制系统,整车控制系统的主要功能是进行整车能量管理和混合动力系统的控制。整车控制系统如同混合动力汽车的大脑,指挥各个系统的协调工作,以达到效率、排放和动力性的最优,同时兼顾行驶的平稳性。整车控制系统根据驾驶员的操作,如加速踏板、制动踏板、变速杆的操作等,判断驾驶员的意图,在满足驾驶需求的前提下,最优的分配电机、发动机、电池等动力部件的功率输出,实现能量的最优管理,使有限的燃油发挥最大的功效。 目前的混合动力汽车都不需要外部充电,因此,与传统汽车一样,混合动力汽车的能量全部来自于发动机的燃料燃烧所释放的热能,电机驱动所需的电能是燃料的热能在车

混合动力汽车发展现状及趋势分析

混合动力汽车发展现状及 趋势分析 (本文为word格式,下载后可任意修改)

摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的地位。本文主要对混合动力汽车发展的必然性,及其我国在发展中存在的一系列问题进行了分析。指出了混合动力汽车的优缺点,并为其在未来的发展中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的发展,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极大的挑战。因此汽车行业不得不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重大的进展。但是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池本身的污染等问题,使得电动汽车的发展进度和产业化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电动机和辅助动力单元组合作为驱动力,辅助动力单元实际上是一台小型燃料发机或动力发电

机组。这样既利用了发动机持续工作时间长,动力性好的优点,又可以发挥电动机无污染、低噪声的好处。在现阶段,混合动力有很好的发展前景。 1.国内外发展现状 1.1国外发展现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款大量生产的混合动力汽车。自第一代Prius开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到2010年7月31日,累计销量已超过268万辆。目前市场上正热销的两款车型分别为丰田Prius 和本田Insight。在2010年4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最优越,本田Insight被认为同级中最省油,本田CR-Z具有运动风格受到人们的关注。日本国内对混合动力汽车产业有长期的发展规划,政府大力扶持产业技术发展,出台一系列税收优惠政策及奖励措施,促进混合动力汽车销售,拉动内需;规划长远发展战略。

混合动力汽车驱动系统的国内外研究现状

混合动力汽车驱动系统的国内外研究现状 姓名:学号:班级: 1.1混合动力汽车提出背景 1.1.1 21世纪汽车工业面临的挑战[1] 内燃机汽车经过120多年的发展和壮大,为人类文明做出了巨大贡献,创造了难以计算的直接或间接经济利益。但是,随着内燃机汽车保有量的急剧增长,人们越来越认识到传统的内燃机汽车对人类环境带来的危害。传统燃油汽车排放所造成的空气质量日益恶化和石油资源的渐趋匮乏,环境保护的迫切性和石油储量日见短缺的压力,迫使人们重新考虑未来汽车的动力问题。 目前,世界上各种汽车的保有量超过7亿辆,每年新生产的各种汽车约5000万辆,按平均每辆汽车的年消耗10~15桶石油制品计算,汽车的石油消耗量每年达到80~100亿桶,约占世界石油产量的一半以上.石油资源的开采每年达到几十亿吨,经过长时期的现代化大规模地开采,石油资源日渐枯竭,按科学家预测,地球上的石油资源如果按目前的消耗水平,石油资源仅仅可以维持60~100年.21世纪以来,石油价格的上涨已对世界经济的发展形成了巨大的威胁,人类将面临更加严峻的石油资源的危机和挑战。 内燃机汽车上产生动力的同时,会产生燃烧废气,包括二氧化碳二氧化碳 (CO 2)、一氧化碳(CO)、氮氧化合物(NO X )、碳氢化合物(HX)等有害气体,对大气环 境造成污染,对人体造成伤害。内燃机汽车的噪声主要是燃烧噪声、进气和排气过程装配能够气体的空气动力性噪声,这些噪声随汽车的行驶,飘逸在其经过的环境中,在大城市中,汽车所产生的噪声会引起人们的神经系统和心血管系统功能的紊乱。目前只是在每台汽车上装置降低噪声的处理系统,以降低噪声,达到国家规定的标准。噪声降低的处理一般会因消耗一部分发动机的能量而降低内燃机的效率。

论文新能源汽车的现状与发展趋势解析

新能源汽车的现状与发展趋势 摘要:在能源危机和环境污染问题的压力下,寻找替代石油的新能源车成了必然的选择。本文对新能源汽车包括混合动力汽车、纯电动汽车、燃料电池汽车等定义、分类及特点进行了总结,综述了各类新能源汽车最新技术进展及其性能,通过分析新能源汽车应用现状,指出纯电动汽车和燃料电池汽车推广应用需解决的问题,对各类新能源汽车的发展前景进行了展望。 关键词:混合动力汽车,纯电动汽车,燃料电池,技术,现状,应用前景。 1 前言 1.1寻求新动力源的背景 随着世界能源危机和环保问题日益突出,汽车工业面临着严峻的挑战。一方面,石油资源短缺,汽车是油耗大户,且目前内燃机的热效率较低,燃料燃烧产生的热能大约只有35%—40%用于实际汽车行驶,节节攀升的汽车保有量加剧了这一矛盾;另一方面,汽车的大量使用加剧了环境污染,城市大气中CO的82%、NOx的48%、HC 加剧了温室效应,汽车的58%和微粒的8%来自汽车尾气,此外,汽车排放的大量CO 2 噪声是环境噪声污染的主要内容之一。我国作为石油进口国和第二大石油消费大国,污染严重,世行认定的20个污染最严重的城市有16个在中国。国内汽车产品水平与国外差距很大,平均油耗高出10%—30%,排放约为15—20倍,汽车工业面临的压力更大。 《新能源汽车生产企业及产品准入管理规则》已于2009年7月1日正式实施,《规则》强调说明:新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。新能源汽车包括混合动力汽车、纯电动汽车(BEV,包括太阳能汽车)、燃料电池电动汽车(FCEV)、氢发动机汽车、其他新能源(如高效储能器、二甲醚)汽车等各类别产品。 1.2 我国发展新能源汽车的重要意义 (1)发展新能源汽车是国民经济可持续发展的需要 我国用于汽车能源的石油资源是有限的,在几十年后必然会出现枯竭,要大量依赖从

混合动力车的混合度优化设计

三、混合动力车的混合度优化设计: 混合动力汽车的主要技术优势之一,就是从根本上解决了传统汽车由于“大马拉小车”而导致的油耗居高不下的问题,而这种技术优势能否得以充分发挥的关键是通过科学合理的选择混合度,实现真正意义上的“车马匹配”。混合度是混合动力汽车的重要设计参数及混合动力汽车特性参数设计的核心内容,其主要任务是合理确定各动力总成如发动机、电动机、电池的功率和容量等特性参数,而所有这些参数设计中,最为重要的是发动机与电动机功率的确定,即混合度的设计。本文提出了在一定的约束条件下混合度的最优确定原则,其主要的约束条件为动力性能与电池电量平衡。因此,与混合度设计相关的研究问题主要为动力系统总功率的设计方法(由动力性约束条件确定)、电池电量平衡策略(由燃油经济性要求确定)及混合度边值条件的研究。 (一)混合度的基本概念 所谓混合度,指的是电系统功率P elec 占总功率P total 的百分比,即: % 100?= P P t o t a l e l e c R (12-1) 对于不同的传动系构型,混合度的定义会略有不同。对于并联式混合动力汽车混合度定义为: %100?+= P P P e m m R (12-2) 对于串联式混合动力汽车,所有动力均由电动机提供,电动机功率也就是动力源总功率需求,它属于电电混合形式,即发动机发电机组输出的电功率和电池输出的电功率混合一起向电动机提供驱动功率,所以混合度定义为电池系统功率与电动机功率的比值: %100?= P P m ess R (12-3) 式中,P e ,P m 为发动机、电动机功率;P ess 为电能存储系统(即电池)功率。 上述动力源功率是指额定功率,它反映动力源的持续最大输出能力。 混合动力按混合度的分类: 从混合度定义可知,混合度越大.说明发动机占的比例越小,越接近纯电动汽车。相 反,混合度越小,相应发动机功率较大,越接近传统汽车。可以认为传统汽车是混合度为0 的混合动力汽车,而纯电动汽车是混合度为l 的混合动力汽车。

混合动力汽车概述

混合动力汽车概述:三种动力总成模式 HEV(Hybrid-ElectrICVehicel)—混合动力装置。混合动力就是指汽车使用汽油驱动和电力驱动两种驱动方式,优点在于车辆启动停止时,只靠发电机带动,不达到一定速度,发动机就不工作,因此,便能使发动机一直保持在最佳工况状态,动力性好,排放量很低,而且电能的来源都是发动机,只需加油即可。 混合动力汽车的关键是混合动力系统,它的性能直接关系到混合动力汽车整车性能。经过十多年的发展,混合动力系统总成已从原来发动机与电机离散结构向发动机电机和变速箱一体化结构发展,即集成化混合动力总成系统。混合动力总成以动力传输路线分类,可分为串联式、并联式和混联式等三种。 串联式动力:串联式动力由发动机、发电机和电动机三部分动力总成组成,它们之间用串联方式组成SHEV动力单元系统,发动机驱动发电机发电,电能通过控制器输送到电池或电动机,由电动机通过变速机构驱动汽车。小负荷时由电池驱动电动机驱动车轮,大负荷时由发动机带动发电机发电驱动电动机。当车辆处于启动、加速、爬坡工况况时,发动机、电动机组和电池组共同向电动机提供电能;当电动车处于低速、滑行、怠速的工况时,则由电池组驱动电动机,当电池组缺电时则由发动机-发电机组向电池组充电。串联式结构适用于城市内频繁起步和低速运行工况,可以将发动机调整在最佳工况点附近稳定运转,通过调整电池和电动机的输出来达到调整车速的目的。使发动机避免了怠速和低速运转的工况,从而提高了发动机的效率,减少了废气排放。但是它的缺点是能量几经转换,机械效率较低。 并联式动力:并联式装置的发动机和电动机共同驱动汽车,发动机与电动机分属两套系统,可以分别独立地向汽车传动系提供扭矩,在不同的路面上既可以共同驱动又可以单独驱动。当汽车加速爬坡时,电动机和发动机能够同时向传动机构提供动力,一旦汽车车速达到巡航速度,汽车将仅仅依靠发动机维持该速度。电动机既可以作电动机又可以作发电机使用,又称为电动-发电机组。由于没有单独的发电机,发动机可以直接通过传动机构驱动车轮,这种装置更接近传统的汽车驱动系统,机械效率损耗与普通汽车差不多,得到比较广泛的应用。 混联式动力:混联式装置包含了串联式和并联式的特点。动力系统包括发动机、发电机和电动机,根据助力装置不同,它又分为发动机为主和电机为主两种。以发动机为主的形式

我国混合动力汽车发展现状和建议

更多电动汽车相关资料论文可联系jijimaoioy@https://www.wendangku.net/doc/1b11225860.html,,与同行共同探讨 动力汽车发展现状和建议 周鹤良 (中国电工技术学会电动车辆专业委员会) 孙立清 (北京理工大学电动车辆工程技术中心、中国电工技术学会电动车辆专业委员会) 魏峰 (中国电工技术学会电动车辆专业委员会) 摘要:近年来,混合动力电动汽车在世界上获得了快速的发展。它不但开始产业化,也在一些国家快速开始商业化。我国的混合动力汽车得到了国家和各级地方政府的高度重视,获得了长足进步。与此同时,丰田与一汽、GM与上汽在混合动力汽车领域的合作,也给我国地混合动力汽车技术和产业地发展提出了前所未有的挑战。国内多家的开发经验值得总结和借鉴。尤其是如何应对国际竞争方面,我们很有必要总结和探讨。中国汽车工业的发展特点,我们在混合动力汽车方面的优势和劣势,我们的最终目标和现阶段的可能目标,发展的速度和质量要求等一系列问题都值得探讨。尤其是我国是一个汽车产品结构复杂的国家,而且随着社会经济的发展,这些也在变化。面对明显的趋势是公路客运和货运的突飞猛进以及家庭轿车的迅速发展,城市公共交通的迫切需求,在混合动力汽车方面该如何应对?本文依据有关资料,对我国混合动力汽车发展的现状加以分析并提出建议供业界参考。 关键词:混合动力汽车;现状;建议 一、背景 自从2001年起我国科技部开始设立“三纵三横”电动汽车专项以来,我国已经按照汽车产品开发规律,在电动汽车关键单元技术、系统集成技术及整车技术上取得了重要进展,建立了国家研发技术标准平台、测试检验平台、政策法规平台以及示范应用平台。到去年底,已经起草完成整车13项新标准、修订5项标准,制定6项关键零部件产品测试规范。在北京、天津、上海、大连已分别建立起包括电动汽车动力蓄电池、驱动电机、燃料电池发动机在内的6个检测基地和试验平台;在北京、武汉、天津、威海等几个城市开展电动汽车商业化试验示范运营,试验运行电动汽车超过60辆。目前,我国电动汽车研发正值热潮,已形成200多家企业、高校和科研院所,2000多名以中青年技术骨干为主组成的稳定研发队伍,申请了超过520项国内外专利。我国在电动汽车领域的核心 1

浅谈混合动力汽车控制策略

浅谈混合动力汽车工作模式和控制策略 王志杰 (福建信息职业技术学院福州,350003) 摘要:依据混合动力电动汽车发展现状,介绍串联式、并联式和混联式的混合动力电动汽车的概况,探讨三种结构方式下的工作模式及其能量流动和几种典型控制策略。 关键词:混合动力汽车;HEV;控制策略; 0 前言 近几十年来,世界各国汽车工业都一直面对能源安全与环境保护两大挑战,为此,各国政府纷纷制定相应的对策,力图开发新一代的清洁节能型汽车。从上世纪90年代开始,全球各大汽公司首先把目光投放到电动汽车研究上,但由于车用蓄电池的能量密度低、质量较大,使得纯电动汽车的续驶里程短且成本较高,很难实现市场化,而混合动力汽车的出现正好解决了这一难题。 混合动力汽车(Hybrid-Electric Vehicel,缩写HEV)是将电动机与辅助动力单元组合在一辆汽车上做驱动力,辅助动力单元实际上是一台小型燃料发动机或动力发电机组。混合动力汽车结合了传统和电动驱动系统的特点,即明显减少汽车排放和降低油耗,又有大的行程。 控制策略是混合动力汽车的核心,它根据驾驶员意图和行驶工况,协调各部件间的能量流动合理进行动力分配,优化车载能源,提高整车经济性,适当降低排放,并在不牺牲整车性能的况下,实现两者之间的折中优化。 本文就混合动力汽车工作模式、能量流动和控制策略作了初步的论述,使人们对混合动力汽车技术有一定了解。 1 混合动力汽车技术 1.1串联式混合动力汽车 串联式混合动力电动汽车由发动机、发电机和电动机三大主要部件总成组成。发动机仅仅用于发电,发电机所发出的电能供给电动机,电动机驱动汽车行驶。发电机发出的部分电能向电池充电,来延长混合动力电动汽车的行驶里程。另外电池还可以单独向电动机提供电能驱动电动汽车,使混合动力电动汽车在零污染状态下行驶。 1.1.1工作模式及其能量流动 1.1.1.1纯蓄电池模式 当混合动力汽车负荷小(空载)时,由电池驱动电动机带动车轮转动,此时的能量流 动如图1所示。 1.1.1.2纯发动机模式 载荷比较大时,则由发动机带动发电机发电驱动电动机带动车轮转动。此时的能量流动如图2所示。 1.1.1.3混合驱动模式 当车处于启动、加速、爬坡的工况时,发动机-发电机和蓄电池共同向电动机提供电能。能量流动图如图3所示。

混合动力汽车发展现状及趋势

混合动力汽车成长现状及趋势 令狐采学 摘要 在能源和环境危机的双重压力之下,汽车行业渐渐从传统地燃油慢慢向新能源汽车转型。其中混合动力汽车在新能源汽车中占有重要的位置。本文主要对混合动力汽车成长的必定性,及其我国在成长中存在的一系列问题进行了阐发。指出了混合动力汽车的优缺点,并为其在未来的成长中提出了展望。 关键词:混合动力汽车,存在问题,研究前景 引言 随着全球经济的成长,汽车保有量逐年增加,汽车尾气对空气的污染也日益加重,这对石油资源和生态环境带来极年夜的挑战。因此汽车行业不克不及不从传统的耗能模式到节能环保的耗能模式进行转型。近年来,以纯电动汽车、混合动力汽车、燃料电池汽车为代表的新能源汽车取得了重年夜的进展。可是由于现阶段作为纯电动汽车和燃料电池汽车的关键部件之一的电池存在能量密度低、寿命较短、价格较高和电池自己的污染等问题,使得电动汽车的成长进度和财产化受到的比较严重的限制。其性价比也无法与传统的内燃机汽车相抗衡。此时混合动力汽车就很好的弥补了电动汽车的缺点。所谓混合动力就是将电念头和帮助动力单位组合作为驱动力,帮助动力单位实际上是一台小型燃料发机或动力发机电组。这样既利用了发念头继续工作时间长,动力性好的优点,又可以阐扬电念头无污染、低噪声的好处。在现阶段,混合动力有很好的成长前景。 1.国内外成长现状 1.1国外成长现状 20世纪90年代以来,世界许多著名汽车生产厂商已将研究的

重点转向了可实施性较强的混合动力电动汽车,目前世界上生产、研发HEV的国家主要有日本、美国和欧洲汽车强国。其中日本的实力最雄厚。 丰田公司1997年8月推出其第一款混合动力汽车Toyota Coaster Hybrid EV minibus,同年12月,推出Toyota Prius(普锐斯)这是世界第一款年夜量生产的混合动力汽车。自第一代Prius 开始销售以来,截止到中Prius标准型每升汽油可行驶35.5公里。到7月31日,累计销量已超出268万辆。目前市场上正热销的两款车型辨别为丰田Prius和本田Insight。在4月份举办的北京车展上,共有8款日系混合动力汽车展出,其中丰田第三代普锐斯性能最优越,本田Insight被认为同级中最省油,本田CRZ具有运动气概受到人们的关注。日本国内对混合动力汽车财产有长期的成长规划,政府年夜力搀扶财产技术成长,出台一系列税收优惠政策及奖励办法,增进混合动力汽车销售,拉动内需;规划长远成长战略。 美国三年夜汽车公司原来只是小批量生产、销售过电动汽车,而混合动力和燃料电池电动汽车还未能实现财产化,日本的混合动力电动汽车在美国市场上占据了主导位置。美国能源部与三年夜汽车公司于1993年签订了混合动力电动汽车开发合同,并于1998年在北美国际汽车展上出了样车。9月通用汽车、戴姆勒·克莱斯勒与宝马集团签署了关于构建全球合作联盟,以共同开发混合动力推进系统的合作。美国混合动力汽车销量达到29.032万辆虽然占美国汽车市场份额只有 2.8%,但从起呈逐年上升趋势预计,美国的混合动力汽车将达到87.2万辆,市场占有率将达到5%。 1.2国内成长现状 目前,我国在新能源汽车的自主立异过程中,坚持了政府支持,以核心技术、关键部件和系统集成为重点的原则,确立了以混合电动汽车、纯电动汽车、燃料电池汽车为“三纵”,以整车控制系统、机电驱动系统、动力蓄电池/燃料电池为“三横”的研发规划,通过产学研紧密合作,我国混合动力汽车的自主立异取得了一定进展。 形成了具有完全自主知识产权的动力系统技术平台,建立了混合动力汽车技术开发体系。混合动力汽车的核心是电池(包含电池管理系统)技术。除此之外,还包含发念头技术、机电控制技术、整车控制技术等,发念头和机电之间动力的转换和衔接也是重点。

混合动力汽车尾气排放实验报告

申南犬曾实验报告

量的变化,并将此能量变化转换成电信号,最后通过浓度指示装置 AD 转换, 数显在显示屏上 在各种气体混在一起的情况下,这种检测方法具有测量值不受影响的特 本试验所采用的排气检测装置 NHA-502型废气分析仪,正是采用了此原 图形数搦 三、仪器设备 试验用车(丰田汉兰达7座SUV 2.7L 排量)、NHA-502型废气分析仪 废气检测设备连接示意图: 2. 嵌入式微型打印机 作用:以一定格式打印出检测结果; 3. 取样管(5m ) 作用:连接前置过滤器与废气分析仪的气样入口; 4. 前置过滤器 作用:对取样气体进行前置过滤; 5.短导管 作用:连接前 置过滤器与取样探头; 6.取样探头作用:取样汽车的排气。 谨盘拉制 I r*ucD 显示 红外气休 分折信号 A/D 转换器 A/D 转换器 RS232 通信 4 RS232 网信 1. 仪器主机 作用:控制检测过程、分析气体的成分;

试验废气取样过程: 四、试验过程 将实验仪器安装在汽车上,一切准备就绪后,一个人踩油门,分别是转速停在不同的转速区内,然后观察分析仪中各种数据的变动,最后把所有的数据记下来制成表格。 五、试验结果及数据处理 通过检测设备对汽车尾气中CO HG NQ CO等气体含量随发动机转速 或过量空气系数变化的实时测量值,绘制各气体成分随发动机转速或过量空气系数变化的曲线,分析尾气有害成分的排放规律。 查阅相关参考书籍,得到过量空气系数与空燃比的关系表如下: 过量空气系数与空燃比的关系 入0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

a 8.9 10.4 11.8 13.3 14.8 16.3 17.8 19.2 20.7 依照上表对应关系,实测所得试验数据如下表: 空燃比a 11 13 14.8 16.6 18 20 22 NQ 含量(10-6 ) 90 995 2120 2550 1780 970 440 CO 含量 (%) 7.8 3.9 0.9 0.7 0.6 0.5 0.5 HC 含量(10-6 ) 464 383 485 235 208 241 630 于是,按照上表数据,得到 NQ CO HC 含量随空燃比的变化曲线: 此外,CO 气体是汽车燃料燃烧必然的产物,根据试验所得数据整理, 汇总如下: 空燃比a 11.8 12.5 13.2 14.0 14.8 15.4 16.2 16.9 17.6 18.3 20詁产牛宣化暫曲城 戟 ? ? H

混合动力车的混合度优化设计

三、混合动力车的混合度优化设计 混合动力汽车设计主要指整车特性参数设计.它是在系统构型与总成类型选择的基础上,对总成参数进行合理匹配设计与优化的一系列过程,其主要任务是合理确定各动力总成如发动机、电动机、电池的功率和容量等特性参数,而所有这些参数设计中,最为重要的是发动机与电动机功率的确定,即混合度的设计,因为在确定了发动机功率后,其他特性参数如发动机最高转速、最大转矩和机械传动系参数等都可以按传统汽车的设计方法来进行研究和确定,电池参数可依据电动机参数来进行选择,因此混合动力汽车特性参数设计的核心问题是两动力源之间功率的合理匹配,即混合度的设计。 (一)混合度的基本概念 所谓混合度,指的是电系统功率P elec 占总功率P total 的百分比,即: % 100?= total elec P P H (12-1) 对于不同的传动系构型,混合度的定义会略有不同。对于并联式混合动力汽车混合度定义为: %100?+= e m m P P P H (12-2) 对于串联式混合动力汽车,所有动力均由电动机提供,电动机功率也就是动力源总功率需求,它属于电电混合形式,即发动机发电机组输出的电功率和电池输出的电功率混合一起向电动机提供驱动功率,所以混合度定义为电池系统功率与电动机功率的比值: % 100?= m ess P P H (12-3) 式中,P e ,P m 为发动机、电动机功率;P ess 为电能存储系统(即电池)功率。 上述动力源功率是指额定功率,它反映动力源的持续最大输出能力。 从混合度定义可知,混合度越大.说明发动机占的比例越小,越接近纯电动汽车。相 反,混合度越小,相应发动机功率较大,越接近传统汽车。可以认为传统汽车是混合度为0 的混合动力汽车,而纯电动汽车是混合度为l 的混合动力汽车。 如图12-28所示.不同的混合度代表不同类型的汽车,从传统型到助力型、双模式、续驶里程延伸型.最后到纯电动,混合度是逐渐增大的。从混合动力汽车类型与混合度关系可 以看出,对于双模式型,即电功率与发动机功率基本相同,混合度约为50%。这种类型汽车的主要特点为:既可以充当传统汽车在郊外行驶,也可充当纯电动汽车以零排放模式行驶相当长距离。因此,这种系统的发动机、电动机与电池选择都较大.系统复杂,成本较高。续驶里程延伸型HEV 是在普通电动车辆上增加一附加的车载能源(或原动机)并及时为蓄电池补充充电(或承担部分车辆行驶功率),减小蓄 电池的能量消耗,延长电动车辆的续行里程,其电池组容量通常较大,使整车质量与成本增加,另外,其电机功率通常大于发动机功率.即混合度大于50%。而助力型HEV .发动机

【完整版】2020-2025年中国混合动力汽车HEV行业经营发展战略及规划制定与实施研究报告

(二零一二年十二月) 2020-2025年中国混合动力汽车HEV行业经营发展战略制定与实施研究报告 可落地执行的实战解决方案 让每个人都能成为 战略专家 管理专家 行业专家 ……

报告目录 第一章企业经营发展战略概述 (8) 第一节企业经营发展战略的重要性及意义 (8) 一、是决定企业经营活动成败的关键性因素 (8) 二、是实现企业快速、健康、持续发展的需要 (8) 三、是企业实现自己的理性目标的前提条件 (9) 四、是企业长久地高效发展的重要基础 (9) 五、是企业充满活力的有效保证 (9) 六、是企业及其所有企业员工的行动纲领 (10) 七、是企业扩展市场、高效持续发展的有效途径 (10) 八、是执行层行动的指南 (10) 第二节制定实施企业经营发展战略的作用 (10) 一、有助于企业准确判断外在危机和机遇 (11) 二、有助于明确企业核心竞争力 (11) 三、有利于提升企业的持久竞争力 (11) 四、有助于企业找准市场定位 (11) 五、有助于企业内部控制、管理与执行 (12) 六、有助于优化资源,有利于实现资源价值最大化 (12) 七、有助于增强企业的凝聚力和向心力 (12) 八、有助于优化整合企业人力资源,提高企业效率 (12) 九、有助于建立品牌形象,明确目标市场 (13) 十、有助于激励员工积极主动地完成目标 (13) 第三节企业经营发展战略的特性 (13) 一、全局性 (13) 二、纲领性 (13) 三、长远性 (14) 四、导向性 (14) 五、保证性 (14) 六、超前性 (14) 七、竞争性 (14) 八、稳定性 (15) 九、风险性 (15) 第二章市场调研:2018-2019年中国混合动力汽车HEV行业市场深度调研 (16) 第一节混合动力汽车HEV市场概况 (16) 第三节2018-2019年全球混合动力汽车HEV行业发展情况分析 (19) 一、全球HEV市场销量及区域分布 (19) 二、全球主要市场HEV渗透率 (20) 三、全球HEV市场格局 (21) 第三节2018-2019年全球主要国家混合动力汽车HEV行业发展情况分析 (23) 一、美国市场:HEV销量与油价强相关 (23) 二、日本市场:增速已放缓,税收减免对HEV销量有促进作用 (25) 三、欧洲市场 (27)

3种类型混合动力汽车控制策略的分析

万方数据

万方数据

万方数据

万方数据

100福建工程学院学报第6卷 电扭矩和电池系统的充电状态来决定。当制动回收充电力,机械制动系统开始工作,以确矩不能满足要求时保车辆的制动安全性。当车速低于设定值或者电机转速低于设定值时,此时电机充电效率较低,能量回收系统不启动,直接采用机械制动,其基本控制策略如下: a.Mb>帆,若SDC<S0c一,则帆=膨。;若舳c≥sOC一,则电机停止工作肘b=M。。 b.帆>肘。,若SDC<s0C一,则帆=^f。+肘。;若SDC≥SDc一,则电机停止工作肘h=M。。式中,帆为整车需求的制动转距;肘。为机械摩擦制动转距。 3.2.4故障工况 当电机分总成出现故障时,采用纯发动机模式驱动;当发动机出现故障时,采用纯电动模式运行。3.3模型仿真简介 利用美国A呻ne国家实验室为响应美国政府的新—代车辆合作计划而开发的电动汽车仿真软件PsAT,根据需要对肘函数和Si枷1ink模块进行修改,可建立自己需要的整车仿真模型[43(图6)。 图6混联式肛V仿真结构模型 矾g.6Simlllink舳mctu弛modelfors盯ial-paraIlelI皿VsysteIm 从仿真性能及结果可以看出,在基础起步阶段混合动力汽车混联式与串联式和混联式相比,由于都由电机驱动,因此性能相近;在高速行驶时,由于串联式只是依靠电机驱动,动力性不如混联式,且油耗方面混联车也优于串联车。同时,串联车发电机的发电功率与驱动电机的驱动功率必须相当,才能保证整车的动力性;混联车可以避免这种情况,可选用更小的发电机与驱动电机,但是在机械与功率控制实现方面要复杂得多,实现多个能源的最优匹配难度更大。 4混合汽车应用前景和需要解决的问题 4.1混合汽车应用前景 串联式动力总成要求选择发动机的功率大,并且对电池要求很高,容量大,增加了电池和汽车的制造成本及重量,电机是唯一的动力源,能量转换效率低,所以比较适合大型公交车。并联式动力总成由发动机和电机2部分组成。因为发动机的变化受到车子工况变化的影响大,所以排放性较差,使用的范围较小,仅限于小型汽车,更适合在高速公路上行驶。混联式发动机功率选择较小,排放性能较好,对电池依赖比较小,基本上不需外来充电系统,发动机工作不受车辆行驶工况的影响,不要求像传统发动机那样具有良好的响应特性及宽广的转速运行范围。另外,可以充分利用串联式和并联式的优点,确保发动机和电动机基本上工作在经济区,大大提高了车辆的经济性。并且动力源传递效率高,使用车型范围广。但结构和控制复杂,从而成本也较高,目前主要应用于轿车。 4.2需要解决的关键技术问题 混合动力汽车要进入实用化,需要具备高比能量和高比功率的能量存储装置,低成本、高效率的功率电子设备和燃料经济性高、排放低的发动机,所面临的关键性技术和需要解决的问题包括以下几个方面: 1)内燃机与电机藕合功率分配比的最优控制。混合动力汽车发动机和电动机要相互配合工作,而根据运行工况控制它们适时启动和关闭,并使发动机始终工作在低油耗区的整个控制过程十分复杂,因此需要用成熟可靠的动力藕合装置以及先进的检测系统和控制策略实现功率的合理分配,以达到低油耗和良好的动力性目标。因此,可发展多种动力耦合装置,有传统的行星齿轮耦合器等,也可尝试集离合、动力合成、变速功能于一体的双离合自动变速动力偶合器等[5。;在控制策略上,可建立更优的模型,比如瞬时优化算法与逻辑门限判断相结合的白适应控制策略阳]。 2)能量存储装置(电池)要具有较高的比功率,以满足汽车加速和爬坡时对大功率的需要。 电池还要具有快速充电能力,以保证制动时能量 万方数据

相关文档
相关文档 最新文档