文档库 最新最全的文档下载
当前位置:文档库 › 零电压开关不对称半桥

零电压开关不对称半桥

零电压开关不对称半桥
零电压开关不对称半桥

0 引言

不对称半桥DC/DC变换器具有软开关工作、器件数量少以及控制简单等优点,因此,在不超过1000W 的中小功率变换电路中得到广泛的应用。但是,在传统的不对称半桥电路拓扑中,只有在变压器漏感和主开关的寄牛电容产生谐振时才能实现零电压开关,因此,为了实现软开关,谐振电感(即变压器漏感)的值必须足够大.而谐振电感与输出整流二极管的寄生电容在换流过程中会发生严重谐振,产生电压冲击,甚至击穿输出二极管,而且大的漏感会导致大的占空比丢失。

为避免输出二极管误工作和损坏,必须限制由变压器漏感和二极管寄生参数谐振产生的过电压。通常,在二极管两端加箝位和吸收电路可以限制该过电压,例如,经常使用的方法是在二极管两端加电阻-电容-二极管吸收电路(RCD电路)来抑止过电压。但该电路最大的缺点是能量几乎全部消耗在电阻上,这将明显降低该变换器的效率。另外,电压的波动会持续以较低的频率出现,而且很难消除。

1 箝位二极管的作用

一个很好的解决方案是在变压器Tr的原边加箝位二极管,如图1所示:加箝位二极管的目的是在不改变变换器工作特性的前提下,消除输出整流管换流时与外部电感谐振吋产生的过电压,通过这两个二极管将变压器Tr原边电压箝位在电容C3和C4的端电压Vc1和Vc2。其过程为:如果开关S1导通占空比为D,则S,的占空比为1-D,当S1导通吋,变压器原边的电压通过二极管Dg1箝位为Vc1,当S2导通时,变压器原边的电压经Dg2箝位为-Vc2,相应地副边的电位也箝位住了,输出整流二极管(Dr1和Dr2)上也不会出现明显的电压冲击。此时,输入电压源和电容通过箝位二极管吸收输出整流管与外部电感谐振产生的能量,而通过箝位二极管的电流很小,而且它们只在输出整流管换流时才起作用,因此,它们对整个变换器的工作过程影响很小。

通过变压器原边的箝位和减小变压器漏感,完全去掉输出整流管端的RCD吸收电路是可能的。但是,变压器的漏感不可能完全消除,只通过原边的箝位有时不能抑制住输出整流二极管端的过电压,还必须在输出整流二极管端并联RCD吸收电路,此时RCD吸收电路只起辅助作用,它的各参数取值也与只使用只CD吸收电路时不同,通常取较小的电容和相对大的电阻为宜。

这种变压器原边带箝位电路的方法只适用于谐振电感电流不连续的工作状态(DCM)。下面具体分析该电路实现零电压开关的过程。

2 工作过程分析

为了简化分析,我们做如下假定:

1)开关管S1和S2看作理想开关分别与寄生电容(C1、C2)、反向二极管(D1、D2)并联,不考虑MOSFET 管反向漏电流;

2)变压器简化为理想变压器廾联激磁电感(Lm)、串联漏感(L1k)的模型;

3)电容C3和C4看作恒定的电压源;

4)输出看作恒定的电流源,其值为Io;

5)考虑二极管D1、D2、Dc1、Dr2的换流效应;

6)其他器件为理想器件,电路进入稳态;

由图1可知,当S1导通时,A点的电压为DE,而一个周期内电感Lm、L1k及Lr上的平均电压为0,因此,电容C2上的电压为DE,而电容C1上的电压为(1-D)E。输出整流二极管Dr1、Dr2的导通时间是不等的,变压器原边的正向电流和反向电流并不相等,电感Lm可以吸收其差值以保证流过电容C3和C4的平均电流为零。

该变换器的一个开关周期叮以分为12个工作阶段,其工作波形如图2所示,其中vGS1和vGS2分别是S1和S2的驱动波形。可以看到前半个周期和后半个周期里工作波形是对称的,工作过程是类似的,所

以,下面只分析半个周期的6个工作阶段,分别如图3所示的6个等效电路。

1)阶段1[t0~t1]在t0时刻S1导通,原边电流流过S1,方向如图3(a)所示,大小为额定负载电流In 与激磁电流iLM的和Io+iLM。A、B之间的电压为(1-D)E,激磁电感Lm吸收能量,电容C3放电。此阶段是功率传送阶段,在t1时刻S1关断时,该过程结束。

2)阶段2[t1~t2] S1关断电流在C1、C2间开始环流,电容C1线性充电,电容C2线性放电,因此,S1为零电压关断。A、B间电压也开始线性下降,在t2时刻VAB电压为零时,该阶段结束。

3)阶段3[t2~t3] VAB电压为零,输出整流二极管短路(Dr1、Dr2换流),输出端吸收激磁电流,电感Lr、L1k和电容C1、C2谐振以实现工作状态的转化。

4)阶段4[t3~t4] 电感Lr、L1k残留的能量通过二极管D2馈还电源,当iLr为零时,S2导通,此阶段结束,S2为零电压开通。

5)阶段5[t4~t5] 在t4时刻S2导通,谐振电流iLr改变方向,Lr、L1k上的电压为DE,iLr反向线性增加为Io+iLM,此阶段结束。

6)阶段6[t5~t6] 在阶段5结束时,输出整流二极管Dt2被关断,变压器原边侧的电压迅速上升。由于电感Lr与箝位及整流二极管寄生电容的谐振,变压器原边侧的电压会高于稳定值DE,此时,二极管Dg2箝位点C的电位,谐振电容通过电感Lr释放能量。

接下去的下半个周期的6个工作阶段和上面所述的类似,不再详述。其波形详见图2。从已经分析的上半个周期的6个工作阶段以及类推的下半个周期的6个工作阶段可以得知:S1、S2都工作在零电压开关状态。每个开关的电压应力为E,通过箝位二极管Dg1、Dg2变压器Tr原边电压UCB被箝位在-DE和

(1-D)E之间,则Tr副边的电压也得到箝位,输出整流二极管Dr1、Dr2上也不会出现明显的电压冲击。

3 输出特性分析

由上面工作过程的分析可知,箝位二极管Dg1和Dg2的引入,并没有明显改变变换器的工作特性。其原因有二:其一是通过该箝位二极管的电流很小,其二是它们只在输出整流二极管换流时才起作用,作用时间很短,因此,引入箝位二极管并没有改变变换器的工作特性。该变换器的直流增益q为

式中:Vo′、Io′分别是输出电压、电流折算到原边的值。

由式(1)可见,该变换器的直流增益是谐振电感Lr上平均电压降△V(=4LrfsIo′)和占空比D的函数。输出特性可由图4表示。

4 实验结果

为了验证以上的分析,制作了一台直流输入300~450V,输出54V/6A的不对称半桥实验样机,它的规格和主要参数为:

输入电压 300~450V;

输出电压 50V;

输出电流 0~6A;

工作频率 100kHz;

主开关S1和S2 IRF840;

箝位二极管Dg1和Dg2 MUR860;

整流二极管Dr1和Dr2 30CP0150;

谐振电感Lr 40μH;

变压器的参数 n=50:20:20,Lm=1.2mH,Ls=162μH。

图5(a)是S1正常工作时的vGS1和vDS1波形,S2正常工作时的vGS2和vDS2波形和图5(a)类似,它们都是在电压为零时开通。图5(b)是S1一个周期内承受的电压和流过的电流的波形图,图5(c)是S2一个周期内承受的电压和流过的电流的波形图。由这两图可见S1和S2所有的换流都发生在电压过零时。S2的暂态过程较多,开通过程也更复杂些,所以图5(c)中有较多振荡。

为了验证该电路拓扑的工作特性,将该实验样机与另一台只在输出整流二极管Dr1和Dr2加RCD吸收电路的实验样机进行了比较。RCD吸收电路的参数选择为:电阻为330kΩ/3W,电容为4.7nF/1kV,二极管采用FRl07。图6(a)是只采用RCD吸收电路时输出整流二极管Dr1两端的电压,图6(b)是采用本文所述箝位电路时输出整流二极管Dr1两端的电压。不难看出,图6(a)中Dr1端的电压尖峰达到了250V以上,而采用箝位电路能明显减少输出整流管上的电压尖峰,有利于防止该整流管被击穿。

图7是该变换器在输入电压为350V时,不同负载下的效率曲线。该电路满载时效率可达94%以上,而变压器原边不采用箝位电路,只在输出二极管加RCD吸收电路,效率最多为93.1%。

5 结语

本文介绍了一种变压器原边带箝位电路的不对称半桥直流变换器,对其主开关的开关过程进行了详细分析,制作了一台实验样机,并对该电路与只带RCD吸收电路的样机进行了比较。该电路的特点如下:

1)主开关S1和S2在满负载范围内能实现软开关;

2)输出整流管的电压过冲明显减少.有利于防止该整流管被击穿,同时可以选择耐压稍低的整流管,扩大了选择范围;

3)该电路比只采用RCD吸收电路的效率要高;

4)箝位二极管管Dg1、Dg2以及谐振电感Lr的引入,并没有改变变换器的工作特性。

由于该电路拓扑相对于只采用RCD吸收电路具有如此大的优势,所以,这种拓扑可以进一步推广到其他直流变换器。

LLC谐振变换器与不对称半桥

LLC谐振变换器与 不对称半桥变换器的对比 1不对称半桥变换器 图中互补控制的功率MOSFET(S1和S2),其中S1的占空比为D,S2的占空比为(1-D);隔直电容Cb,其上电压作为S2开通时的电源;中心抽头变压器Tr,其原边匝数为Np,副边匝数分别为Ns1和Ns2;半桥全波整流二级管D1和D2;输出滤波电感Ld,电容Cf。 不对称半桥(AHB)变换器的稳态工作原理如下。 1)当S1导通S2关断时,变压器原边承受正向电压,副边Ns1工作;二极管D1导通,二极管D2截止; 2)当S2导通S1关断时,隔直电容Cb上的电压加在变压器的原边,副边N s2工作,二极管D1截止。 图2中n1=N p/N s1,n2=N p/N s2,且n1=n2=n。通过对电路的分析,可以得到传统不对称半桥变换器占空比D的计算公式

2.LLC谐振变换器 图3和图4分别给出了LLC谐振变换器的电路图和工作波形。图3中包括两个功率MOSFET (S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在LLC谐振变换器中的谐振元件主要由以上3个谐振元件构成,即谐振电容Cs,电感Ls和激磁电感Lm;半桥全波整流二极管D1和D2,输出电容Cf。 LLC变换器的稳态工作原理如下。 1)〔t1,t2〕当t=t1时,S2关断,谐振电流给S1的寄生电容放电,一直到S1上的电压为零,然后S1的体二级管导通。此阶段D1导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。 2)〔t2,t3〕当t=t2时,S1在零电压的条件下导通,变压器原边承受正向电压;D1继续导通,S2及D2截止。此时Cs和Ls参与谐振,而Lm不参与谐振。 3)〔t3,t4〕当t=t3时,S1仍然导通,而D1与D2处于关断状态,Tr副边与电路脱开,此时Lm,Ls和Cs一起参与谐振。实际电路中因此,在这个阶段可以认为激磁电流和谐振电流都保持不变。 4)〔t4,t5〕当t=t4时,S1关断,谐振电流给S2的寄生电容放电,一直到S2上的电压为零,然后S2的体二级管导通。此阶段D2导通,Lm上的电压被输出电压钳位,因此,只有Ls和Cs参与谐振。 5)〔t5,t6〕当t=t5时,S2在零电压的条件下导通,Tr原边承受反向电压;D2继续导通,而S1和D1截止。此时仅Cs和Ls参与谐振,Lm上的电压被输出电压箝位,而不参与谐振。 6)〔t6,t7〕当t=t6时,S2仍然导通,而D1和D2处于关断状态,Tr副边与电路脱开,

相关开关电源原理及电路图

相关开关电源原理及电路图 2012-06-03 17:39:37 来源:21IC 关键字:开关电源电路图 什么是开关电源?所谓开关电源,故名思议,就是这里有一扇门,一开门电源就通过,一关门电源就停止通过,那么什么是门呢,开关电源里有的采用可控硅,有的采用开关管,这两个元器件性能差不多,都是靠基极、(开关管)控制极(可控硅)上加上脉冲信号来完成导通和截止的,脉冲信号正半周到来,控制极上电压升高,开关管或可控硅就导通,由220V整流、滤波后输出的300V电压就导通,通过开关变压器传到次级,再通过变压比将电压升高或降低,供各个电路工作。振荡脉冲负半周到来,电源调整管的基极、或可控硅的控制极电压低于原来的设置电压,电源调整管截止,300V电源被关断,开关变压器次级没电压,这时各电路所需的工作电压,就靠次级本路整流后的滤波电容放电来维持。待到下一个脉冲的周期正半周信号到来时,重复上一个过程。这个开关变压器就叫高频变压器,因为他的工作频率高于50HZ低频。那么推动开关管或可控硅的脉冲如何获得呢,这就需要有个振荡电路产生,我们知道,晶体三极管有个特性,就是基极对发射极电压是0.65-0.7V是放大状态,0.7V以上就是饱和导通状态,-0.1V- -0.3V就工作在振荡状态,那么其工作点调好后,就靠较深的负反馈来产生负压,使振荡管起振,振荡管的频率由基极上的电容充放电的时间长短来决定,振荡频率高输出脉冲幅度就大,反之就小,这就决定了电源调整管的输出电压的大小。那么变压器次级输出的工作电压如何稳压呢,一般是在开关变压器上,单绕一组线圈,在其上端获得的电压经过整流滤波后,作为基准电压,然后通过光电耦合器,将这个基准电压返回振荡管的基极,来调整震荡频率的高低,如果变压器次级电压升高,本取样线圈输出的电压也升高,通过光电耦合器获得的正反馈电压也升高,这个电压加到振荡管基极上,就使振荡频率降低,起到了稳定次级输出电压的稳定,太细的工作情况就不必细讲了,也没必要了解的那么细的,这样大功率的电压由开关变压器传递,并与后级隔开,返回的取样电压由光耦传递也与后级隔开,所以前级的市电电压,是与后级分离的,这就叫冷板,是安全的,变压器前的电源是独立的,这就叫开关电源。 图开关电源原理图1

移相全桥零电压开关PWM设计实现

题目:移相全桥零电压开关PWM设计实现

移相全桥零电压开关PWM设计实现 摘要 移相全桥电路具有结构简单、易于恒频控制和高频化,通过变压器的漏感和功率开关器件的寄生电容构成谐振电路,使开关器件的应力减小、开关损耗减小等优点,被广泛应用于中大功率场合。近年来随着微处理器技术的发展,各种微控制器和数字信号处理器性能价格比的不断提高,采用数字控制已经成为大中功率开关电源的发展趋势。相对于用实现的模拟控制,数字控制有许多的优点。本文的设计采用TI公司的高速数字信号处理器TMS320F28027系列的DSP作为控制器。该模块通过采样移相全桥零电压DC-DC变换器的输出电压、输入电压及输出电流,通过实时计算得出移相PWM信号,然后经过驱动电路驱动移相全桥零电压DC-DC变换器的四个开关管来达到控制目的。实验表明这种控制策略是可行的,且控制模块可以很好的实现提出的控制策略。 关键词:移相全桥;零电压;DSP

Phase-shifted Full-bridge Zero-voltage Switching PWM Design and Implementation ABSTRACT Phase-shifted full-bridge circuit has the advantages of simple structure, easy to constant frequency control and high-frequency resonant circuit constituted by the leakage inductance of the transformer and the parasitic capacitance of the power switching devices, to reduce the stress of the switching devices, switching loss is reduced,which widely used in high-power occasion. In recent years, with the development of microprocessor technology, a variety of

常见几种开关电源工作原理及电路图

一、开关式稳压电源的基本工作原理 开关式稳压电源接控制方式分为调宽式和调频式两种,在实际的应用中,调宽式使用得较多,在目前开发和使用的开关电源集成电路中,绝大多数也为脉宽调制型。因此下面就主要介绍调宽式开关稳压电源。 调宽式开关稳压电源的基本原理可参见下图。 对于单极性矩形脉冲来说,其直流平均电压Uo取决于矩形脉冲的宽度,脉冲越宽,其直流平均电压值就越高。直流平均电压U。可由公式计算, 即Uo=Um×T1/T 式中Um为矩形脉冲最大电压值;T为矩形脉冲周期;T1为矩形脉冲宽度。 从上式可以看出,当Um 与T 不变时,直流平均电压Uo 将与脉冲宽度T1 成正比。这样,只要我们设法使脉冲宽度随稳压电源输出电压的增高而变窄,就可以达到稳定电压的目的。 二、开关式稳压电源的原理电路 1、基本电路

图二开关电源基本电路框图 开关式稳压电源的基本电路框图如图二所示。 交流电压经整流电路及滤波电路整流滤波后,变成含有一定脉动成份的直流电压,该电压进人高频变换器被转换成所需电压值的方波,最后再将这个方波电压经整流滤波变为所需要的直流电压。 控制电路为一脉冲宽度调制器,它主要由取样器、比较器、振荡器、脉宽调制及基准电压等电路构成。这部分电路目前已集成化,制成了各种开关电源用集成电路。控制电路用来调整高频开关元件的开关时间比例,以达到稳定输出电压的目的。 2.单端反激式开关电源 单端反激式开关电源的典型电路如图三所示。电路中所谓的单端是指高频变换器的磁芯仅工作在磁滞回线的一侧。所谓的反激,是指当开关管VT1 导通时,高频变压器T初级绕组的感应电压为上正下负,整流二极管VD1处于截止状态,在初级绕组中储存能量。当开关管VT1截止时,变压器T初级绕组中存储的能量,通过次级绕组及VD1 整流和电容C滤波后向负载输出。

不对称半桥变换器研究 开题报告解剖

不对称半桥变换器研究 一.课题来源、目的、意义,国内外概况和预测:1955年美国罗耶发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛发明了自激式推挽双变压器,在1964年美国科学家们提出了取消工频变压器的开关电源的设想。直到1969年终于做成了25千赫的开关电源,这一电源的问世,在世界各国引起了强烈反响,从此对开关电源的研究成了国际会议的热门课题。 自20世纪60年代开始得到发展和应用的DC-DC功率变换技术其实是一种硬开关技术。60年代中期,美国已研制成20kHz DC-DC变换器及电力电子开关器件,并应用于通信设备供电。由于这种技术抛弃了50Hz工频变压器,使直流电源的重量、体积大幅度减小,提高了效率,输出高质量的直流电。到70年代初期已被先进国家普遍采用。早期开关电源的控制电路一般以分立元件非标准电路为主,经过十多年的发展,国外在1977年左右开始进入控制电路集成化阶段。控制电路的集成化标志着开关电源的重大进步。80年代初英国采用上述原理,研制了第一套完整的48V 成套电源,即目前所谓的开关电源(SMP-SwitchMode Power)或开关整流器(SMR-Switch Mode Rectifier )o 70年代以来,在硬开关技术发展和应用的同时,国内外电力电子界和电源技术界不断研究开发高频软开关技术。 最先在70年代出现了全谐振型变换器,一般称之为谐振变换

器(Resonantconverters)。它实际上是负载谐振型变换器,按照谐振元件的谐振方式,分为串联谐振变换器(Series resonant converters, SRCs)和并联谐振变换器(Parallel resonantconverters, PRCs)两类。此类变换器一般采用频率调制的方法,且与负载关系很大,对负载变化很敏感,在谐振变换器中,谐振元件一直谐振工作,参与能量变换的全过程。 准谐振变换器(Quasi-resonant converters,QRCs)和多谐振变换器(Multi - resonantconverters, MRCS)出现在80年代中期。这是软开关技术的一次飞跃,这类变换器中的谐振元件只参与能量变换的某一个阶段,而不是全程。它也是采用频率调制的控制方法。 80年代末出现了零开关PWM变换器(Zero switching PWM converters)。它可以分为零电压开关PWM变换器(Zero-voltage-switching PWM converters)和零电流开关PWM 近年来,随着个人电子计算机(笔记本电脑)、通信设备、微型电器设备的发展,以及空间技术实际应用的需求,要求DC/DC变换器具有更小的体积、重量和高功率密度,这就要求DC/DC变换器工作在更高的频率上,例如几MHz或几十MHz。然而,在硬开关工作下,随着频率的提高,开关管的开关损耗会成正比的上升,使电路的效率大大降低,处理功率的能力大幅度下降,严重时,在开通和关断瞬间产生的电流尖峰和电压尖峰可能使开关器件的状态运行轨迹超出安全工作区,影响开关的可靠性,而且也会产生很强的电磁千扰。增加缓冲电路可以减小功率器件的开关损耗,但缓冲电路的实质是将功率器件所减少的能量转移到缓冲电路中,在强缓冲时,开关电路的总损耗反而增加。无损缓冲电路的发展减少了这一突出矛盾,但要增加较多的额外元件,增加电路

开关电源电路详解图

开关电源电路详解图 一、开关电源的电路组成 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路 1、AC 输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1 组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3 会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。

2、DC 输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4 为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖

基于移相全桥软开关技术的应用

基于移相全桥软开关技术的应用1.引言 随着科技的发展,电力电子设备不断更新,电源称为了现代工业、国防和科学研究中不可缺少的电气设备。为了触发、驱动开关变换器的功率开关管,研制适应越来越高性能要求的开关电源,近年来出现了PWM(脉宽调制)型变换器。PWM技术应用广泛,构成的变换器结构简单,它对常用的线性调节电源提出挑战,在减小体积的同时获取更大的功率密度和更高的系统效率[1,2]。为了拓展开关电源的应用场合,电源工作频率逐渐提高,高频化成为其重要发展方向,同时也是减小开关电源尺寸的最有效手段。然而高频PWM 变换器在传统硬开关方式工作下,功率管损耗较为严重,系统效率不高,随着开关频率的逐步提高,损耗相继增大[3,4]。为此,必须采取措施以提高高频开关变换器的效率,人们研究了软开关技术,除了减小开关损耗外,软开关技术应用还大大降低了开关噪声、减小了电磁干扰。 2.软开关技术概况及发展 目前广泛应用的DC-DC PWM功率变换技术是一种硬开关技术。所谓“硬开关”是指功率开关管的开通或者关断是在器件上的电压或者电流不等于零的状态下进行的,即强迫器件在其电压不为零时开通,或电流不为零时关断。 调高开关频率是开关变换技术的重要的发展方向之一。其原因是高频化可以使开关变换器的体积、重量大为减小,从而提高变换器的功率密度。为了使开关电源能够在高频下高效率的运行,高频软开关技术不断的发展,所谓“软开关”指的零电压开关(Zero Voltage Switching, ZVS)或零电流开关(Zero

Current Switching, ZCS)[5]。它是应用谐振原理,使开关变换器的开关器件中电流(或电压)按正弦或准正弦规律变化,当电流自然过零时,使器件关断;或者电压为零时,使器件开通,实现开关损耗为零。 再加入一些说明 3.移相全桥DC-DC技术 传统的全桥(full-bridge简称FB)PWM变换器适用于输出低电压、大功率的情况,以及电源电压和负载变流变换大的场合。其特点是开关频率固定,便于控制[6,7]。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到更高频率上(1MHz级水平)。为了避免开关工程中的损耗随频率增加而急剧上升,人们在移相控制(phase-shifting-control PSC)技术的基础上,利用功率MOS管的输出电容和输出变压器的漏感作为谐振元件,使FB PWM变换器四个开关管依次在零电压下导通,实现横频率软开关,称为PSC FB ZVS-PWM(简称FB ZVS-PWM)变换器[8]。由于减少了开关过程中的损耗,可以保证变换器效率达到80%-90%,并且不会发生开关应力过大的问题。现在FB ZVS-PWM开关变换器已经广泛应用于通信和电源等系统中。 再加入一段话 4.DC-DC变换器的设计 本文应用移相全桥的拓扑结构如所示: 图 1主电路拓扑结构 本文采用变换器在变压器原边串联一个阻断电容,在变压器原边电压等于零时,不仅仅依靠导通管的管压降,而主要是阻断电容上的压降使变压器原边

开关电源各模块原理实图讲解

开关电源原理 一、开关电源的电路组成: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值 降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及 杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。 当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪 涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是 负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5 容量变小,输出的交流纹波将增大。

时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增 大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路: 1、MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导 体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图: 3、工作原理: R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS管并接,使开关管电压应力减少,EMI减少,不发生二次击穿。在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。当R5上的电压达到1V时,UC3842停止工作,开关管Q1立即关断。 R1和Q1中的结电容C GS、C GD一起组成RC网络,电容的充放电直接影响着开关管的开关速度。R1过小,易引起振荡,电磁干扰也会很大;R1过大,会降低开关管的开关速度。Z1通常将MOS管的GS电压限制在18V以下,从而保护了MOS管。 Q1的栅极受控电压为锯形波,当其占空比越大时,Q1导通时间越长,变压器所储存的能量

开关电源原理图精讲.pdf

开关电源原理(希望能帮到同行的你更加深入的了解开关电源,温故而知新吗!!) 一、开关电源的电路组成[/b]:: 开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWM控制器电路、输出整流滤波电路组成。辅助电路有输入过欠压保护电路、输出过欠压保护电路、输出过流保护电路、输出短路保护电路等。 开关电源的电路组成方框图如下: 二、输入电路的原理及常见电路[/b]:: 1、AC输入整流滤波电路原理: ①防雷电路:当有雷击,产生高压经电网导入电源时,由MOV1、MOV2、MOV3:F1、F2、F3、FDG1组成的电路进行保护。当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。 ②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防

止浪涌电流。因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。 ③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。若C5容量变小,输出的交流纹波将增大。 2、 DC输入滤波电路原理: ①输入滤波电路:C1、L1、C2组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。C3、C4为安规电容,L2、L3为差模电感。 ② R1、R2、R3、Z1、C6、Q1、Z2、R4、R5、Q2、RT1、C7组成抗浪涌电路。在起机的瞬间,由于C6的存在Q2不导通,电流经RT1构成回路。当C6上的电压充至Z1的稳压值时Q2导通。如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。 三、功率变换电路[/b]:: 1、 MOS管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET(MOS管),是利用半导体表面的电声效应进行工作的。也称为表面场效应器件。由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。 2、常见的原理图:

基于混合ZVS的不对称半桥变换器研究

电气传动2019年第49卷第1期摘要:分析了传统不对称半桥变换器利用变压器原边串联谐振电感或变压器励磁电感能量实现零电压软开关的缺点,研究一种将谐振电感与励磁电感结合用于不同负载条件下的混合式软开关方式。分析该方式在轻载、半载和重载3种负载条件下的软开关过程,推导实现软开关的条件,探讨了谐振电感和励磁电感在不同负载条件下的作用机理。通过仿真和实验进行了验证,结果表明:该混合ZVS 仅需要励磁电感值和较小的谐振电感就可实现宽负载范围内的软开关,软开关特性好、效率高。 关键词:不对称半桥;零电压开通;谐振电感;励磁电感 中图分类号:TM315文献标识码:A DOI :10.19457/j.1001-2095.dqcd18121 Research on Asymmerical Half Bridge Converter Based on Hybrid ZVS Method CHEN Guitao ,ZHOU Jianwu ,SUN Xiangdong ,YAO Zhihong (Faculty of Automation and Information Engineering ,Xi ′an Universityof Technology ,Xi ′an 710048, Shaanxi ,China ) Abstract:The shortcoming of traditional asymmetric half bridge converter with transformer primary side series resonant inductor or transformer magnetizing inductance energy that achieve zero voltage soft switch was analyzed ,one hybrid soft switching mode used resonant inductor and magnetizing inductance in under different load was researched.The soft switching process in light load and heavy load and half load conditions was analyzed ,soft switching mechanism was investigated with resonant inductance and magnetizing inductance in different load.The results of simulation and experiment verify that the hybrid ZVS only needs magnetizing inductance and smaller resonant inductance to realize soft switching in wide load range ,the soft switching characteristic is good and the efficiency is high. Key words:asymmetrical half bridge (AHB );zero voltage switching (ZVS );resonant inductance ;magnetizing inductance ELECTRIC DRIVE 2019Vol.49No.1 基于混合ZVS 的不对称半桥变换器研究 陈桂涛,周建武,孙向东,姚志鸿 (西安理工大学自动化与信息工程学院,陕西西安710048) 基金项目:国家自然科学基金项目(51577155) 作者简介:陈桂涛(1981-),男,博士,讲师,Email:34896087@https://www.wendangku.net/doc/1f11227083.html, 不对称半桥(AHB )变换器因其控制简单,结 构简洁,开关管电压应力低,可以通过开关管两 端结电容与变压器漏感谐振实现零电压开通 (ZVS )[1],具有较高的效率,被广泛应用于模块电 源[2]、变换器前级功率因数校正(PFC )[3]等场合。但是传统AHB 变换器ZVS 实现范围较窄,轻 载运行效率低[4]。其应用到负载大范围变化的电 池充电储能场合时,该问题会明显制约变换器效 率的提升。图1为简化的储能电池充电曲线。快 速充电阶段时,电池电流接受能力很高,电池电压 提升较快,此时变换器工作在重载条件下;随着充 电过程的进行,电池可接受电流变小,变换器负载 逐渐减轻;当进入涓流充电阶段时,充电电流变得 极小,变换器工作在轻载甚至空载条件下[5]。而传统AHB 变换器轻载运行时会失去ZVS 条件,由软开通转变为硬开通,高频工作时会带来较大的开关损耗,限制了AHB 变换器的进一步应用。 根据实现ZVS 的能量来源可将AHB 变换器的软开关方式分为2类[6]:负载电流ZVS (load- 图1简化的电池充电曲线Fig.1Simplified battery charging curves 28 万方数据

不对称半桥变压器偏磁问题分析和解决方法

不对称半桥变压器偏磁问题分析和解决方法 引言 不对称半桥具有结构简单,控制方便和无需辅助器件就可以实现软开关等优点,所以在中小功率的应用场合很有优势。但是这种不对称的控制方法却导致变换器 中的隔离变压器励磁电流具有直流分量。这就要求变压器必须有足够能力承受 直流偏磁,通常对于铁氧体磁芯要开一定的气隙以防止饱和。但是变压器开气隙,会令变压器的励磁电感减小,从而增加励磁电流和损耗。 本文详细分析了不对称半桥变压器直流偏磁的产生机理,并且探讨了两种解决 偏磁问题的方法。 1 不对称半桥结构分析 传统的半桥采用两路相位相差180°,脉冲宽度相同的驱动信号分别驱动 上下两个开关管。不对称半桥并没有改变传统半桥的主电路结构,而是采用两路 互补的驱动信号分别驱动开关管。当一个开关的占空比为D ,则另外一个开关管占空比为1 - D(忽略死区时间) 。这样利用变压器的漏感或者串联谐振电感可以实现两个开关管的零电压开通。图1 为不对称半桥的主电路结构。Lr 为谐振电感, Lm 为变压器原边励磁电感,Lf 为输出滤波电感, T 为理想变压器。 在电流连续模式下,输入输出电压关系为: 这里n = ns / np 为次级绕组和初级绕组的比值,如果次级采用平衡绕组,则两个次级绕组和初级绕组的比值为n1 = n2 = n。从式(1)中可知,当占空比D = 0. 5 的时候, Uo 最大。所以通常把D 限制在0. 5 或者0. 5。 2 变压器直流偏磁机理分析 对于对称半桥,在稳态工作条件下,变压器是双向对称磁化的。也就是,励磁电 流没有直流分量。所以,对称半桥的变压器无需开气隙。但是,不对称控制下的

电脑开关电源原理及电路图

2.1、输入整流滤波电路 只要有交流电AC220V输入,ATX开关电源,无论是否开启,其辅助电源就一直在工作,直接为开关电源控制电路提供工作电压。图1中,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。C3和C4为高频辐射吸收电容,防止交流电窜入后级直流电路造成高频辐射干扰。 2.2、高压尖峰吸收电路 D18、R004和C01组成高压尖峰吸收电路。当开关管Q03截止后,T3将产生一个很大的反极性尖峰电压,其峰值幅度超过Q03的C极电压很多倍,此尖峰电压的功率经D18储存于C01中,然后在电阻R004上消耗掉,从而降低了Q03的C极尖峰电压,使Q03免遭损坏。 2.3、辅助电源电路 整流器输出的300V左右直流脉动电压,一路经T3开关变压器的初级①~②绕组送往辅助电源开关管Q03的c极,另一路经启动电阻R002给Q03的b极提供正向偏置电压和启动电流,使Q03开始导通。Ic流经T3初级①~②绕组,使T3③~④反馈绕组产生感应电动势(上正下负),通过正反馈支路C02、D8、R06送往Q03的b极,使Q03迅速饱和导通,Q03上的Ic电流增至最大,即电流变化率为零,此时D7导通,通过电阻R05送出一个比较电压至IC3(光电耦合器Q817)的③脚,同时T3次级绕组产生的感应电动势经D50整流滤波后一路经R01限流后送至IC3的①脚,另一路经R02送至IC4(精密稳压电路TL431),由于Q03饱和导通时次级绕组产生的感应电动势比较平滑、稳定,经IC4的K端输出至IC3的②脚电压变化率几乎为零,使IC3发光二极管流过的电流几乎为零,此时光敏三极管截止,从而导致Q1截止。反馈电流通过R06、R003、Q03的b、e极等效电阻对电容C02充电,随着C02充电电压增加,流经Q03的b极电流逐渐减小,使③~④反馈绕组上的感应电动势

互补的 PWM 控制的不对称半桥 DCDC 变换器

摘要:介绍了一种利用互补的 PWM 控制的不对称半桥 DC/DC 变换器。分析了电路的稳态过程和开关的 ZVS 过程,同时对开关达到 ZVS 的条件进行了分析。实验结果表明了这种电路对提高效率的有效性。为了进一步改进电路,针对电路输出二极管的电压应力的不平衡,提出了一种副边绕组不相等的拓扑,并进行了分析。 1 引言 近年来,软开关技术得到了广泛的发展和应用,提出了不少高效率的电路拓扑,其中不对称半桥是一个比较典型的电路。 不对称半桥是一种适用于中低功率的 DC/DC 零电压开关( ZVS )变换器电路。该电路采用固定死区的互补 PWM 控制方式,不需要外加元件,充分利用电路本身的分布特性,通过变压器漏感和开关寄生电容的谐振,实现零电压开关。这种电路保持了 PWM 开关模式的低开关导通损耗,而且消除了开关的导通损耗,因此,可以得到很高的效率。 2 主电路的工作原理分析 2.1 电路的稳态分析 图 1 不对称半桥主电路图 不对称半桥的主电路如图 1 所示。图 1 中包括两个互补控制的功率 MOSFET ,其中 S1的占空比为 D , S2的占空比为( 1 - D ), D S1和 D S2是开关的体二极管, C S1 和 C S2 分别是开关的结电容。隔直电容 C b ,作为开关 S2开通时的电源。包括漏感 L k ,励磁电感 L m 的中心抽头的变压器,原边匝数为 N p ,副边匝数分别为 N s1 和 N s2 。半桥全波整流二级管 D1和 D2。输出滤波电感 L ,电容 C f 和负载 R L 。 电路的稳态工作原理为: 1 )当 S1导通时,变压器原边承受正向电压,副边 N S1 工作,二极管 D1导通,开关 S2,二极管 D2截止; 2 )当 S2导通时,隔直电容 C b 加在变压器的原边,副边 N S2 工作,开关 S1,二极管 D1截止。 理想的工作波形见图 2 。其中 n 1 =N p/N S1, n 2 =N p/N S2,且 n 1 =n2=n。通过对电路的稳态分析,可以得到以下的一些公式。

基于移相全桥软开关技术的应用

基于移相全桥软开关技术的应用 1.引言 随着科技的发展,电力电子设备不断更新,电源称为了现代工业、国防和科学研究中不可缺少的电气设备。为了触发、驱动开关变换器的功率开关管,研制适应越来越高性能要求的开关电源,近年来出现了PWM(脉宽调制)型变换器。PWM技术应用广泛,构成的变换器结构简单,它对常用的线性调节电源提出挑战,在减小体积的同时获取更大的功率密度和更高的系统效率[1,2]。为了拓展开关电源的应用场合,电源工作频率逐渐提高,高频化成为其重要发展方向,同时也是减小开关电源尺寸的最有效手段。然而高频PWM变换器在传统硬开关方式工作下,功率管损耗较为严重,系统效率不高,随着开关频率的逐步提高,损耗相继增大[3,4]。为此,必须采取措施以提高高频开关变换器的效率,人们研究了软开关技术,除了减小开关损耗外,软开关技术应用还大大降低了开关噪声、减小了电磁干扰。 2.软开关技术概况及发展 目前广泛应用的DC-DC PWM功率变换技术是一种硬开关技术。所谓“硬开关”是指功率开关管的开通或者关断是在器件上的电压或者电流不等于零的状态下进行的,即强迫器件在其电压不为零时开通,或电流不为零时关断。 调高开关频率是开关变换技术的重要的发展方向之一。其原因是高频化可以使开关变换器的体积、重量大为减小,从而提高变换器的功率密度。为了使开关电源能够在高频下高效率的运行,高频软开关技术不断的发展,所谓“软开关”指的零电压开关(Zero V oltage Switching, ZVS)或零电流开关(Zero Current Switching, ZCS)[5]。它是应用谐振原理,使开关变换器的开关器件中电流(或电压)按正弦或准正弦规律变化,当电流自然过零时,使器件关断;或者电压为零时,使器件开通,实现开关损耗为零。 再加入一些说明 3.移相全桥DC-DC技术 传统的全桥(full-bridge简称FB)PWM变换器适用于输出低电压、大功率的情况,以及电源电压和负载变流变换大的场合。其特点是开关频率固定,便于控制[6,7]。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开关频率提高到更高频率上(1MHz级水平)。为了避免开关工程中的损耗随频率增加而急剧上升,人们在移相控制(phase-shifting-control PSC)技术的基础上,利用功率MOS管的输出电容和输出变压器的漏感作为谐振元件,使FB PWM变换器四个开关管依次在零电压下导通,实现横频率软开关,称为PSC FB ZVS-PWM(简称FB ZVS-PWM)变换器[8]。由于减少了开关过程中的损耗,可以保证变换器效率达到80%-90%,并且不会发生开关应力过大的问题。现在FB ZVS-PWM开关变换器已经广泛应用于通信和电源等系统中。 再加入一段话 4.DC-DC变换器的设计 本文应用移相全桥的拓扑结构如图1所示:

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻

谐振与不对称半桥的对比

LLC谐振变换器与不对称半桥变换器的对比 引言 随着开关电源的发展,软开关技术得到了广泛的发展和应用,已研究出了不少高效率的电路拓扑,主要为谐振型的软开关拓扑和PWM型的软开关拓扑。近几年来,随着半导体器件制造技术的发展,开关管的导通电阻,寄生电容和反向恢复时间越来越小了,这为谐振变换器的发展提供了又一次机遇。对于谐振变换器来说,如果设计得当,能实现软开关变换,从而使得开关电源具有较高的效率。 1两种变换器的工作原理 1.1不对称半桥变换器 图1和图2分别给出了传统的不对称半桥变换器的电路图和工作波形。图1中包括两个互补控制的功率MOSFET(S1和S2),其中S1的占空比为D,S2的占空比为(1-D);隔直电容Cb,其上电压作为S2开通时的电源;中心抽头变压器Tr,其原边匝数为Np,副边匝数分别为Ns1和Ns2;半桥全波整流二级管D1和D2;输出滤波电感Ld,电容Cf。

不对称半桥(AHB)变换器的稳态工作原理如下。 1)当S1导通S2关断时,变压器原边承受正向电压,副边Ns1工作;二极管D1导通,二极管D2截止; 2)当S2导通S1关断时,隔直电容Cb上的电压加在变压器的原边,副边Ns2工作,二极管D1截止。 图2中n1=Np/Ns1,n2=Np/Ns2,且n1=n2=n。通过对电路的分析,可以得到传统不对称半桥变换器占空比D的计算公式 1.2LLC谐振变换器 图3和图4分别给出了LLC谐振变换器的电路图和工作波形。图3中包括两个功率MOSFET(S1和S2),其占空比都为0.5;谐振电容Cs,副边匝数相等的中心抽头变压器Tr,Tr的漏感Ls,激磁电感Lm,Lm在某个时间段也是一个谐振电感,因此,在

计算机开关电源原理图电路分析

计算机开关电源原理图电路分析

计算机开关电源原理图电路分析 第一章 基本构成方框图及原理分析 一、基本方框图 +5VSB PG PS/ON ±5V/±12V/3.3V 二、原理分析 1.工作原理 交流电220V 进入输入滤波电路,衰减电网电源线进入的外来噪声,再进入 浪涌电流抑制电路,抑制开机瞬间的浪涌电流,进入桥式滤波电路,把交流220V 整流滤波成直流300V 电压。一路进入开关电路,另一路进入辅助电源电路,经 过辅助电源电路内部变换,输出两组电压,一组为+5VSB 电压,另一组为TL494 ⑿脚提供工作电压(约18V )。 TL494有了工作电压,就开始振荡工作,经内部整形,在其⒁脚就有+5V 基准电压,⑧脚⑾脚输出脉冲矩形波,经驱动电路放大,驱动变压器耦合,送 到开关电路开关管的基极,控制开关管轮流导通和截止,于是在开关变压器次 级就有脉冲方波输出,经次级侧整流滤波,输出直流电压±5V ,±12V ,+3.3V 。 输入 滤波 电路 浪涌电流抑制电路 桥式(倍 压)整流 电路 滤波 电路 开关 电路 开关 变压器 整流滤波 电路 辅助电源 开关电路 整流 滤波 电路 整流 滤波 电路 驱动 变压 器 驱动 放大 电路 TL494 LM339 过流 保护 检测 电路 稳压 检测 电路 过压保护 检测 电路 1 114 81 325 61

2.稳压原理 当输出电压(+5V,+12V,+3.3V)因某种原因升高或降低时,经稳压检测电路(取样电阻)检测,到TL494①脚的电压也相应升高或降低,经TL494内部取样放大器比较,从而使TL494内部末级输出晶体管输出的调制脉冲宽度变窄或变宽,经驱动电路加到两开关管的基极驱动脉冲的宽度也相应变窄或变宽,这样从开关管经高频变压器耦合到次级绕组的脉冲调制电压的脉冲宽度也将变窄或变宽,经整流滤波后的直流电压必然下降或升高,从而使输出电压保持稳定。 3.过流保护原理 当输出电压某一组负载过大或短路时,开关变压器绕组电流也增大,从而使推动变压器上感应的电流也增大,经耦合,推动变压器初级电流也相应增加,此电压经整流、取样,使TL494⒃脚和LM339⑤脚的电压升高,导致TL494输出的调制脉冲宽度为0,从而达到过流保护的目的。 4.过压保护原理 当输出电压超过规定值时,稳压管将被击穿而导通,LM339⑤脚电压将会升高,LM339②脚输出电压也会升高,从而使TL494④脚电压也会升高,结果使TL494⑧脚⑾脚输出的调制脉冲宽度为0,开关管处于截止状态,从而达到过压保护的目的。 第二章基本单元电路原理分析 一、输入滤波电路 作用:防止输入电源窜入噪声,抑制开关电源产生的噪声反馈到输入电源。 FL1和CX1组成差模抗干扰电路(正态); FL1或CY1、CY2组成共模抗干扰电路(共态); 经LC振荡产生一高频振荡频率吸收电路,当外界高频干扰信号来时,经吸收电路短路到地,输出正常的50HZ低频信号,此电路又称低通滤波器。 二、浪涌电流抑制电路

相关文档
相关文档 最新文档