文档库 最新最全的文档下载
当前位置:文档库 › 数据结构复习重点要点

数据结构复习重点要点

数据结构复习重点要点
数据结构复习重点要点

《数据结构(C语言版)》复习重点

重点在二、三、六、七、九、十章,考试内容两大类:概念,算法

第1章、绪论

1.数据:是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。

2.数据元素:是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。

3.数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。

其4类基本结构:集合、线性结构、树形结构、图状结构或网状结构

4.逻辑结构:是数据元素之间的逻辑关系的描述。

5.物理结构(存储结构):是数据结构在计算机中的表示(又称映像)。

其4种存储结构:顺序存数结构、链式存数结构、索引存数结构、散列存数结构6.算法:是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。

其5个重要特性:有穷性、确定性、可行性、输入、输出

7.时间复杂度:算法中基本操作重复执行的次数是问题规模n的某个函数f(n),算法的时间度量记作,T(n)=O(f(n));他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称做算法的渐进时间复杂度,简称时间复杂度。例如:(a){++x;s=0;}

(b)for(i=1;i<=n;++i){++x;s += x;}

(c)for(j=1;j<=n;++j)

for(k=1;k<=n;++k){++x;s += x;}

含基本操作“x增1”的语句的频度分别为1、n和n2,则这3个程序段的时间复杂度分别为O(1)、O(n)和O(n2),分别称为常量阶、线性阶和平方阶。还可呈现对数阶O(log n)、指数阶O(2的n次方)等。

8.空间复杂度:算法所需存储空间的度量记作,S(n)=O(f(n))。

第2章、线性表

1.线性表:是最常用最简单的一种数据结构,一个线性表是n个数据元素的有限序列。

2. 线性表的顺序存储结构:是用一组地址连续的存储单元依次存储线性表的数据元素。其特点为逻辑关系上相邻的两个元素在物理位置上也相邻,可以随机存取表中任一元素。

存储位置计算:假设线性表的每个元素需占用L个存储单元,并以所占的第一个单元的存储地址作为数据元素的存储位置,线性表的第i个数据元素ai的存储位置为LOC(ai)=LOC(a1)+(i-1)*L式中LOC(a1)是线性表第一个元素a1的存储位置,通常称做线性表的起始位置或基地址。

3. 线性表的链式存储结构:是用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的)。

数据元素ai的存储映像称为结点,包括2个域:存数据的数据域、存后继存储位置的指针域。

1) 线性链表(单链表)特点:每个结点只包含1个指针域。

在单链表的第一个结点之前附设的一个结点,称之为头结点。

假设L是LinkList型变量,则L为单链表的头指针,它指向表中第一个结点;L->next为第一个结点地址,L->next=NULL为空表。

生成结点:p=(LinkList)malloc(sizeof(LNode))

回收结点:free(q)

2) 循环链表特点:表中最后一个结点的指针域指向头结点,整个链表形成一个环。

循环链表的操作与线性链表基本一致,差别仅在于算法中的循环条件不是P或P->next是否为空,而是它们是否等于头指针。

3) 双向链表特点:有2个指针域,其一指向直接后继,另一指向直接前趋。

第3章、栈和队列

1. 栈:是限定仅在表尾进行插入或删除操作的线性表。表尾端称为栈顶,表头端称为栈底,不含有元素的空表称为空栈;栈又称为后进先出的线性表。

2.队列:是一种先进先出的线性表,它只允许在表的一端进行插入,而另一端删除元素。允许插入的一端叫做队尾,允许删除的一端则称为队头。

1)链队列:用链表示的队列。一个队列需要两个分别指示队头和队尾的指针(分别成为头指针和尾指针)才能确定唯一。和单链表一样,也给链队列添加一个头结点,并令头指针指向头结点。

2) 循环队列:与顺序栈类似,除了用一组地址连续的存储单元依次存放从队列头到队列尾的元素之外,尚需附设两个指针front和rear分别指示队列头元素及队列尾元素的位置。初始化建空队列时,令front = rear = 0,每当插入新的队列尾元素时,“尾指针增1”;每当删除队列头元素时,“头指针增1”。

第4章、串

1. 串:是由零个或多个字符组成的有限序列。第5章、数组和广义表

1. 数组特点:与线性表一样,所有数据元素都必须属于同一数据类型。

2. 数组的顺序存储结构:由于数组一般不作插入或删除操作,一旦建立了数组,则结构中的数据元素个数和元素之间的关系就不会发生变动,因此采用顺序存储结构表示数组。

存储位置计算:假设每个数据元素需占用L个存储单元,则二维数组A中任一元素aij的存储位置可由下式确定

以行序为主序的存储结构:LOC(i,j)=LOC(0,0)+(b2*i+j)*L

以列序为主序的存储结构:LOC(i,j)=LOC(0,0)+(b2*j+i)*L

式中LOC(i,j)是aij的存储位置;LOC(0,0)是a00的存储位置,即二维数组A 的起始存储位置,也称基地址或基址;b2在以行序为主序的存储结构时为每行存储元素的个数(列数),在以列序为主序的存储结构时为每列存储元素的个数(行数)。

3. 广义表:是线性表的推广,也有人称其为列表(lists,用复数形式以示与统称的表list的区别)。记作LS=(a1,a2,…an),其中LS是广义表(a1,a2,…an)的名称,n是它的长度。在线性表的定义中,ai(1≤i≤n)只限于是单个元素。而在广义表的定义中,ai可以是单个元素,也可以是广义表,分别称为广义表LS的原子和子表。

例如:

第6章、树和二叉树

1. 二叉树:是一种树型的结构,它的特点是每个结点至多只有两棵子树(即二叉树中不存在度大于2的结点),并且,二叉树的子树有左右之分,其次序不能任意颠倒。

2. 二叉树的性质:

1) 性质1:在二叉树的第i层上至多有2的i减1次方个结点(i≥1)。

2) 性质2:深度为k的二叉树至多有2的k次方减1个结点(k≥1)。

深度为k的二叉树至少有k个结点(k≥1)。

深度为k的完全二叉树至少有2的k次方减2的k减1次方个结点

(k≥1)。

3) 性质3:对任何一棵二叉树T,如果其终端结点数为n0,度为2的结点数为n2,则n0=n2+1。

4) 性质4:具有n个结点的完全二叉树的深度为[log2n]+1。

5) 性质5:如果对一棵有n个结点的完全二叉树(其深度为[log2n]+1)的结点按层序编号(从第1层到第[log2n]+1层,每层从左到右),则对任一结点i(1

≤i ≤n )有:

a) 如果i=1,则结点i 是二叉树的根,无双亲;如果i>1,则其双亲PARENT(i)是结点[i/2]。

b) 如果2i>n ,则结点i 无左孩子(结点i 为叶子结点);否则其左孩子LCHILD(i)是结点2i 。

c) 如果2i+1>n ,则结点i 无右孩子;否则其右孩子RCHILD(i)是结点2i+1。

3. 满二叉树:一颗深度为k 且有2的k 次方减1个结点的二叉树。

4. 完全二叉树:深度为k 的,有n 个结点的二叉树,当且仅当其每一个结点都与深度为k 的满二叉树中编号从1至n 的结点一一对应。

5.遍历二叉树: 1)根据二叉树写遍历结果:

a) 先序遍历(先根遍历):DLR - + a * b - c d / e f

b) 中序遍历(中根遍历):LDR a + b * c-d - e / f c) 后序遍历(后根遍历):LRD

a b c d - * + e f / -

2) 根据遍历结果画二叉树:

一棵二叉树的先序、中序和后序序列分别如下,其中有部分未给出,试求出空格处的结点字符,并画出该二叉树。 先序:__B__EHI__FG__K

中序:D__HEIA__CJG__

后序:__H__EBF__KG__A

解题思路:

a) 由先序或后序确定根结点;如本题后

序最后一个为A ,根结点为A ,所以先序第一个空就为A 。

b) 在中序找出根结点,根结点左侧为左

子树,右侧为右子树;如本题D__HEI 为左子树,__CJG__为右子树。

c) 由先序确定紧跟在根结点后的左子树根;如本题紧跟在A 后的是B ,B 为左子树根,中序根结点的左子树只有一个空,所以为B 。

d) 继续由中序确定左子树根的左右子树,左侧为左子树,右侧为右子树;如本题B 的左子树为D ,右子树为HEI ,所以先序第二个空为D 。

e) 重复c)、d)步骤确定整棵左子树;如本题先序中紧跟在D 后的是E ,E 为B 的右子树,由中序中看出E 左子树为H ,右子树为I ,补充后序填空,前两空分别为D 和I 。

f) 由后序确定右子树根的左子树,再由中序确定右子树根;如本题紧跟在B 后的是F ,F 为右子树根的左子树,已知中序__CJG__为右子树,F 只可能第一个空,

那第二个空为K,补全先序、中序、后序填空并可画出二叉树。

6.森林与二叉树的转换:

1) 树转换成二叉树:连兄弟,留长子,删孩子。

a) 连线,连接所有兄弟结点。

b) 删线,仅保留双亲与长子结点的连线,删除与其他孩子结点之间的连线。

c) 整理,原有的长子结点为左子树,从兄弟转换为孩子的结点为右子树。

d) 注意,由于树根没有兄弟结点,固树转换为二叉树后,二叉树根结点的右子树必为空。

2) 森林转换成二叉树:连树根及兄弟,留长子,删孩子。

a) 连线,连接每棵树的根结点及所有兄弟结点。

b) 删线,仅保留双亲与长子结点的连线,删除与其他孩子结点之间的连线。

c) 整理,第一棵树根结点为二叉树根结点,原有的长子结点为左子树,从兄弟转换为孩子的结点为右子树。

3) 二叉树转换成树:连左孩子的右孩子及其右孩子…,删原树右孩子。

a) 连线,若某结点X存在左孩子XL,则将这个左孩子的右孩子结点XLR、左孩子的右孩子的右孩子结点XLRR、左孩子的右孩子的右孩子的右孩子结点XLRRR…都与X结点连线。

b) 删线,删除原二叉树的所有双亲与右孩子结点的连线。

c) 整理,原二叉树根结点为树根结点。

4) 二叉树转换成森林:连左孩子的右孩子及其右孩子…,删原树右孩子。

a) 连线,若某结点X存在左孩子XL,则将这个左孩子的右孩子结点XLR、左孩子的右孩子的右孩子结点XLRR、左孩子的右孩子的右孩子的右孩子结点XLRRR…都与X结点连线。

b) 删线,删除原二叉树的所有双亲与右孩子结点的连线。

c) 整理,调整为多棵树的森林。

7.赫夫曼树:又称最优树,是一类带权路径长度最短的树。

a) 两个最小数值组成一对,小的在前,大的在后;如上图中2与4最小,2在前,4在后。

b) 将两个最小数值的和算作一个数,再与其他数重复a)步骤;如上图中2与4的和为6,5与6最小,5在前,6在后。

c) 最后计算WPL,它等于每个数值乘以从根结点到这个数值的连线个数的积之和;如上图中WPL=2*3+4*3+5*2+7*1=35。

8.赫夫曼编码:

a) 在赫夫曼树上,左分支代表0,右分支代表1。

b) 由根结点到指定结点的路径(从上到下把0、1连起来),就是该结点的赫夫曼编码;如上图(d)中a为0,b为10,c为110,d为111。

第7章、图

1. 图:多个结点,结点之间的关系可以是任意的,图中任意两个数据元素之间都有可能相关。

2. 无向完全图:有n(n-1)/2条边的无向图。

3. 有向完全图:有n(n-1)条边的有向图。

4. 入度:以顶点V为头的弧的数目称为V的入度。

5.出度:以V为尾的弧的数目称为V的出度。

6. 连通图:在无向图中,任意两个顶点之间都有路径。

7. 连通分量:在无向图中的极大连通子图。

数据结构复习重点要点

《数据结构(C语言版)》复习重点 重点在二、三、六、七、九、十章,考试内容两大类:概念,算法 第1章、绪论 1.数据:是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序处理的符号的总称。 2.数据元素:是数据的基本单位,在计算机程序中通常作为一个整体进行考虑和处理。 3.数据结构:是相互之间存在一种或多种特定关系的数据元素的集合。 其4类基本结构:集合、线性结构、树形结构、图状结构或网状结构 4.逻辑结构:是数据元素之间的逻辑关系的描述。 5.物理结构(存储结构):是数据结构在计算机中的表示(又称映像)。 其4种存储结构:顺序存数结构、链式存数结构、索引存数结构、散列存数结构6.算法:是对特定问题求解步骤的一种描述,它是指令的有限序列,其中每一条指令表示一个或多个操作。 其5个重要特性:有穷性、确定性、可行性、输入、输出 7.时间复杂度:算法中基本操作重复执行的次数是问题规模n的某个函数f(n),算法的时间度量记作,T(n)=O(f(n));他表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称做算法的渐进时间复杂度,简称时间复杂度。例如:(a){++x;s=0;} (b)for(i=1;i<=n;++i){++x;s += x;} (c)for(j=1;j<=n;++j) for(k=1;k<=n;++k){++x;s += x;} 含基本操作“x增1”的语句的频度分别为1、n和n2,则这3个程序段的时间复杂度分别为O(1)、O(n)和O(n2),分别称为常量阶、线性阶和平方阶。还可呈现对数阶O(log n)、指数阶O(2的n次方)等。 8.空间复杂度:算法所需存储空间的度量记作,S(n)=O(f(n))。 第2章、线性表 1.线性表:是最常用最简单的一种数据结构,一个线性表是n个数据元素的有限序列。 2. 线性表的顺序存储结构:是用一组地址连续的存储单元依次存储线性表的数据元素。其特点为逻辑关系上相邻的两个元素在物理位置上也相邻,可以随机存取表中任一元素。 存储位置计算:假设线性表的每个元素需占用L个存储单元,并以所占的第一个单元的存储地址作为数据元素的存储位置,线性表的第i个数据元素ai的存储位置为LOC(ai)=LOC(a1)+(i-1)*L式中LOC(a1)是线性表第一个元素a1的存储位置,通常称做线性表的起始位置或基地址。 3. 线性表的链式存储结构:是用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的)。

数据结构复习要点(整理版).docx

第一章数据结构概述 基本概念与术语 1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。 2. 数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。 (补充:一个数据元素可由若干个数据项组成。数据项是数据的不可分割的最小单位。 ) 3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。(有时候也 叫做属性。) 4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。 数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。 依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种: 1. 集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。 2. 线性结构:结构中的数据元素之间存在“一对一“的关系。若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。 3. 树形结构:结构中的数据元素之间存在“一对多“的关系。若数据为非空集,则除了第一个元素 (根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。 4. 图状结构:结构中的数据元素存在“多对多”的关系。若结构为非空集,折每个数据可有多个(或零个)直接后继。 (2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。逻辑结构可以映射为以下两种存储结构: 1. 顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。 2. 链式存储结构:借助指针表达数据元素之间的逻辑关系。不要求逻辑上相邻的数据元素物理位置上也相邻。 5. 时间复杂度分析:1.常量阶:算法的时间复杂度与问题规模n 无关系T(n)=O(1) 2. 线性阶:算法的时间复杂度与问题规模 n 成线性关系T(n)=O(n) 3. 平方阶和立方阶:一般为循环的嵌套,循环体最后条件为i++ 时间复杂度的大小比较: O(1)< O(log 2 n)< O(n )< O(n log 2 n)< O(n2)< O(n3)< O(2 n )

大学数据结构期末知识点重点总结

第一章概论 1.数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算 2.数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系 可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R) 结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据 关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系 3.数据类型 a.基本数据类型 整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b.复合数据类型 复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型 4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多) 5.四种基本存储映射方法:顺序、链接、索引、散列 6.算法的特性:通用性、有效性、确定性、有穷性 7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化 8.渐进算法分析 a.大Ο分析法:上限,表明最坏情况 b.Ω分析法:下限,表明最好情况 c.Θ分析法:当上限和下限相同时,表明平均情况 第二章线性表 1.线性结构的基本特征 a.集合中必存在唯一的一个“第一元素” b.集合中必存在唯一的一个“最后元素” c.除最后元素之外,均有唯一的后继 d.除第一元素之外,均有唯一的前驱 2.线性结构的基本特点:均匀性、有序性 3.顺序表 a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度 b. 线性表中任意元素的存储位置:Loc(ki) = Loc(k0) + i * L(设每个元素需占用L个存储单元) c. 线性表的优缺点: 优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样 缺点:空间难以扩充 d.检索:ASL=【Ο(1)】 e.插入:插入前检查是否满了,插入时插入处后的表需要复制【Ο(n)】 f.删除:删除前检查是否是空的,删除时直接覆盖就行了【Ο(n)】 4.链表 4.1单链表 a.特点:逻辑顺序与物理顺序有可能不一致;属于顺序存取的存储结构,即存取每个数据元素所花费的时间不相等 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.链表的插入(q->next=p->next; p->next=q;)【Ο(n)】 d.链表的删除(q=p->next; p->next = q->next; delete q;)【Ο(n)】 e.不足:next仅指向后继,不能有效找到前驱 4.2双链表 a.增加前驱指针,弥补单链表的不足 b.带头结点的怎么判定空表:head和tail指向单链表的头结点 c.插入:(q->next = p->next; q->prev = p; p->next = q; q->next->prev = q;) d.删除:(p->prev->next = p->next; p->next->prev = p->prev; p->prev = p->next = NULL; delete p;) 4.3顺序表和链表的比较 4.3.1主要优点 a.顺序表的主要优点 没用使用指针,不用花费附加开销;线性表元素的读访问非常简洁便利 b.链表的主要优点 无需事先了解线性表的长度;允许线性表的长度有很大变化;能够适应经常插入删除内部元素的情况 4.3.2应用场合的选择 a.不宜使用顺序表的场合 经常插入删除时,不宜使用顺序表;线性表的最大长度也是一个重要因素 b.不宜使用链表的场合 当不经常插入删除时,不应选择链表;当指针的存储开销与整个结点内容所占空间相比其比例较大时,应该慎重选择 第三章栈与队列 1.栈 a.栈是一种限定仅在一端进行插入和删除操作的线性表;其特点后进先出;插入:入栈(压栈);删除:出栈(退栈);插入、删除一端被称为栈顶(浮动),另一端称为栈底(固定);实现分为顺序栈和链式栈两种 b.应用: 1)数制转换 while (N) { N%8入栈; N=N/8;} while (栈非空){ 出栈; 输出;} 2)括号匹配检验 不匹配情况:各类括号数量不同;嵌套关系不正确 算法: 逐一处理表达式中的每个字符ch: ch=非括号:不做任何处理 ch=左括号:入栈 ch=右括号:if (栈空) return false else { 出栈,检查匹配情况, if (不匹配) return false } 如果结束后,栈非空,返回false 3)表达式求值 3.1中缀表达式: 计算规则:先括号内,再括号外;同层按照优先级,即先乘*、除/,后加+、减-;相同优先级依据结合律,左结合律即为先左后右 3.2后缀表达式: <表达式> ::= <项><项> + | <项><项>-|<项> <项> ::= <因子><因子> * |<因子><因子>/|<因子> <因子> ::= <常数> ?<常数> ::= <数字>|<数字><常数> <数字> ∷= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 3.3中缀表达式转换为后缀表达式 InfixExp为中缀表达式,PostfixExp为后缀表 达式 初始化操作数栈OP,运算符栈OPND; OPND.push('#'); 读取InfixExp表达式的一项 操作数:直接输出到PostfixExp中; 操作符: 当‘(’:入OPND; 当‘)’:OPND此时若空,则出错;OPND若 非空,栈中元素依次弹出,输入PostfixExpz 中,直到遇到‘(’为止;若为‘(’,弹出即 可 当‘四则运算符’:循环(当栈非空且栈顶不是 ‘(’&& 当前运算符优先级>栈顶运算符优先 级),反复弹出栈顶运算符并输入到 PostfixExp中,再将当前运算符压入栈 3.4后缀表达式求值 初始化操作数栈OP; while (表达式没有处理完) { item = 读取表达式一项; 操作数:入栈OP; 运算符:退出两个操作数, 计算,并将结果入栈} c.递归使用的场合:定义是递归的;数据结构是 递归的;解决问题的方法是递归的 2.队列 a.若线性表的插入操作在一端进行,删除操作 在另一端进行,则称此线性表为队列 b.循环队列判断队满对空: 队空:front==rear;队满: (rear+1)%n==front 第五章二叉树 1.概念 a. 一个结点的子树的个数称为度数 b.二叉树的高度定义为二叉树中层数最大的叶 结点的层数加1 c.二叉树的深度定义为二叉树中层数最大的叶 结点的层数 d.如果一棵二叉树的任何结点,或者是树叶, 或者恰有两棵非空子树,则此二叉树称作满二 叉树 e.如果一颗二叉树最多只有最下面的两层结点 度数可以小于2;最下面一层的结点都集中在 该层最左边的位置上,则称此二叉树为完全二 叉树 f.当二叉树里出现空的子树时,就增加新的、特 殊的结点——空树叶组成扩充二叉树,扩充二 叉树是满二叉树 外部路径长度E:从扩充的二叉树的根到每个 外部结点(新增的空树叶)的路径长度之和 内部路径长度I:扩充的二叉树中从根到每个内 部结点(原来二叉树结点)的路径长度之和 2.性质 a. 二叉树的第i层(根为第0层,i≥0)最多有 2^i个结点 b. 深度为k的二叉树至多有2k+1-1个结点 c. 任何一颗二叉树,度为0的结点比度为2的 结点多一个。n0 = n2 + 1 d. 满二叉树定理:非空满二叉树树叶数等于其 分支结点数加1 e. 满二叉树定理推论:一个非空二叉树的空子 树(指针)数目等于其结点数加1 f. 有n个结点(n>0)的完全二叉树的高度为 ?log2(n+1)?,深度为?log2(n+1)?? g. 对于具有n个结点的完全二叉树,结点按层 次由左到右编号,则有: 1) 如果i = 0为根结点;如果i>0,其父结点 编号是(i-1)/2 2) 当2i+1∈N,则称k是k'的父结点,k'是 的子结点 若有序对∈N,则称k' k″互为兄弟 若有一条由k到达ks的路径,则称k是 的祖先,ks是k的子孙 2.树/森林与二叉树的相互转换 a.树转换成二叉树 加线: 在树中所有兄弟结点之间加一连线 抹线: 对每个结点,除了其最左孩子外, 与其余孩子之间的连线 旋转: 45° b.二叉树转化成树 加线:若p结点是双亲结点的左孩子,则将 的右孩子,右孩子的右孩子, 所有右孩子,都与p的双亲用线连起来 线 调整:将结点按层次排列,形成树结构 c.森林转换成二叉树 将各棵树分别转换成二叉树 将每棵树的根结点用线相连 为轴心,顺时针旋转,构成二叉树型结构 d.二叉树转换成森林 抹线:将二叉树中根结点与其右孩子连线,及 沿右分支搜索到的所有右孩子间连线全部抹 掉,使之变成孤立的二叉树 还原:将孤立的二叉树还原成树 3.周游 a.先根(次序)周游 若树不空,则先访问根结点,然后依次先根周 游各棵子树 b.后根(次序)周游 若树不空,则先依次后根周游各棵子树,然后 访问根结点 c.按层次周游 若树不空,则自上而下自左至右访问树中每个 结点 4.存储结构 “左子/右兄”二叉链表表示法:结点左指针指 向孩子,右结点指向右兄弟,按树结构存储, 无孩子或无右兄弟则置空 5. “UNION/FIND算法”(等价类) 判断两个结点是否在同一个集合中,查找一个 给定结点的根结点的过程称为FIND 归并两个集合,这个归并过程常常被称为 UNION “UNION/FIND”算法用一棵树代表一个集合, 如果两个结点在同一棵树中,则认为它们在同 一个集合中;树中的每个结点(除根结点以外) 有仅且有一个父结点;结点中仅需保存父指针 信息,树本身可以存储为一个以其结点为元素 的数组 6.树的顺序存储结构 a. 带右链的先根次序表示法 在带右链的先根次序表示中,结点按先根次序 顺序存储在一片连续的存储单元中 每个结点除包括结点本身数据外,还附加两个 表示结构的信息字段,结点的形式为: info是结点的数据;rlink是右指针,指向结点 的下一个兄弟;ltag是一个左标记,当结点没 有子结点(即对应二叉树中结点没有左子结点 时),ltag为1,否则为0 b. 带双标记位的先根次序表示法 规定当结点没有下一个兄弟(即对应的二叉树 中结点没有右子结点时)rtag为1,否则为0 c. 带双标记位的层次次序表示法 结点按层次次序顺序存储在一片连续的存储单 元中 第七章图 1.定义 a.假设图中有n个顶点,e条边: 含有e=n(n-1)/2条边的无向图称作完全图 含有e=n(n-1) 条弧的有向图称作有向完全图 若边或弧的个数e < nlogn,则称作稀疏图, 否则称作稠密图 b. 顶点的度(TD)=出度(OD)+入度(ID) 顶点的出度: 以顶点v为弧尾的弧的数目 顶点的入度: 以顶点v为弧头的弧的数目 c.连通图、连通分量 若图G中任意两个顶点之间都有路径相通,则 称此图为连通图 若无向图为非连通图,则图中各个极大连通子 图称作此图的连通分量 d.强连通图、强连通分量 对于有向图,若任意两个顶点之间都存在一条 有向路径,则称此有向图为强连通图 否则,其各个极大强连通子图称作它的强连通 分量 e.生成树、生成森林 假设一个连通图有n个顶点和e条边,其中n-1 条边和n个顶点构成一个极小连通子图,称该 极小连通子图为此连通图的生成树 对非连通图,则将由各个连通分量构成的生成 树集合称做此非连通图的生成森林 2.存储结构 a.相邻矩阵表示法 表示顶点间相邻关系的矩阵 若G是一个具有n个顶点的图,则G的相邻矩 阵是如下定义的n×n矩阵: A[i,j]=1,若(Vi, Vj)(或)是图G的边 A[i,j]=0,若(Vi, Vj)(或)不是图G的边 b.邻接表表示法 为图中每个顶点建立一个单链表,第i个单链表 中的结点表示依附于顶点Vi的边(有向图中指 以Vi为尾的弧)(建立单链表时按结点顺序建 立) 3.周游 a. 深度优先周游: 从图中某个顶点V0出发,访问此顶点,然后依 次从V0的各个未被访问的邻接点出发,深度优 先搜索遍历图中的其余顶点,直至图中所有与 V0有路径相通的顶点都被访问到为止 b. 广度优先周游: 从图中的某个顶点V0出发,并在访问此顶点之 后依次访问V0的所有未被访问过的邻接点,随 后按这些顶点被访问的先后次序依次访问它们 的邻接点,直至图中所有与V0有路径相通的顶 点都被访问到为止,若此时图中尚有顶点未被 访问,则另选图中一个未曾被访问的顶点作起 始点,重复上述过程,直至图中所有顶点都被 访问到为止 4.拓扑排序 拓扑排序的方法是:1)选择一个入度为0的顶 点且输出之 2)从图中删掉此顶点及所有的出边 3)回到第1步继续执行,直至图空或者图不空 但找不到无前驱(入度为0)的顶点为止 5.单源最短路径(Dijkstra算法) 6.每对顶点间的最短路径(Floyd算法) 7.最小生成树 a.Prim算法 b.Kruskal算法 c.两种算法比较:Prim算法适合稠密图, Kruskal算法适合稀疏图 第八章内排序 算法最大时间平均时间 直接插入排 序 Θ(n2) Θ(n2) 冒泡排序Θ(n2) Θ(n2) 直接选择排 序 Θ(n2) Θ(n2) Shell排序Θ(n3/2) Θ(n3/2) 快速排序Θ(n2) Θ(nlog n) 归并排序Θ(nlog n) Θ(nlog n) 堆排序Θ(nlog n) Θ(nlog n) 桶式排序Θ(n+m) Θ(n+m) 基数排序Θ(d·(n+r)) Θ(d·(n+r)) 最小时间S(n) 稳定性 Θ(n) Θ(1) 稳定 Θ(n) Θ(1) 稳定 Θ(n2) Θ(1) 不稳定 Θ(n3/2) Θ(1) 不稳定 Θ(nlog n) Θ(log n) 不稳定 Θ(nlog n) Θ(n) 稳定 Θ(nlog n) Θ(1) 不稳定 Θ(n+m) Θ(n+m) 稳定 Θ(d·(n+r)) Θ(n+r) 稳定 第十章检索 1.平均检索长度(ASL)是待检索记录集合中元 素规模n的函数,其定义为: ASL= Pi为检索第i个元素的概率;Ci为找到第i个元 素所需的比较次数 2.散列 a.除余法 用关键码key除以M(取散列表长度),并取余 数作为散列地址 散列函数为:hash(key) =key mod M b.解决冲突的方法 开散列方法:把发生冲突的关键码存储在散列 表主表之外(在主表外拉出单链表) 闭散列方法:把发生冲突的关键码存储在表中 另一个位置上 c.线性探查 基本思想:如果记录的基位置存储位置被占用, 就在表中下移,直到找到一个空存储位置;依 次探查下述地址单元:d0+1,d0+2,...,m-1, 0,1,...,d0-1;用于简单线性探查的探查 函数是:p(K, i) = i d.散列表的检索 1.假设给定的值为K,根据所设定的散列函数h, 计算出散列地址h(K) 2. 如果表中该地址对应的空间未被占用,则检 索失败,否则将该地址中的值与K比较 3. 若相等则检索成功;否则,按建表时设定的 处理冲突方法查找探查序列的下一个地址,如 此反复下去,直到某个地址空间未被占用(可 以插入),或者关键码比较相等(有重复记录, 不需插入)为止 e.散列表的删除:删除后在删除地点应加上墓 碑(被删除标记) f.散列表的插入:遇到墓碑不停止,知道找到真 正的空位置 第十一章索引技术 1.概念: a.主码:数据库中的每条记录的唯一标识 b.辅码:数据库中可以出现重复值的码 2.B树 a.定义:B树定义:一个m阶B树满足下列条 件: (1) 每个结点至多有m个子结点; (2) 除根和叶外 其它每个结点至少有??个子结点; (3) 根结点至少有两个子结点 例外(空树,or独根) (4) 所有的叶在同一层,可以有??- 1到m-1个 关键码 (5) 有k个子结点的非根结点恰好包含k-1个关 键码 b.查找 在根结点所包含的关键码K1,…,Kj中查找给 定的关键码值(用顺序检索(key少)/二分检索 (key多));找到:则检索成功;否则,确定要查 的关键码值是在某个Ki和Ki+1之间,于是取 pi所指结点继续查找;如果pi指向外部结点, 表示检索失败. c.插入 找到的叶是插入位置,若插入后该叶中关键码 个数

自考02331数据结构重点总结(最终修订)

自考02331数据结构重点总结(最终修订) 第一章概论 1.瑞士计算机科学家沃思提出:算法+数据结构=程序。算法是对数据运算的描述,而数据结构包括逻辑结构和存储结构。由此可见,程序设计的实质是针对实际问题选择一种好的数据结构和设计一个好的算法,而好的算法在很大程度上取决于描述实际问题的数据结构。 2.数据是信息的载体。数据元素是数据的基本单位。一个数据元素可以由若干个数据项组成,数据项是具有独立含义的最小标识单位。数据对象是具有相同性质的数据元素的集合。 3.数据结构指的是数据元素之间的相互关系,即数据的组织形式。 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算 ①数据的逻辑结构是从逻辑关系上描述数据,与数据元素的存储结构无关,是独立于计算机的。 数据的逻辑结构分类:线性结构和非线性结构。 线性表是一个典型的线性结构。栈、队列、串等都是线性结构。数组、广义表、树和图等数据结构都是非线性结构。 ②数据元素及其关系在计算机内的存储方式,称为数据的存储结构(物理结构)。 数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。 ③数据的运算。最常用的检索、插入、删除、更新、排序等。 4.数据的四种基本存储方法:顺序存储、链接存储、索引存储、散列存储 (1)顺序存储:通常借助程序设计语言的数组描述。 (2)链接存储:通常借助于程序语言的指针来描述。 (3)索引存储:索引表由若干索引项组成。关键字是能唯一标识一个元素的一个或多个数据项的组合。 (4)散列存储:该方法的基本思想是:根据元素的关键字直接计算出该元素的存储地址。 5.算法必须满足5个准则:输入,0个或多个数据作为输入;输出,产生一个或多个输出;有穷性,算法执行有限步后结束;确定性,每一条指令的含义都明确;可行性,算法是可行的。 算法与程序的区别:程序必须依赖于计算机程序语言,而一个算法可用自然语言、计算机程序语言、数学语言或约定的符号语言来描述。目前常用的描述算法语言有两类:类Pascal和类C。 6.评价算法的优劣:算法的"正确性"是首先要考虑的。此外,主要考虑如下三点: ①执行算法所耗费的时间,即时间复杂性; ②执行算法所耗费的存储空间,主要是辅助空间,即空间复杂性; ③算法应易于理解、易于编程,易于调试等,即可读性和可操作性。

数据结构期末考试复习总结

《数据结构》期末考试题型及分值 (1)简答题6题*5分=30分简要回答要点 (2)分析题6题*5分=30分给出结果 (3)设计题1题*10分=10分设计思想及结果 (4)编程题1题*10分=10分完整代码 (5)综合题1题*20分=20分抽象数据类型的定义、表示、实现、算法分析{定义=功能(ADT)表示=存储结构体实现=算法(基本操作)算法分析=时间、空间复杂度} 考试概念有:1.数据结构{一、线性表(栈-队-列-串-数组-广义表-逻辑结构-存储结构-运算结构) 二、非线性表(集合-树-图)} 2.抽象数据类型数据对象-数据关系-基本操作 3.算法性质-要求(设计)-效率(度量) 4.实例查找:高效查找算法 排序:高效的排序算法

分析题考试题目参考 (1)1-2-3-4-5-6顺序建BBST (2)6-5-4-3-2-1顺序建BBST

简答题实例 (1)

(2) 数据结构试卷(一) 三、计算题(每题 6 分,共24分) 1. 在如下数组A 中链接存储了一个线性表,表头指针为A [0].next ,试写出该线性表。 A 0 1 2 3 4 5 6 7 data 60 50 78 90 34 40 next 3 5 7 2 0 4 1 线性表为:(78,50,40,60,34,90)??????? ?? ???????01 1 1 1010111011101010111 2. 请画出下图的邻接矩阵和邻接表。 3. 已知一个图的顶点集 V 和边集E 分别为: V={1,2,3,4,5,6,7}; E={(1,2)3,(1,3)5,(1,4)8,(2,5)10,(2,3)6,(3,4)15,

数据结构考试重点必背

:数据结构课程的任务是:讨论数据的各种逻辑结构、在计算机中的存储结构以及各种操作的算法设计。 :数据:是客观描述事物的数字、字符以及所有的能输入到计算机中并能被计算机接收的各种集合的统称。 数据元素:表示一个事物的一组数据称作是一个数据元素,是数据的基本单位。 数据项:是数据元素中有独立含义的、不可分割的最小标识单位。 数据结构概念包含三个方面:数据的逻辑结构、数据的存储结构的数据的操作。 数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合定义在此集合上的若干关系来表示,数据结构可以分为三种:线性结构、树结构和图。 :数据元素及其关系在计算机中的存储表示称为数据的存储结构,也称为物理结构。 数据的存储结构基本形式有两种:顺序存储结构和链式存储结构。 :算法:一个算法是一个有穷规则的集合,其规则确定一个解决某一特定类型问题的操作序列。算法规则需满足以下五个特性: 输入——算法有零个或多个输入数据。 输出——算法有一个或多个输出数据,与输入数据有某种特定关系。 有穷性——算法必须在执行又穷步之后结束。 确定性——算法的每个步骤必须含义明确,无二义性。 可行性——算法的每步操作必须是基本的,它们的原则上都能够精确地进行,用笔和纸做有穷次就可以完成。 有穷性和可行性是算法最重要的两个特征。 :算法与数据结构:算法建立数据结构之上,对数据结构的操作需用算法来描述。 算法设计依赖数据的逻辑结构,算法实现依赖数据结构的存储结构。 :算法的设计应满足五个目标: 正确性:算法应确切的满足应用问题的需求,这是算法设计的基本目标。 健壮性:即使输入数据不合适,算法也能做出适当的处理,不会导致不可控结 高时间效率:算法的执行时间越短,时间效率越高。果。 高空间效率:算法执行时占用的存储空间越少,空间效率越高。 可读性:算法的可读性有利于人们对算法的理解。 :度量算法的时间效率,时间复杂度,(课本39页)。 :递归定义:即用一个概念本身直接或间接地定义它自己。递归定义有两个条件: 至少有一条初始定义是非递归的,如1!=1. 由已知函数值逐步递推计算出未知函数值,如用(n-1)!定义n!。

数据结构期末复习知识点(兼容版)

《数据结构》期末复习 复习要点: 第一章 1.相关基本概念:数据、数据元素(基本单位)、数据项(最小单位)、算法及其特征等; ◎数据:所有能输入到计算机中并被计算机程序处理的符号总称。 ◎数据元素:基本单位。 ◎数据项:最小单位。 ◎算法特征(5点):有穷性;确定性;可行性;输入;输出。 2.逻辑结构、存储结构(物理结构)及其类型; ◎逻辑结构有四种基本类型:集合、线性结构、树形结构和网状结构。 ◎数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。 ◎注:期中考题目 数据结构分为两大类,即为逻辑结构和存储结构。其中逻辑结果又分为线性结构和非线性结构,存储结构一共有四种(顺序、链接、索引、散列)。 3.算法分析:语句频度(执行次数)计算、时间和空间复杂度分析。 表示方法 ◎语句频度:直接写次数。 ◎时间复杂度:O(执行次数),如:O(n)。 ◎空间复杂度:O(所需空间) 第二章 1.顺序表(数组)插入、删除、有序表合并算法及其移动次数计算; 数据元素 表示 L.elem[0] [1] [2] [3] [4] [5] [6] [7] ◎顺序表插入 算法思想:如果要在序号5前插入元素e,需要将序号5~8向后移动一个位置。 ▲移动次数为4次,公式n-i+1

◎顺序表删除 算法思想:如果要删除序号5元素,需要将6~8依次向前移动一位 ▲移动次数为3次,公式n-i ◎有序表合并 LA = (3,5,8,11) LB = (2,6,8,9,11,15,20) 则LC = (2,3,5,6,8,8,9,11,11,15,20) 算法思想(以非递减为例):La和Lb非递减排列,La与Lb中元素逐个比较,较小的先插入Lc中。 ▲注:非递减是指递增排序,但元素有可能相等,与之相对的有非递增排序。 ▲移动次数为(La.length + Lb.length)

2015数据结构复习-C++版-学生

数据结构(C++版)复习要点 考试说明:考试时间为120分钟,总分100分。 考试题型为: 一、单选题:(每小题1分,本大题共10分) 二、填空题:(每空2分,本大题共20分) 三、简答题:(每小题5分,本大题共50分) 四、算法设计题:(每小题10分,本大题共20分) 第一章绪论 本章主要介绍了一些基本概念。对于本章内容的掌握主要以概念为主。 主要知识要点 1、理解数据、数据元素、数据项、数据对象、数据类型、数据结构的概念。 2、掌握如何用二元组来表示一个数据结构。掌握数据的四类基本逻辑结构(集合、线性结构、树型结构、图状或网状结构)。 3、理解顺序存储方法和链式存储方法是怎样存储数据的。 4、时间复杂度和空间复杂度(给程序能写出复杂度),常用操作的时间复杂度。 例题: 1. 设某数据结构的二元组形式表示为A=(D,R),D={01,02,03,04,05,06,07,08,09},R={r},r={<01,02>,<01,03>,<01,04>,<02,05>,<02,06>,<03,07>,<03,08>,<03,09>},则数据结构A是(D )。 A.线性结构B. 树型结构C. 物理结构D. 图型结构 2. 下面程序的时间复杂为(B ) for(i=1,s=0;i<=n;i++){t=1;for(j=1;j<=i;j++) t=t*j;s=s+t;} A. O(n) B. O(n2) C. O(n3) D. O(n4) 3. 数据的物理结构主要包括____顺序___和___链式____两种情况。 4. 下面程序段的时间复杂度是i=s=0; while(s=n 的时候停止,即k =关于n的表达式是根号的, n1/2 第二章线性表 本章主要介绍了线性表的定义、存储方式的描述和基本运算以及实现算法。要求掌握并能灵活应用概念及性质。 主要知识要点 1、掌握线性表定义、逻辑特性、空表、文件、前驱元素、后继元素的概念。 2、掌握顺序存储及顺序表的定义。掌握顺序存储结构的优缺点,插入删除操作算法。 数据元素的存储位置取决于第一个数据元素的存储位置LOC(a i) = LOC(a1) + (i-1)×C 3、掌握线性链表的定义。掌握链式存储结构的优缺点,单链表插入删除操作算法,单链表、双向循环链表的插入与删除操作,头结点的作用,单链表的判空条件。 4、掌握静态链表的概念。 例题

数据结构教学中的重点与难点

第一章数据结构基本概念 1、基本概念:理解什么是数据、数据对象、数据元素、数据结构、数据的逻辑结构与物理结构、逻辑结构与物理结构间的关系。 2、面向对象概念:理解什么是数据类型、抽象数据类型、数据抽象和信息隐蔽原则。了解什么是面向对象。由于目前关于这个问题有许多说法,我们采用了一种最流行的说法,即Coad与Yourdon 给出的定义:面向对象= 对象+ 类+ 继承+ 通信。 要点:* 抽象数据类型的封装性 * 面向对象系统结构的稳定性 * 面向对象方法着眼点在于应用问题所涉及的对象 3、数据结构的抽象层次:理解用对象类表示的各种数据结构 4、算法与算法分析:理解算法的定义、算法的特性、算法的时间代价、算法的空间代价。 要点:* 算法与程序的不同之处需要从算法的特性来解释 * 算法的正确性是最主要的要求 * 算法的可读性是必须考虑的 * 程序的程序步数的计算与算法的事前估计 * 程序的时间代价是指算法的渐进时间复杂性度量 第二章数组 1、作为抽象数据类型的数组:数组的定义、数组的按行顺序存储与按列顺序存储 要点:* 数组元素的存放地址计算 2、顺序表:顺序表的定义、搜索、插入与删除 要点:* 顺序表搜索算法、平均比较次数的计算 * 插入与删除算法、平均移动次数的计算 3、多项式:多项式的定义 4、字符串:字符串的定义及其操作的实现 要点:* 串重载操作的定义与实现 第三章链接表 1、单链表:单链表定义、相应操作的实现、单链表的游标类。 要点:* 单链表的两种定义方式(复合方式与嵌套方式) * 单链表的搜索算法与插入、删除算法 * 单链表的递归与迭代算法 2、循环链表:单链表与循环链表的异同 3、双向链表:双向链表的搜索、插入与删除算法、链表带表头结点的优点 4、多项式的链接表示 第四章栈与队列

数据结构期末复习重点

2011-2012-1数据结构期末复习重点 2011/12/22 注:以第4章-第9章为主,红色表示要求掌握的算法。 Chapter 1 Basic Concepts 1.什么是算法? 2.理解Ω、O、Θ、o的含义。 3.对顺序、条件、单循环、循环嵌套语句进行复杂度分析的一般规则。 4.能够运用大O的复杂度分析的方法,对算法进行复杂度分析,并掌握检验分析结果的方法和测量算法运行时间的方法。 Chapter 3-4 Stacks and Queues, Linked Lists 1.ADT的定义。 2. 单链表表示Lists时的数据结构定义、插入操作和删除操作的实现、时间复杂度分析。 3. List的链表表示中为什么要引入头节点(head node)? 4. 双向循环链表表示Lists时的数据结构定义、插入操作和删除操作的实现、时间复杂度分析 5. 什么叫栈,栈有什么特点? 6. 什么叫队列,队列有什么特点? 7. 循环队列的数据结构定义,循环队列中为什么需要有一个单元空着不用? 8. 循环队列中rear、front 初始值是什么?循环队列判空和判满的条件是什么? 算法: 1. 单链表表示List时的数据结构定义、插入操作和删除操作的实现。 2. 双向循环链表表示List时的数据结构定义、插入操作和删除操作的实现。 3. 循环队列表示队列时的进队列和出队列操作。 Chapter 5 Trees 1.二叉树的基本术语 结点的度、树的深度、双亲结点、孩子结点、兄弟结点、叶子结点、路径、路径长度、结点的深度、结点的高度。 2.树 了解树的树的孩子兄弟表示法和双亲表示法, (1)能将其与二叉树进行互换; (2)对于给定的某树,可以画出其孩子兄弟表示法示意图; (3)对于给定的某树,可以画出其双亲表示法示意图。 3.二叉树: (1)二叉树的5条性质。 (2)二叉树的存储结构 ①数组表示法,对于给定的二叉树,能画出其数组表示示意图,反过来,给定二叉树的数组表示时的存储情况,可以画出该二叉树。 ②二叉链表表示法,对于给定的二叉树,能画出其二叉链表表示示意图 ③线索化二叉树,对于给定的二叉树,能画出其先序、中序和后序线索化二叉树示意图。(3)二叉树的遍历

数据结构考试重点题

问答题: 1.简述逻辑结构与存储结构的关系. 答:数据的逻辑结构反映数据元素之间的逻辑关系(即数据元素之间的关联方式或“邻接关系”),数据的存储结构是数据结构在计算机中的表示,包括数据元素的表示及其关系的表示。 2.在什么情况下使用顺序表比链表好 答:若线性表的总长度基本稳定,且很少进行插入和删除操作,但要以最快的速度存取线性表中的元素。 3. 简述二路归并排序思想. 答:将两个有序表合并为一个有序表。1个元素的表总是有序的,所以对n个元素的待排序列,每个元素可看成1个有序子表。对子表两两合并生成个子表,所得子表除最后一个子表长度可能为1外,其余子表长度均为2。再进行两两合并,直到生成n个元素按关键码有序的表。 4. 在单链表和双向表中,能否从当前结点出发访问到任一结点 答:在单链表中只能由当前结点访问其后的任一结点,因为没有指向其前驱结点的指针。而在双向链表中,既有指向后继结点的指针又有指向前驱结点的指针,故可由当前结点出发访问链表中任一结点。 5.简述线性表,栈和队列的异同 答:栈和队列是操作位置受限的线性表,即对插入和删除的位置加以限制,栈是仅允许在表的一端进行插入和删除的线性表,因而是后进先出表,队列是只允许在表的一端进行插入,另一端进行删除的线性表,因而是先进先出表。 6.已知一组元素(46,25,78,62,18,34,12,40,73),试画出按元素排列顺序输出而生成的二叉排序树 答: 46 2578 18 34 62 12 40 73 7.画出对长度为10的有序表进行二分查找的一棵判断树,并求其等概率时查找成功的平均查找长度 答:判断树 5 28 1 3 6 9 4 7 10 ASL=(1+2+2+3+3+3+3+4+4+4)/10= 8.“数据结构”这一术语有两种含义,一是操作为一门课程的名称,二是作为一个科学的概念,作为科学概念,且目前尚无公认定义,一般认为,讨论数据结构要包括三个方面,一是数据的逻辑结构,二是数据的存储结构,三是对数据进行操作(运算),而数据类型是值的集合和操作的集合,可以看作是已实现了的数据结构,后者是前者的一种简化情况。 9. 简述顺序表和链表存储方式的特点

数据结构(C语言)考试重点必背

第一章:绪论 1.1:数据结构课程的任务是:讨论数据的各种逻辑结构、在计算机中的存储结构以及各种操作的算法设计。 1.2:数据:是客观描述事物的数字、字符以及所有的能输入到计算机中并能被计算机接收的各种集合的统称。 数据元素:表示一个事物的一组数据称作是一个数据元素,是数据的基本单位。 数据项:是数据元素中有独立含义的、不可分割的最小标识单位。 数据结构概念包含三个方面:数据的逻辑结构、数据的存储结构的数据的操作。 1.3数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合定义在此集合上的若干关系来表示,数据结构可以分为三种:线性结构、树结构和图。 1.4:数据元素及其关系在计算机中的存储表示称为数据的存储结构,也称为物理结构。 数据的存储结构基本形式有两种:顺序存储结构和链式存储结构。 2.1:算法:一个算法是一个有穷规则的集合,其规则确定一个解决某一特定类型问题的操作序列。算法规则需满足以下五个特性: 输入——算法有零个或多个输入数据。 输出——算法有一个或多个输出数据,与输入数据有某种特定关系。 有穷性——算法必须在执行又穷步之后结束。 确定性——算法的每个步骤必须含义明确,无二义性。 可行性——算法的每步操作必须是基本的,它们的原则上都能够精确地进行,用笔和 纸做有穷次就可以完成。 有穷性和可行性是算法最重要的两个特征。 2.2:算法与数据结构:算法建立数据结构之上,对数据结构的操作需用算法来描述。 算法设计依赖数据的逻辑结构,算法实现依赖数据结构的存储结构。 2.3:算法的设计应满足五个目标: 正确性:算法应确切的满足应用问题的需求,这是算法设计的基本目标。 健壮性:即使输入数据不合适,算法也能做出适当的处理,不会导致不可控结 高时间效率:算法的执行时间越短,时间效率越高。果。

相关文档
相关文档 最新文档