文档库 最新最全的文档下载
当前位置:文档库 › 模拟信号相位补偿设计

模拟信号相位补偿设计

模拟信号相位补偿设计
模拟信号相位补偿设计

模拟信号相位补偿设计

【摘要】在信号处理的过程中,常常会造成信号的相位偏差,为了解决这一问题,本文提出来相位补偿方案。

【关键词】相位补偿;移相电路

1.引言

在信号处理的过程中,由于存在着种种原因,在信号输出的时候,所得到的信号与预期往往存在着误差。为了处理这种误差,提高系统精度,必须对信号的相位进行补偿。这个过程常常是必不可少的。如何恰当的设计移相电路,使得系统在各种条件下都能得到正确的信号,十分关键。

2.相位偏移的原因

输入信号和输出信号之间存在着相移,有两方面的原因:一是信号采集过程中存在的偏差,一是信号在处理传输的过程造成相移,下面分别讨论。

2.1 信号采集偏差

为了能够让系统正确的读取信号,必须对现实中的各种信号进行转换。在转换的工程中,永远都不是一个理想的过程,存在着各种近似。这之间总是存在着偏差。以图1电容分压原理为例进行分析:

且存在R<

2.2 处理传输过程中产生的相移

A/D转换器转换时间、单片机计算时间和D/A转换时间,都会形成相位延迟,各种处理电路也会造成各种相位偏移。

这些因素综合作用下,输出与输入信号之间形成相位偏移。

3.移相电路

相位补偿的方法主要由两种,一种是通过软件移相,一种是通过硬件电路实现。通过软件移相,可调性高,且不受环境变化的影响。然而在比较精密的场合,需要高速的数据采样,和实时的计算。这样对软件设计的要求比较高,且硬件开销比较大。使用硬件电路实现小范围相位补偿则可以实现较高的精度,十分适合应用在实时性系统中。

交通信号控制理论基础

第六章交通信号控制理论基础 经过调查统计发现,将城市道路相互连接起来构成道路交通网的城市道路平面交叉口,是造成车流中断、事故增多、延误严重的问题所在,是城市交通运输的瓶颈。一般而言,交叉口的通行能力要低于路段的通行能力,因此如何利用交通信号控制保障交叉口的交通安全和充分发挥交叉口的通行效率引起了人们的高度关注。 交通信号控制是指利用交通信号灯,对道路上运行的车辆和行人进行指挥。交通信号控制也可以描述为:以交通信号控制模型为基础,通过合理控制路口信号灯的灯色变化,以达到减少交通拥挤与堵塞、保证城市道路通畅和避免发生交通事故等目的。其中,交通信号控制模型是描述交通性能指标(延误时间、停车次数等)随交通信号控制参数(信号周期、绿信比和信号相位差),交通环境(车道饱和流量等),交通流状况(交通流量、车队离散性等)等因素变化的数学关系式,它是交通信号控制理论的研究对象,也是交通工程学科赖以生存和发展的基础。 本章主要针对建立交通信号控制模型所涉及到的基本概念、基本理论与基本方法,对交通信号控制的理论基础进行较为全面深入的阐述。 6.1交通信号控制的基本概念 城市道路平面交叉口是道路的集结点、交通流的疏散点,是实施交通信号控制的主要场所。根据交叉口的分岔数平面交叉口可以分为三岔交叉口、四岔交叉口与多岔交叉口;根据交叉口的形状平面交叉口可以分为T型交叉口、Y型交叉口、十字型交叉口、X型交叉口、错位交叉口、以及环形交叉口等。 6.1.1交通信号与交通信号灯 交通信号是指在道路上向车辆和行人发出通行或停止的具有法律效力的灯色信息,主要分为指挥灯信号、车道灯信号和人行横道灯信号。交通信号灯则是指由红色、黄色、绿色的灯色按顺序排列组合而成的显示交通信号的装置。世界各国对交通信号灯各种灯色的含义都有明确规定,其规定基本相同。我国对交通信号灯的具体规定简述如下:对于指挥灯信号: 1、绿灯亮时,准许车辆、行人通行,但转弯的车辆不准妨碍直行的车辆和被放行的行人通行; 2、黄灯亮时,不准车辆、行人通行,但已越过停止线的车辆和已进入人行横道的行人,可以继续通行;

交通信号灯课程设计

《电工与电子技术基础》课程设计报告 题目简易交通信号灯控制器 学院(部) 班级 姓名 学号 指导老师(签字)

简易交通信号灯控制器 一.课题名称:简易交通信号灯控制器 技术要求:1.定周控制:主干道绿灯45秒,支干道绿灯25秒; 2.每次由绿灯变为红灯时,应有5秒黄灯亮作为过渡; 3.分别用红、黄、绿色发光二极管表示信号灯。 *4.设计计时显示电路 二.摘要 随着经济的发展和人民生活水平的提高,交通运输业在人们的生活中扮演着越来越重要的角色。而交通信号灯的出现很好地规范了人们的出行秩序,提高了人们的出行效率,大大减少了交通事故的发生。目前的交通信号灯电路大多分为主干道电路和支干道电路,通过适当的控制电路分别对主干道和支干道进行控制,达到合理的亮灭规律,从而很好的规范人们的出行秩序。 本次课程设计当中,我组采用数字电路对交通灯控制系统进行设计,并对提出的三个方案进行论证,最终确定方案进行设计,并使其实现主干道绿灯亮45秒、支干道绿灯亮25秒、并且在由绿灯变为红灯时有5秒时间作为过渡的技术要求,实现简易交通信号灯的功能。 三.总体设计方案论证及选择 针对本次课程设计,我们提出了以下三种方案: 方案一:用多个不同步的信号分别控制各信号灯的开关,即分别用持续45S、5S、25S、5S的倒时计数器来控制各信号灯。 方案二:交通信号灯的状态可以分为四种,且四种状态的周期和为T=t1+t2+t3+t4=45+5+25+5=80S,所以信号灯的每个循环周期为80S,因此,可以利用两个74LS290型十进制计数器组成一个八十进制的计数器控制电路,同时用555定时器产生周期为1S的时钟脉冲,使计数器的周期为80*1S=80S。 电源接通时,计数器清零,此时主干道绿灯和支干道红灯点亮,其余灯关灭;此后,经过组合逻辑电路使得当计数器的45个脉冲(45S)、50个脉冲(50S)、75个脉冲(75S)和80个脉冲(80S)来到时,分别控制信号灯状态改变,达到预计要求。 方案三:选择74LS161 型一位十六进制计数器,其共有十六个状态。用555定时器产生周期为5S的时钟脉冲,所以对应计数器循环周期为16*5S=80S,并对应信号灯的80S工作循环。然后将计数器的四个输出信号用译码器译出六个输出信号,分别控制六个信号灯。 当接通电源后,计数器清零,此时主干道绿灯和支干道红灯置1点亮,其他灯置0关灭;当第9个脉冲(45S)来到时,主干道黄灯和支干道红灯置1点亮,其他灯置0关灭;当第10个脉冲(50S)来到时,主干道红灯和支干道绿灯置1点亮,其他灯置0关灭;当第15个脉冲(75S)来到时,主干道红灯和支干道黄灯置1点亮,其他灯置0关灭;当第16个脉冲(80S)来到时,主干道绿灯和支干道红灯置1点亮,其他灯置0关灭,即交通信号灯的状态进入了下一个循环。

信号时频分析-讲义-WVD

Wigner-Ville 分布 Wigner-Ville 分布可以看作是一大类分布的原型,它们和短时傅立叶变换谱有着本质的 不同。它首先由Wigner 提出,用于量子力学领域问题的研究,后由Ville 引入到信号分析。因为在计算中,信号需要用到两次,因此Wigner-Ville 分布被称为一种二次型分布。 基本定义及计算 Wigner-Ville 分布可由信号x (t )本身或它的频谱)(ωX 定义为如下两种等价方式 ττ+τ-=ωτω -+∞∞-?d )e 21()21(π21)(i t x t x ,t WVD *x , (2.1.1) τθ+ωθ-ω=ωθ+∞∞-?d )e 2 1 ()21(π21)(i t *x X X ,t WVD . (2.1.2) 其中*表示复数共轭。要证明上面两式是等价的,只需将信号写成它的频谱形式,然后将其代入到(2.1.1)式,即可得到(2.1.2)式。式(2.1.1)中,)2/()2/(* ττ+-t x t x 称为信号的瞬时相关函数,因此Wigner-Ville 分布实质上是对信号的瞬时相关函数的傅立叶变换,它的结果能够反映信号的时频特征。 例2.1.1 对于信号 )π400sin()(t t x = )10(≤≤t (2.1.3) 其采样频率为1000 Hz 。图2.1.1是其Wigner-Ville 分布,频率轴划分区间数为512。图中清楚显示,该信号在整个时间段上,只含有一个频率为200Hz 的分量。需要说明的是,图中显示的是Wigner-Ville 分布的绝对值,后面所有图中,如果没有特别注明,都默认显示的是绝对值。 图2.1.1 信号(2.1.3)的Wi gn er-Vi ll e 分布 W i g n e r -V il l e 分布 500 0.2 0.4 0.6 1 0.2 0.4 0.6 0.8

交通信号灯控制详细操作说明

交通信号灯控制详细操作说明一、操作面板示意图: 三、修改多时段程序的步骤:

在基本步骤6中按下“功能1”,根据你的需要重复“修改程序的基本步骤”2-5;设定时钟的应从早上到晚上,共有十个时段可以设定。 四、修改程序中的特定数字: 1、设定左转时间[ 0 2·0 2 ]是转入二相位的特定数字 2、设定直行时间[ 0 3·0 3 ]是转入黄闪的特定数字; 3、设定时钟时间[ 2·3 5 9 ]是退出修改的特定数字; 五、手动: 在正常工作状态下按“功能2”键即进入手动工作状态,按相应键即对干线左转、支线左转、干线直行、支线直行的手动控制,再按“功能2”键返回正常工作状态。 六、恢复出厂设置及24小时连续工作设置: 如遇到不明原因的控制器故障请恢复出厂设置复位,按住“功能2”键再开电源,听毕“啼”音后即恢复出厂设置。 自动1(自动2)设置如下:

详细产品功能及参数 JD-400LED交通信号灯 一.技术参数: 1.外壳防护等级IP44,显示器的光学、色度和安全性能指标均 达到GB14887的要求。 2.亮度:≥350cd,可视距离:≥400M,可视角:≥60°。 3.色度:红色 630nm,黄色590nm,绿色505nm。 4.控制方式:与控制器同步,工作方式:连续。 输入电压:交流220V±10%,消耗功率峰值:<15W。 二. 产品特点: 1.使用寿命长达5万小时,维修工作量小。 2.本产品发光亮度高,是普通灯泡亮度的4倍以上,可视距离在 400以外。 3.节约能源,灯盘使用低压安全电源

DJS-3通用型双色真绿倒计时显示器 一.技术参数: 1、外壳防护等级IP44,外形尺寸:830×630×230mm。 2、显示器的光学、色度和安全性能指标均达到GB14887的要求 3、可视距离:≥400m,视角:>30°,亮度:≥250cd 最大显示数字:99。 4、色度:红色 630nm,绿色505nm。 5、控制方式:定周期自动跟踪,工作方式:连续。 6、输入电压:交流220V±10%,消耗功率峰值:<10W 。 7、适用于两相位、多相位控制,内部自动转换。 一.产品特点: 1、不须更换原有设备可直接接入原信号灯的红灯线及绿灯线即可 工作。 本产品显示亮度高,显示色度绿色为真绿色,非常醒目

交通灯单片机课程设计

1 序言 交通灯的形成 当今,红绿灯安装在各个道口上,已经成为疏导交通车辆最常见和最有效的手段。但这一技术在19世纪就已出现了。1858年,在英国伦敦主要街头安装了以燃煤气为光源的红,蓝两色的机械扳手式信号灯,用以指挥马车通行。这是世界上最早的交通信号灯。1868年,英国机械工程师纳伊特在伦敦威斯敏斯特区的议会大厦前的广场上,安装了世界上最早的煤气红绿灯。它由红绿两色旋转式方形玻璃提灯组成,红色表示“停止”,绿色表示“注意”。1869年1月2日,煤气灯爆炸,使警察受伤,遂被取消。 电气启动的红绿灯出现在美国,这种红绿灯由红绿黄三色圆形的投光器组成,1914年始安装于纽约市5号大街的一座高塔上。红灯亮表示“停止”,绿灯亮表示“通行”。 1918年,又出现了带控制的红绿灯和红外线红绿灯。带控制的红绿灯,一种是把压力探测器安在地下,车辆一接近红灯便变为绿灯;另一种是用扩音器来启动红绿灯,司机遇红灯时按一下嗽叭,就使红灯变为绿灯。红外线红绿灯当行人踏上对压力敏感的路面时,它就能察觉到有人要过马路。红外光束能把信号灯的红灯延长一段时间,推迟汽车放行,以免发生交通事故。 信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。1968年,联合国《道路交通和道路标志信号协定》对各种信号灯的含义作了规定。绿灯是通行信号,面对绿灯的车辆可以直行,左转弯和右转弯,除非另一种标志禁止某一种转向。左右转弯车辆都必须让合法地正在路口内行驶的车辆和过人行横道的行人优先通行。红灯是禁行信号,面对红灯的车辆必须在交叉路口的停车线后停车。黄灯是警告信号,面对黄灯的车辆不能越过停车线,但车辆已十分接近停车线而不能安全停车时可以进入交叉路口。我们设计的单片机控制交通灯就是基于信号灯。 技术指示 设计一个十字路口(方向为东西南北四个方向)的交通灯控制电路,每条道路上各配有一组红、黄、绿交通信号灯,其中红灯亮,表示该道路禁止通行;黄灯亮表示

第二章交通信号控制的基本理论

2交通信号控制的基本理论 本章首先给出了交通信号控制的基本概念,包括:信号相位,周期时长,绿信比,相位差,绿灯间隔时间,有效绿灯时间等,然后介绍了常用的交叉口性能指标以及计算方法,最后给出了常用交叉口的信号配时方法。这些研究为后面的信号配时模型及优化方法的研究奠定了理论基础。 2.1交通控制的基本概念 交叉路口信号配时参数优化,首先必须准确把握和理解交通控制中的一些基本概念。下面对信号配时设计中部分参数作一介绍。 (l)信号相位:在一个信号周期内,具有相同的信号灯色显示的一股或几股交通流的信号状态序列称作一个信号相位。信号相位是按车流获得信号显示的时序来划分的,有多少种不同的时序排列,就有多少个信号相位。每一个控制状态,对应显示一组不同的灯色组合,称为一个相位。简而言之,一个相位也被称作一个控制状态。以四相位为例如图所示: 相位1 相位2 相位3 相位4 图1 四相位信号相序控制示意图 (2)周期时长:信号灯发生变化,信号运行一个循环所需的时间,等于绿、黄、红灯时间之和;也等于全部相位所需的绿灯时间和黄灯时间(一般是固定的)的总和。周期过长时,等待的人容易产生急躁情绪,因此通常以180秒为最高界限。

图1 第一、三配时表 (3)绿信比:是指在一个周期内(对一指定相位),有效绿灯时间与信号周期长度之比。 (4)相位差(又叫绿时差或绿灯起步时距):相位差是针对两个信号交叉口而言,是指两个相邻交叉口它们同一相位绿灯(或红灯)开始时间之差。 它分为绝对相位差和相对相位差。相对相位差是指在各路口的周期时间均相同的联动信号系统中,相邻两个交叉路口协调相位的绿灯起始时间之差。绝对相位差是指在联动信号系统中选定一标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差叫绝对相位差。 (5)绿灯间隔时间:是指从失去通行权的相位的绿灯结束,到下一个得到通行权的相位绿灯开始所用的时间。绿灯间隔时间的长短主要取决于交叉口的几何尺寸,因此,要确定该时间的长度就必须首先考虑停止线和潜在冲突点之间的相关距离,以及车行驶这段距离所需的时间。 (6)有效绿灯时间:是指被有效利用的实际车辆通行时间。它等于绿灯时间与黄灯时间之和减去损失时间。损失时间包括两部分,一是绿灯信号开启时,车辆启动时的时间;还有绿灯关闭、黄灯开启时,只有越过停止线的车辆才能继续通行,所以也有一部分损失时间,即为绿灯时间减去启动时间加上结束滞后时间。结束滞后时间是黄灯时间中有效利用的那部分。每一相位的损失时间为启动延迟时间和结束滞后时间之差。 在实际工作中,损失时间的精确计算是非常困难的,也没有必要。通常取绿灯时间代替有效绿灯时间 2.2交通信号控制类型简述 2.2.1定时控制 (l)定义 依据交通量历史数据进行配时,交通信号按照配时方案运行,一天只按一个配时方案的配时方法。定时控制是单个交叉路口最基本的控制方法。 (2)适用条件及优点

声频信号的时频分析

班级 011304 学号 1301120308 题目声频信号的时频分析 学院通信工程学院 专业通信与信息系统 学生姓名白小慧

摘要 我们生活在一个信息社会里,而信息的载体就是信号。在我们身边以及在我们身上,信号是无处不在的。如我们随时可听到的语音信号,随时可看到的视频图像信号,伴随着我们生命始终的心电信号,脑电信号以及心音、脉搏、血压、呼吸等众多的生理信号。 语言作为人类最重要最自然的交流工具,是人类获得信息的重要来源之一.研究声频信号的特性和工业控制领域的语音识别技术,开发实用的语音识别和控制系统,对于语音识别技术的普及与应用具有十分重要的意义。 本文从声音的产生开始,分析声音的特性进而用傅里叶变换和短时傅里叶变换分析声频信号。 关键词:语音识别,傅里叶变换,短时傅里叶变换

ABSTRACT As the most important and natural tool for human's communication, language is one of the most significant sources for human to get information. The research on the characteristics of the audio signals and the speech recognition technology in the field of industrial control and the development of utility system of speech recognition and control are very significant and necessary for the popularization and application of the speech recognition technology. This paper introduces the generation of sound ,some analyses on the characteristics of speech are given. In addition, the audio signals is analyzed via the Fourier transform and short-time Fourier transform. Keywords :speech recognition,Fourier transform,short-time Fourier transform

随机信号分析大作业

随机信号分析实验报告 信息25班 2120502123 赵梦然

作业题三: 利用Matlab 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),并通过一脉冲响应为 (0.8)(0)0 n n h n else =≥??? 的线性滤波器。 (1) 产生一个具有零均值、单位方差的的高斯白噪声随机序列X(n),检验其一维概率密度函 数是否与理论相符。 (2) 绘出输入输出信号的均值、方差、自相关函数及功率谱密度的图形,讨论输出信号服从 何种分布。 (3) 试产生在[-1,+1]区间均匀分布的白噪声序列,并将其替换高斯白噪声通过上述系统。 画出此时的输出图形,并观察讨论输出信号服从何种分布。 作业要求 (1) 用MATLAB 编写程序。最终报告中附代码及实验结果截图。 (2) 实验报告中必须有对实验结果的分析讨论。 提示: (1) 可直接使用matlab 中已有函数产生高斯白噪声随机序列。可使用hist 函数画出序列的 直方图,并与标准高斯分布的概率密度函数做对比。 (2) 为便于卷积操作,当N 很大时,可近似认为h(N)=0。卷积使用matlab 自带的conv 函 数。 (3) 分析均值、方差等时,均可使用matlab 现有函数。功率谱密度和自相关函数可通过傅 里叶变换相互获得。傅里叶变换使用matlab 自带的fft 函数。 (4) 作图使用plot 函数。

一、作业分析: 本题主要考察的是加性高斯白噪声相关问题,因此构造一个高斯白噪声十分重要,故在本题中使用randn函数随机生成一个个符合高斯分布的数据,并由此构成高斯白噪声;而且由于白噪声是无法完全表示的,故此根据噪声长度远大于信号长度时可视为高斯白噪声,构造了一个长度为2000的高斯白噪声来进行试验。 二、作业解答: (1)matlab程序为: x-1000:1:1000; k=1*randn(1,length(x));% 生成零均值单位方差的高斯白噪声。 [f,xi]=ksdensity(x);%利用ksdensity函数估计样本的概率密度。 subplot(1,2,1); plot(x,k); subplot(1,2,2); plot(xi,f); 实验结果为:

一般交通信号灯技术参数

一般交通信号灯的技术参数 信号机和信号灯技术规格及要求 一、信号机技术指标和功能 1、信号机技术指标 1.1信号机为协调控制式信号机 1.2信号机主电源额定电压:交流(220±20%)V、50Hz±2Hz;功耗:≤40VA(不包括信号灯及外围设备功耗);信号机内部电气装置及部件的布局应合理,使操作人员在安装、使用、维修时安全、方便,所有机架安装设备的布置要做到在拆除时不会影响其它邻近设备。地面安装室外机内部的任何电气部件距机柜底部的距离应不小于200mm。 1.3绝缘耐压:在电源电极或与之相连的其它导电电路和机柜、安装机箱等易触及部件(不包括避雷器)之间施加1500VAC/50Hz 1分钟无击穿,绝缘等级不低于10MΩ(不包含避雷器); 1.4工作环境条件:环境温度﹣20~﹢70℃,相对湿度20~95%,大气压力86~106kpa; 1.5信号机的操作面板或手持式终端应用清晰、符合规范的文字、图形、标志等来表明其功能作用。在参数设置时,操作面板或手持式终端应能显示信号机的工作方式、工作状态、信号控制参数的设置情况,应有提示、引导各种控制参数的输入项目及内容。 1.6开关、按键及指示灯上或其就近处均应用清晰、符合规范的文字、图形等来表明其功能、作用、接通/断开状态。在使用熔断器处应清晰地标出熔断器的额定电流值。 1.7应对输出灯信号接线端子组上的每个端子依据信号类别或信号灯色,用文字或代码、编号进

行标识。代码、编号的详细含义应在用户手册中说明,以便接线。信号交流零线、保护接地及信号公共接地均应用规范的符号或文字标出。对正常使用信号机时操作人员容易触及的超过安全特低电压(交流峰值不超过42.4V、直流电压不超过60V)的带电部件,在其显著位置应设置“触电危险”标志并采取有效防护措施。 1.8信号机应有铭牌。铭牌上应标出制造厂厂名、注册商标或识别标记、产品中文名称、规格型号、种类、制造地、可识别的唯一性编号、制造日期等内容。还应标出电源额定电压范围、额定频率范围等主要电气参数。 1.9 信号机应安装具备过载、短路保护功能的电源总开关;应有独立的、具备过载、短路保护功能的灯具驱动输出回路开关;应提供单独的备用主电源接入端子,备用主电源通过转换开关接入电源总开关;以上开关的额定电压、额定电流应符合AC380V、20A的最低容量要求。 1.10 信号机的电源输入端及灯控信号输出端应安装避雷装置及元件,或采取其它避雷措施。 1.11输出信号的灯控器件应采用光电耦合器、固态继电器或其它器件,使输出的灯控强电信号与内部电路有效隔离。在灯具驱动输出的每一回路中应安装熔断器,在短路时保护灯控器件。 1.12 检验合格证。每台信号机必须要有产品检验合格证,检验合格证应有如下内容:产品名称、型号、种类;制造单位名称;执行的产品标准编号;出厂检验结论、检验日期;检验员签名或检验代号。 1.13 信号机必须经过国家公安部交通安全产品质量监督检测中心检测合格,且在有效期内。 2、基本功能要求 2.1 要同时具有无线、光纤、网络联网功能,中心联网控制方式,网络中心管理平台。 2.2 日期、时钟设置:在0℃~40℃条件下,误差不超过±20s/10d,可任意调校,停电自动走时,可保持十年; 2.3启动时序。当信号机通电开始运行时信号机应先进行自检,然后按如下时序启动:a) 相位应先进入黄闪信号,持续时间至少 10s; b) 黄闪信号结束后应进入全红状态,持续时间至少 5s; c) 启动时序结束后,信号机按预设置的方式运行。

交通信号灯课程设计

交通信号灯控制系统的设计

摘要 摘要:交通信号灯是城市交通有序、安全、快速运行的重要保障,而保障交通信号灯正常工作就成了保障交通有序、安全、快速运行的关键。为此,设计交通灯控制电路,配以七段共阴极数码管显示时间的显示模块,交通灯显示模块,调时模块,实现根据实际车流量通过设置红、绿灯燃亮时间以及双位数码管显示倒计时,三种颜色灯交替点亮以及紧急情况下的中断处理功能。本系统性价比高,实用性强,操作简单,功能全面。 关键词:计数器;交通灯;控制电路 Abstract

Traffic lights in urban traffic in an orderly, safe and an important guarantee for fast running, and the protection of traffic lights to protect the normal work of the traffic has become

orderly, safe, fast running key. To this end, the use of single-chip device designed as the central traffic light control circuit, with a total of cathode seventh time the digital display module, the traffic light display module, transfer module, crystal oscillator circuit, reset circuit and chip set red, green and double-time to kindle a digital countdown display, The turn of the three colors of lights and emergency lighting in case of interruption of processing. The system cost-effective, practical, simple, full-featured. Key words: counter;traffic light;control circuit 目录 摘要--------------------------------------------------------------------1 ABSTRACT------------------------------------------------------------------2 第1章交通信号灯的设计目的以及要求----------------------------------4 第2章设计原理分析----------------------------------------------------6 第3章主控制器--------------------------------------------------------9

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

课程设计交通信号灯汇总

课程设计说明书(2012 /2013 学年第 2 学期) 课程名称: 题目:交通信号灯 专业班级:电气一班 学生姓名: 学号: 指导教师: 设计周数:两周 设计成绩: 2013年7 月3 日 1、课程设计目的 (3)

2、课程设计软件部分 (3) 2.1设计内容及要求 (3) 2.1.1课程设计内容 (3) 2.1.2课程设计要求 (4) 2.2系统分析 (4) 2.3系统设计 (4) 3、课程设计硬件部分 (5) 3.1方案设计 (5) 3.2单元电路设计 (5) 3.2.1秒脉冲发生器 (5) 3.2.2计数电路的设计 (6) 3.2.3控制电路的设计 (7) 3.2.4显示电路的设计 (7) 3.2.5数码管显示的设计 (8) 3.2.6设计总原理图 (9) 3.3系统调试 (10) 4、课程设计总结 (10) 5、参考文献 (11) 1、课程设计目的

在城镇街道的十字交叉路口,为了保证交通秩序和行人安全,一般在每条道路上各有一组红、黄、绿交通信号灯,其中红灯亮,表示该条道路禁止通行;黄灯亮表示该条道路上未过停车线的车辆停止通行,已过停车线的车辆继续通行;绿灯亮表示该条道路允许通行。交通灯控制电路自动控制十字路口两组红、黄、绿交通灯的状态转换,指挥各种车辆和行人安全通行,实现十字路口交通管理的自动化。 2、课程设计软件部分 2.1设计内容及要求 2.1.1课程设计内容 A满足顺序工作流程:南北绿灯亮、东西红灯亮,占20S,南北黄灯亮、东西红灯亮,占4S,南北红灯亮、东西绿灯亮,占20S,南北红灯亮、东西黄灯亮,占4S。 B他们的工作方式,有些必须是并行进行的。南北绿,东西红。 南北黄,东西红。南北红,东西绿。南北红,东西黄。 C十字路口要有数字显示,作为事件提示,一边人们直接的把握事件。 D可以手动调整和自动控制,夜间为黄灯闪耀。 E满足两个方向的工作时序:既东西方向亮红灯事件应等于南北方向亮黄、绿灯时间之和,南北方向亮红灯时间应等于东西方向亮黄、绿灯时间之和。 F倒计时的方法,数字显示当前信号的剩余时间,提醒行人和司机。 G信号灯的时间分别可调,以适应不同路口,不同路段交通流量的需求 2.1.2课程设计要求 A单电源5V供电 B南北、东西干道轮流通行由L E D显示,计时又数码管控制 C实现功能所用的器件的成本低,数量少为最佳

信号时频分析-讲义

- - 从Fourier 分析到小波分析 1 Fourier 分析 所有客观存在的事物都包含着大量标志其本身所存的时间空间特征的数据,这就是该事物的信息。当人们要了解事物某方面的情况时,通常要以各种手段把所需的信息表达出来,供人们观测和分析,这种对信息的表达形式称之为“信号”,所以信号是信息的载体。信号是无处不在的。如我们随时可听到的语音信号,随时可看到的视频图像信号,发电机组运行时的温度信号和振动信号等。 对一个给定的信号或过程,如)(t x ,我们可以用众多的方法来描述它, 如)(t x 的函数表达式,通过Fourier 变换所得到的)(t x 的频谱,即)(?ωx ,再如)(t x 的相关函数,其能量谱或功率谱等。在这些众多的描述方法中,有两个最基本的物理量,即时间和频率。Fourier 变换和反Fourier 变换作为 桥梁建立了信号)(t x 与其频谱)(?ωx 之间的一对一映射关系,从时域到频域的映射关系为Fourier 变换: ?∞ ∞--=dt e t x x t j ωω)()( (1-1) 反过来,从频域到时域的映射关系为反Fourier 变换: ?∞ ∞-=ωωπωd e x t x t j )(21 )( (1-2) Fourier 变换的本质思想是用一些简单的基本函数的加权和来近似和表示一个复杂的函数,这样的近似和表示有很多优点,它给我们分析和认识复杂现象提供了一种有效的途径,一些在时域内难以观察的现象和规律,在频域内往往能十分清楚地显示出来。 Fourier 变换和反Fourier 变换属于整体或全局变换,即只能从整体信号的时域表示得到其频谱,或者只能从整体信号的频域表示得到信号的时 域表示。也就是说频谱)(?ωx 的任一频点值都是由时间过程)(t x 在整个时域(-∞,∞)上的贡献所决定;反之,过程)(t x 在某一时刻的状态也是由其频谱)(?ωx 在整个频域(-∞,∞)上的贡献所决定。也就是说,)(t x 在任何时刻的微

北理工随机信号分析实验报告

本科实验报告实验名称:随机信号分析实验

实验一 随机序列的产生及数字特征估计 一、实验目的 1、学习和掌握随机数的产生方法。 2、实现随机序列的数字特征估计。 二、实验原理 1、随机数的产生 随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。进行随机信号仿真分析时,需要模拟产生各种分布的随机数。 在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。 (0,1)均匀分布随机数是最最基本、最简单的随机数。(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下: )(mod ,110N ky y y n n -= N y x n n /= 序列{}n x 为产生的(0,1)均匀分布随机数。 下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7 510≈?; 2、(IBM 随机数发生器)3116N 2,k 23,==+周期8 510≈?; 3、(ran0)31 5 N 21,k 7,=-=周期9 210≈?; 由均匀分布随机数,可以利用反函数构造出任意分布的随机数。 定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有 )(1R F X x -= 由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变

数字电路课程设计交通灯

数字逻辑电路设计 课程设计报告 系(部):三系 专业:通信工程 班级: 2011级<1>班 姓名:陈 学号: 201103061 成绩: 指导老师:李海霞 开课时间: 2012-2013 学年二学期

一、设计题目 交通信号灯控制器 二、主要内容 1、分析设计题目的具体要求 2、完成课题所要求的各个子功能的实现 3、用multisim软件完成题目的整体设计 三、具体要求 (一)、交通灯信号控制器仿真设计 设计要求 (1)设计一个十字路口的交通灯控制电路,要求东西方向和南北方向车道两条交叉道路上的车辆交替运行,每次通行时间都设为35s。时间可 设置修改。 (2)在绿灯转为红灯时,要求黄灯先亮5s,才能变换运行车道。 (3)黄灯亮时,要求每秒闪亮一次。 (4)东西方向、南北方向车道除了有红、黄、绿灯指示外,每一种灯亮的时间都用显示器进行显示。 (5)假定+5V电源给定。 四、进度安排 第一天:介绍所用仿真软件;布置任务,明确课程设计的完整功能和要求。第二天:消化课题,掌握设计要求,明确设计系统的全部功能,图书馆查阅资料。 第三天:确定总体设计方案,画出系统的原理框图。 第四天:绘制单元电路并对单元电路进行仿真。 第五天:分析电路,对原设计电路不断修改,获得最佳设计方案。 第六天:完成整体设计并仿真验证。 第七天:对课程设计进行现场运行检查并提问,给出实践操作成绩。 第八天:完成实践报告的撰写

五、成绩评定 课程设计成绩按优、良、中、及格、不及格评定,最终考核成绩由四部分组成: 1、理论设计方案,演示所设计成果,总成绩40%; 2、设计报告,占总成绩30%; 3、回答教师所提出的问题,占总成绩20%; 4、考勤情况,占总成绩10%; 无故旷课一次,平时成绩减半;无故旷课两次平时成绩为0分,无故旷课三次总成绩为0分。迟到20分钟按旷课处理。

时频信号分析课程报告

时频信号分析作业报告 一.短时傅里叶变换 1.1程序功能及参数说明 实现的Matlab功能函数为:(,,,) 。 tfr stft x N F w 1.1.1程序输入输出参数说明 输入参数:x为输入信号矢量,为后面程序计算方便规定必须为列矢量;N为窗长,默认为信号长度的四分之一;F为计算的FFT 点数,默认为信号长度;w为窗函数类型,默认为‘Hamming’窗。 输出参数:tfr为信号的短时傅里叶变换矩阵,矩阵的每一列存储短时信号的傅里叶变换结果。 1.1.2程序功能说明 该功能函数的核心功能就是计算一个列矢量信号的短时傅里叶变换并输出其频谱图。能自由指定窗函数的类型及窗长、FFT长度,程序也能在这些参数缺失的条件下自动的指定默认参数值,程序能对用户的非法操作输出提示结果,比如:没有输入参数时,会提示‘x must have only one column’。 1.2运行结果 例7.4要求我们对一个具有高斯包络的线性调频脉冲在加高斯窗

的条件下,计算其时频谱。信号和窗函数的数学表达式为: ()()22201/41/4/2/2/2()/()/t j t j t t s t e h t e αβωααπαπ-++-== , (1-1) 仿真参数设定:01550020αβω===,,,=512F ,='Gauss'w , =32128N 和。仿真结果如图1.1所示: ()a ()b 图1.1 ()a 为=32N 窗长,()b 为=128N 窗长时所得的结果 由图1.1可以看出,随着窗的长度变长,频谱图的时间分辨率变差,频率分辨率变好。

1.3体会 频谱图的时间分辨率、频率分辨率分别决定于所加窗的时宽、带宽。时窗越窄,时间分辨率越高;频窗越窄,频率分辨率越高;窗宽一旦确定,频谱图的时间分辨率、频率分辨率就确定了。 受窗函数不确定原理的约束,同一个窗的时宽和带宽不能同时任意的窄,因而频谱图的时间分辨率和频率分辨率不可能同时很高。 频谱图是一簇时频分布,随窗函数的不同而不同。实践中应根据信号的特点和应用需求灵活选取窗函数。 二.Vigner 分布 2.1原理说明 Vigner 分布定义式为:*j 1(,)()()e d 2π22W t s t s t ωτττωτ+∞--∞= -?+?,实际中,信号()s t 是时域有限的,且t 不同,τ也会不同,为了能正确的计算出信号的Vigner 分布,有必要确定在不同的t 的情况下,τ的取值范围。 对信号()s t ,设12t t t ≤≤,对特定时刻012,t t t ∈????,可以得到: 10202011020102 2()2()22()2()2t t t t t t t t t t t t t t ττττ?≤-≤?-≤≤-?????-≤≤-??≤+≤?? (2-1) 对长度为a 的信号来说,在编程实现时,可以令120,t t a ==,则(2-1)式变为:

随机信号分析实验报告二 2

《随机信号分析》实验报告二 班级: 学号: 姓名:

实验二高斯噪声的产生和性能测试 1.实验目的 (1)掌握加入高斯噪声的随机混合信号的分析方法。 (2)研究随机过程的均值、相关函数、协方差函数和方差。 ⒉实验原理 (1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。 (2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。 ⒊实验报告要求 (1)简述实验目的及实验原理。 (2)采用幅度为1,频率为25HZ的正弦信号错误!未找到引用源。为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。 试求随机过程 的均值、相关函数、协方差函数和方差。用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。 (3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。 (4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。 (5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。 4、源程序及功能注释 (2)源程序: clear all; clc; t=0:320; %t=0:320 x=sin(2*pi*t/25); %x=sin(2*p1*t/25) x1=wgn(1,321,0); %产生一个一行32列的高斯白噪声矩阵,输出的噪声强度为0dbw

基于光信号同步的相位测量方法解读

基于光信号同步的相位测量方法 摘要:本文介绍了一种用光信号同步的相位测量方法,着重描述了这种方法的特点、系统结构、工作原理和实现方法。运用这种方法可以构成一种新型的实用仪器。 引言 在电力继电保护系统中,相位测量是一个经常性项目,从传统的“过零”法测量的情况看,要测量两个交流信号的相位角,通常的做法是将两个交流信号进行放大、整形,成为在过零点变化的方波,同时还要在一个回路中进行比较,进而测量出同频信号的相位差(Δtx)这一主要参数。但是往往现场测量需要接入的信号比较多,这很容易引起接线的错误。此外,对线路进行相位测量时有多个回路信号接入设备,倘若在现场出现接线错误,或者仪器内部通道之间的隔离出现问题,很容易引起回路之间的短路,导致事故发生。 基于以上情况,必须从原理上改变传统的测量方式以适应测试过程的需要。 图1 测量部件的电路原理框图 图2 数据通信的序关系 用光信号同步的 间接测量方法和结构 本设计采用了一种间接的测量方法,不需要将2个现场交流信号引入到同一个设备,即测量过程是分别在各个信号的回路独立进行的。这种间接的测量方法的条件是必须有一个同步信号作为测量基准,这样才能在各个独立回路的测量回路之间建立起关联,以便最后测量出Δtx和T0。在这里采用的是红外光信号进行同步相位测量的方法,利用光信号作为同步信号源,不需要在电路上的连接关系就可以进行同步,同时还可以利用它作为数据通信的载体。

本系统包含一个主机和几个测量部件。主机是系统的核心部分,而测量部件的数量取决于实际测量的需要(例如在测量六角图时,就应该是6个测量部件),主机是由MCS-51系列的AT89C51单片机为主体的部分,外围电路比较简单。它主要依靠一个光发射器和一个光接收器构成通信接口,单片机的输出端经过反相器驱动以后控制光发射器向测量部件发出调制光信号。而单片机的输入直接与光接收器相连,光接收器把测量部件发来的调制光信号进行解调,单片机则可以通过程序识别编码信号。光发射器主要用来启动测量过程,而光接收器则实现主机与测量部件之间的数据通信。 每个测量部件也是一个由AT89C51单片机为核心的智能化的测量电路,其外围部分主要包括光发射器、光接收器和测量电路(如图1所示)。测量电路是由OP07组成的放大电路和LM311组成的整形电路组成,主要功能是将交流信号转换为相应的方波信号。方波的输出与单片机的I/O线相连接,利用单片机内部的定时/计数器,可以测量到相关的时间值,进而计算出相位角。光发射器和光接收器的作用主要是实现测量,同时完成与主机的双向通信。 间接测量法的原理 主机一方面控制测量过程,向各个测量部件发出红外光同步信号启动测量,另一方面各个部件完成测量以后,通过红外光通信将各个部件的测量数据汇总到主机,然后进行计算以确定被测参数,即引入三维变量的间接测量方式取代直接测量法。这种间接测量方式不再需要直接测量时差,只需建立每个参数和光同步信号之间的时间关系,再通过计算求出时差。回路不再需要在电路上的连接,仅仅依靠一个光同步信号就能够间接地测量到多个测量回路参数之间的相位关系。 这种方式的优点在于:各个测量回路不再需要参考点的连接,回路相对独立,分别测量各自的交流信号过零时刻与光同步信号之间的时间差,以作为相位测量的基本参数。它们之间的关联不是靠电路形式的连接,而是依靠光信号,这样就可以杜绝回路之间的短路发生,另外,还可以减少仪器的连线。光信号除了作为同步信号外,还作为数据传输通道,各个测量回路将测量数据通过光的传输,集中在主机部分最终完成参数的数值显示。 工作过程 在一个测量周期开始,由主机控制光发射器发出一个同步红外光信号,测量部件的光接收器都能在同一时刻接收到这一信号,各个测量部件的单片机会同时启动进行各自的测量过程,完成测量过程后,再由各个部件的单片机依次将测量数据传送回主机,主机单片机通过光接收头,依次接收到各个测量部件的数据并汇总这些基本数据,最后通过计算后主机就显示相应的数字值,至此完成一个测量周期。 主机部分 第一阶段,主机光发射器发出同步光信号,启动各个测量部件同时进入测量状态,此时,单片机的P3.4/T0引脚设置为输出状态,当工作时会产生调制信号,经过反相器74LS04驱动光电发送器,按照程序的约定这个信号是表示“启动”的光信号,即通过该光信号向每个测量部件传送开始测量的同步信号。

相关文档
相关文档 最新文档