文档库 最新最全的文档下载
当前位置:文档库 › 超高频rfid读写设备专用芯片产业化项目可行性论证报告

超高频rfid读写设备专用芯片产业化项目可行性论证报告

超高频rfid读写设备专用芯片产业化项目可行性论证报告
超高频rfid读写设备专用芯片产业化项目可行性论证报告

xxx光电设备有限公司

超高频RFID读写设备专用芯片产业化项目

项目名称:超高频RFID读写设备专用芯片产业化项目

申报单位:xxx光电设备有限公司

申报日期:二○一二年五月

目录

1 项目的背景和必要性 (9)

1.1 技术概述

1.2 国内外现状和技术发展趋势

1.3 项目建设背景

1.4 建设的必要性

1.5 产业关联度分析

1.6 市场分析

2 项目承担单位的基本情况和财务状况 (33)

2.1 项目承担单位的基本情况

2.2企业近三年的财务状况银行信用等级

3 项目的技术基础 (36)

3.1 已完成的研发工作、技术来源和知识产权情况

3.2 项目技术的投产运营情况

3.3 与传统工艺比较存在的技术优势及突破

3.4 新工艺对行业发展的重要意义

4 建设方案 (39)

4.1 建设地点

4.2 建设规模

4.3 建设主要内容

4.4 建设工期

4.5建设期管理

4.6 项目技术特点、主要设备和项目技术指标

4.7建设期间管理

4.8 招标投标

4.5 建设工期及进度安排

4.6 建设期间管理

5 各项建设条件落实情 (51)

5.1 环境保护

5.2 节能措施

5.3 原材料供应情况

5.4 其他建设条件

6 投资估算与资金筹措 (57)

6.1 投资估算依据

6.2 建设投资估算

6.3 建设投资估算表

6.4 资金筹措方式与来源

7 财务分析与社会评价 (60)

7.1 财务评价基础数据选择

7.2 收入、税金及附加估算

7.3 成本费用估算

7.4 财务评价报表

7.5 盈利能力分析

7.6 不确定性分析

附图

项目区位图

项目总平面图

厂房平面布置图

附表

附表1 超高频RFID读写设备芯片产业化项目项目资本金现金流量表

附表2 超高频RFID读写设备芯片产业化项目建设投资估算表

附表3 超高频RFID读写设备芯片产业化项目财务计划现金流量表

附表4 超高频RFID读写设备芯片产业化项目总投资使用计划与资金筹措表

附表5 超高频RFID读写设备芯片产业化项目财务敏感性分析成果表

附表6 超高频RFID读写设备芯片产业化项目概率分析成果表附表7 超高频RFID读写设备芯片产业化项目营业收入、营业税金及附加和增值税估算表

附表8 超高频RFID读写设备芯片产业化项目利润与利润分配表

附表9 超高频RFID读写设备芯片产业化项目其他资产摊销计

算成果表

附表10 超高频RFID读写设备芯片产业化项目总成本费用估算表

附表11 超高频RFID读写设备芯片产业化项目投资现金流量表附表12 超高频RFID读写设备芯片产业化项目财务评价指标汇总表

附表13 超高频RFID读写设备芯片产业化项目资产负债表

附件

1、自有资金证明资金证明文件复印件

2、技术来源及技术先进性的有关证明文件复印件

3、xx市环境保护局开发区分局张环开【2012】6号关于本项目的环保预审意见复印件

4、项目单位与xx经济开发区开发建设有限公司创业中心标准厂房租赁合同复印件

5、xx经济开发区管理委员会关于本项目的开工证明文件复印件

6、项目单位与常州联力自动化科技有限公司签订的合作协议复印件

7、项目建设单位营业执照复印件

8、项目建设单位组织机构代码证复印件

9、关于共同开发?全矿井综合自动化系统?的合作协议

10、项目单位对项目资金申请报告内容和附属文件真实性负责的

声明

1 项目的背景和必要性

1.1 技术概述

RFID射频识别技术实际上是一项较早的技术,在20世纪60年代的时候,RFID射频识别技术的理论已经得到发展,并且开始了一些尝试性的应用。20世纪90年代起,这项技术进入商业应用阶段。经过多年的发展,13.56MHz以下的RFID技术已相对成熟,目前业界最关注的是位于中高频段的RFID技术,特别是860MHz-960MHz(UHF超高频段)的远距离RFID技术发展最快。

表1-1 RFID技术发展的历程

时期发展情况

1961-1970年RFID技术的理论得到了发展,开始了一些应用尝试。

1971-1980年RFID技术与产品研发处于一个大发展时期,各种RFID技术测试得到加速,出现了一些最早的RFID应用。

1981-1990年RFID技术及产品进入商业应用阶段,各种封闭系统应用开

始出现。

1991-2000年RFID技术标准化问题日趋得到重视,RFID产品得到广泛采

用。

2001-现在

标准化问题日趋为人们所重视,RFID产品种类更加丰富,有源电子标签、无源电子标签及半无源电子标签均得到发展,电

子标签成本不断降低。

从分类上看,RFID技术根据电子标签工作频率的不同通常可分为低频系统(125kHz、134.2kHz),高频系统(13.56MHz),超高频(860MHz-960MHz)和微波系统(2.45GHz、5.8GHz)等。

低频和高频系统的特点是阅读距离短、阅读天线方向性不强等,其中,高频系统的通讯速度也较慢。两种不同频率的系统均采用电感耦合原理实现能量传递和数据交换,主要用于短距离、低成本的应用中。

超高频、微波系统的标签采用电磁后向散射耦合原理进行数据交换,阅读距离较远(可达十几米),适应物体高速运动,性能好;阅读天线及电子标签天线均有较强的方向性,但该系统标签和读写器成本都比较高。

表1-2 不同频段的电子标签性能比较

频段

低频高频超高频微波

~135KHz 13.56MHz 900MHz左右 2.45GHz 通信方式电感藕合方式电磁发射方式

主要通途畜牧业,门禁支付物流管理、制造

交通管制

读取距离<10cm <1m 10m左右2m左右

使用区域美国多多多多欧洲多多较少多日本多多很少多

根据电子标签供电方式的不同,电子标签又可分为无源标签(Passive Tag)、半有源标签(Semi-Passive Tag)和有源标签(Active Tag)三种。

无源电子标签不含电池,它接收到读写器发出的微波信号后,利用读写器发射的电磁波提供能量,无源标签一般免维护,重量轻、体积小、寿命长、较便宜,但其阅读距离受到读写器发

射能量和标签芯片功能等因素限制;

半有源标签内带有电池,但电池仅为标签内需维持数据的电路或远距离工作时供电,电池能量消耗很少;

有源标签工作所需的能量全部由标签内部电池供应,且它可用自身的射频能量主动发送数据给读写器,阅读距离很远(可达30米),但寿命有限,价格昂贵。

1.2 国内外现状和技术发展趋势

1.2.1 国际技术发展现状

从全球的范围来看,美国政府是RFID应用的积极推动者,在其推动下美国在RFID标准的建立、相关软硬件技术的开发与应用领域均走在世界前列。欧洲RFID标准追随美国主导的EPCglobal标准。在封闭系统应用方面,欧洲与美国基本处在同一阶段。日本虽然已经提出UID标准,但主要得到的是本国厂商的支持,如要成为国际标准还有很长的路要走。RFID在韩国的重要性得到了加强,政府给予了高度重视,但至今韩国在RFID 的标准上仍模糊不清。目前,美国、英国、德国、瑞典、瑞士、日本、南非等国家均有较为成熟且先进的RFID产品。

从全球产业格局来看,目前RFID产业主要集中在RFID技术应用比较成熟的欧美市场。飞利浦、西门子、ST、TI等半导体厂商基本垄断了RFID芯片市场;IBM、HP、微软、SAP、Sybase、Sun等国际巨头抢占了RFID中间件、系统集成研究的有利位置;Alien、Intermec、Symbol、Transcore、Matrics、Impinj等公

司则提供RFID标签、天线、读写器等产品及设备。

1)美国

在产业方面,TI、Intel等美国集成电路厂商目前都在RFID 领域投入巨资进行芯片开发。Symbol等已经研发出同时可以阅读条形码和RFID的扫描器。IBM、Microsoft和HP等也在积极开发相应的软件及系统来支持RFID的应用。目前美国的交通、车辆管理、身份识别、生产线自动化控制、仓储管理及物资跟踪等领域已经开始逐步应用RFID技术。在物流方面,美国已有10多家企业承诺支持RFID应用,这其中包括:零售商沃尔玛;制造商吉列、强生、宝洁;物流行业的联合包裹服务公司以及政府方面国防部的物流应用。另外,值得注意的是美国政府是RFID 应用的积极推动者。按照美国防部的合同规定,2005年1月1日以后,所有军需物资都要使用RFID标签;美国食品及药物管理局(FDA)建议制药商从2006年起利用RFID跟踪最常造假的药品;美国社会福利局(SSA)于2005年年初正式使用RFID技术追踪SSA各种表格和手册。

2)欧洲

在产业方面,欧洲的Philips,ST Microelectronics在积极开发廉价RFID芯片;Checkpoint在开发支持多系统的RFID 识别系统;诺基亚在开发并推广其能够基于RFID的移动电话购物系统;SAP则在积极开发支持RFID的企业应用管理软件。在应用方面,欧洲在诸如交通、身份识别、生产线自动化控制、物

资跟踪等封闭系统与美国基本处在同一阶段。日前,欧洲许多大型企业都纷纷进行RFID的应用实验。

3)日本

日本是一个制造业强国,它在电子标签研究领域起步较早,政府也将RFID作为一项关键的技术来发展。邮政与电信通讯部(MPHPT)在2004年3月发布了针对RFID的?关于在传感网络时代运用先进的RFID技术的最终研究草案报告?,报告称MPHPT 将继续支持测试在UHF频段的被动及主动的电子标签技术,并在此基础上进一步讨论管制的问题。从近来日本RFID领域的动态来看,与行业应用相结合的基于RFID技术的产品和解决方案开始集中出现。

1.2.2 国内技术发展现状

相较于欧美等发达国家或地区,我国在RFID产业上的发展还较为落后。目前,我国RFID企业总数虽然超过100家,但是缺乏关键核心技术,特别是在超高频RFID方面。从包括芯片、天线、标签和读写器等硬件产品来看,低高频RFID技术门槛较低,国内发展较早,技术较为成熟,产品应用广泛,目前处于完全竞争状况;超高频RFID技术门槛较高,国内发展较晚,技术相对欠缺,从事超高频RFID产品生产的企业很少,更缺少具有自主知识产权的创新型企业。

从产业链上看,RFID的产业链主要由芯片设计、标签封装、读写设备的设计和制造、系统集成、中间件、应用软件等环节组

成。目前我国还未形成成熟的RFID产业链,产品的核心技术基本还掌握在国外公司的手里,尤其是芯片、中间件等方面。中低、高频标签封装技术在国内已经基本成熟,但是只有极少数企业已经具备了超高频读写器设计制造能力。国内企业基本具有RFID 天线的设计和研发能力,但还不具备应用于金属材料、液体环境上的可靠性RFID标签天线设计能力。系统集成是发展相对较快的环节,而中间件及后台软件部分还比较弱。

1)芯片设计

RFID芯片在RFID的产品链中占据着举足轻重的位置,其成本占到整个标签的三分之一左右。对于广泛用于各种智能卡的低频和高频频段的芯片而言,以复旦微电子、上海华虹、大唐微电子、清华同方等为代表的中国集成电路厂商已经攻克了相关技术,打破了国外厂商的统治地位。但在UHF频段,RFID芯片设计面临巨大困难:(1)苛刻的功耗限制;(2)片上天线技术;(3)后续封装问题;(4)与天线的适配技术。目前,国内UHF频段RFID芯片市场几乎被国外企业垄断。

2)标签封装

目前国内企业已经熟练掌握了低频标签的封装技术,高频标签的封装技术也在不断地完善。出现了一些封装能力很强,尤其是各种智能卡封装能力强的企业,例如深圳华阳、中山达华、上海申博等等。但是国内欠缺封装超高频、微波标签的能力,当然这部分产品在我国的应用还很少,相关的最终标准也没有出

台。我国的标签封装企业大多是做标签的纯封装,没有制作Inlay 的能力。提高生产工艺,提供防水、抗金属的柔性标签是我国RFID标签封装企业面临的问题。

3)读写设备的设计和制造

国内低频读写器生产加工技术非常完善,生产经营的企业很多且实力相当。高频读写器国内的生产加工技术基本成熟,但还没有形成强势品牌,企业实力差不多,只是注重的应用方向不同。例如面对消费领域(校园一卡通等)的企业中哈尔滨新中新,沈阳宝石、北京迪科创新等有一定的影响力。国内只有如深圳远望谷,江苏瑞福等少数几家企业具有设计、制造超高频读写器的能力。

4)系统集成

目前,RFID市场还是处于前期宣传预热阶段,项目机会在逐步增加,但是大部分还是处于前期的洽谈阶段,真正实施的项目并不多,还未出现真正的大规模有影响力的应用项目。因此中国市场的RFID系统集成商还是处于前期的市场宣传和投入阶段,真正能够借助RFID盈利的集成商很少。国内市场上集成商可以分为两类:国外大厂商例如IBM、HP等他们通过与国内集成商和硬件厂商合作,专攻大型的集成项目。国内较有影响力的集成商有维深、励格、富天达、实华开、倍思得等。后者做的大规模有影响力的集成项目不是很多,基本都是中小型的闭环应用。

5)RFID中间件

RFID中间件又称RFID管理软件,它屏蔽了RFID设备的多样性和复杂性,能够为后台业务系统提供强大的支撑,从而驱动更广泛、更丰富的RFID应用。当前我国的RFID中间件市场还不成熟,应用较少而且缺乏深层次上的功能。市场上比较有影响力的中间件企业有SAP、Manhattan Associatesz、Oracle、OAT Systems等。

6)标准发展

中国在RFID技术与应用的标准化研究工作上已有一定基础,目前经从多个方面开展了相关标准的研究制定工作。制定了?中国射频识别技术政策白皮书?、?建设事业IC卡应用技术?等应用标准,并且得到了广泛的应用;在频率规划方面,已经做了大量的试验;在技术标准方面,依据ISO/IEC 15693系列标准已经基本完成国家标准的起草工作,参照ISO/IEC 18000系列标准制定国家标准的工作已列入国家标准制订计划。此外,中国RFID标准体系框架的研究工作也基本完成。

1.3 国内外产业发展趋势及对产业的影响

1.3.1 市场趋势

近年来,RFID技术已经在物流、零售、制造业、服装业、医疗、身份识别、防伪、资产管理、食品、动物识别、图书馆、汽车、航空、军事等众多领域开始应用,对改善人们的生活质量、提高企业经济效益、加强公共安全以及提高社会信息化水平产生了重要的影响。我国已经将RFID技术应用于铁路车号识别、身

份证和票证管理、动物标识、特种设备与危险品管理、公共交通以及生产过程管理等多个领域。

据ABI公司根据预测,RFID技术将在未来2-5年逐渐开始大规模应用,2003年全球RFID市场规模为16.5亿美元,至2008年达到52.5亿美元,2009受到金融危机影响增长幅度趋缓,为55.6亿美元,预计到2013年全球RFID规模将达到98亿美元,2003-2013年均复合增长率为19%。RFID电子标签方面,2005年全球共发货10.2亿枚,2008年达到19.7亿枚,2009年将为23.5亿枚,预计2012年将为35.6亿枚,2005-2012年均复合增长率为23%。

图1-1 2004年~2014年亚太地区RFID各类产品市场结构据Frost & Sullivan公司2008年发布的调查显示,2004-2014年间,亚太地区不同种类RFID构成将发生变化,低频RFID市场份额将快速下降;高频RFID市场份额小幅下降,但

仍占各类RFID的主导地位;而超高频RFID市场份额呈现快速上升的格局,至2014年,其市场份额将与高频RFID接近。

1.3.2 技术趋势

就技术而言,在未来的几年中,RFID技术将继续保持高速发展的势头。电子标签、读写器、系统集成软件、公共服务体系、标准化等方面都将取得新的进展。随着关键技术的不断进步,RFID产品的种类将越来越丰富,应用和衍生的增值服务也将越来越广泛。

RFID芯片设计与制造技术的发展趋势是芯片功耗更低,作用距离更远,读写速度与可靠性更高,成本不断降低。芯片技术将与应用系统整体解决方案紧密结合。

RFID标签封装技术将和印刷、造纸、包装等技术结合,导电油墨印制的低成本标签天线、低成本封装技术将促进RFID标签的大规模生产,并成为未来一段时间内决定产业发展速度的关键因素之一。

RFID读写器设计与制造的发展趋势是读写器将向多功能、多接口、多制式、并向模块化、小型化、便携式、嵌入式方向发展。同时,多读写器协调与组网技术将成为未来发展方向之一。

RFID技术与条码、生物识别等自动识别技术,以及与互联网、通信、传感网络等信息技术融合,构筑一个无所不在的网络环境。海量RFID信息处理、传输和安全对RFID的系统集成和应用技术提出了新的挑战。RFID系统集成软件将向嵌入式、智能

化、可重组方向发展,通过构建RFID公共服务体系,将使RFID 信息资源的组织、管理和利用更为深入和广泛。

1.3 项目建设背景

1.3.1 国内RFID超高频读写器的发展情况及市场情况

国内低频读写器生产加工技术非常完善,生产经营的企业很多且实力相当。高频读写器国内的生产加工技术基本成熟,但还没有形成强势品牌,企业实力差不多只是注重的应用方向不同。例如面对消费领域(校园一卡通等)的企业中哈尔滨新中新、沈阳宝石、北京迪科创新等有一定的影响力。市场进口的读写器不多,在一些领域中有应用,例如门禁应用领域中有一定数量的H I D 门禁系统。国内只有少数几家企业具有设计、制造超高频读写器的能力。

RFID 中国市场预测RFID 在中国的应用普遍是基于低频的应用,高频RFID 在我国应用较少。2006年在国产化产业链建立起来后,各领域的应用将会很快铺开。来自政府和企业的许多项目正在开发中,比较迫切的需求是在物品防伪、危险安全管理方面,如军队物流、建设资产和建材管理、港口、全国危险品管理、香烟专卖等。此外,近年来中国迎来北京奥运会、上海世博会,这为RFID 在门票、运动场、旅游点等管理应用方面带来巨大商机。预计今后几年,RFID 低频产业规模增长幅度不会很大,高频和超高频市场将会有所增长。在未来五年,电子票证依然是中国电子标签市场的最大应用市场。RFID 超高频段的大规模使用,以及物流、仓储等行业市场大规模应用在2010~2011年爆发。

RFID 有着美好的应用前景,对于大型服务供应商来说,它是一项战略决策。在为用户实施RFID 方案时,可以遵循这样的思路进行:选择合适的技术;设计和定义解决方案;实施解决方案;操作培训;安装RFID管理系统、安装支持和帮助系统;实施维护服务。而对于用户来说,认识到R F I D 的优势还只是成功实施RFID 方案的第一步,技术进步和降低成本必将进一步推进实施进程。

1.3.2 国家物联网技术研发及产业化的政策

近年来,RFID物联网发展技术被先后列入了?国家中长期科学和技术发展规划纲要( 2006-2020年)?、?2006-2020年国家信息化发展战略?、2006年国务院15个相关部门达成共识並联合颁布的?中国射频识别(RFID)技术政策白皮书?、?当前优先发展的高技术产业化重点领域指南?(2007)等国家规划发展内容。特别是基于CMOS工艺的高频RDID物联网识别技术,被作为各项规划的重点扶持产业。

1.3.3 项目成熟的技术条件

xxx光电设备有限公司已于2012年4月份与四川大学签订了关于?共建‘智能传感终端专用芯片’?协议。四川大学是教育部直属的全国重点大学,国家?985工程?和?国家211工程?重点建设的高水平综合大学。技术研发力量雄厚。

xxx光电设备有限公司已于2012年4月份与物联网应用的牵头实施单位常州联力自动化科技有限公司签订了?关于共同开发‘全矿井综合自动化系统’的合作协议?。

RFID实验报告.doc

实验报告 课程名称RFID 射频识别实验学生学院自动化学院 专业班级15级物联网4班学号 学生姓名 指导教师高明琴

2017年11月12日 实验一125KHz RFI D 实验 一、实验目的 1、掌握 125kHz 只读卡、 125kHz 读写卡的基本原理 2、熟悉和学习125kHz 只读卡协议、125kHz 读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz 只读卡卡号,并对125kHz 读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 1、注意事项 切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID读写器串口波特率为9600bps 2、环境部署 ⑴准备 125K低频RFID模块,参考章节设置跳线为模式 2 ,将模块的电源拨码开关设

置为 OFF,参考章节通过交叉串口线将模块与电脑的串口相连,给模块接5V 电源; ⑵将模块的电源拨码开关设置为ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行 RFID 实训系统 .exe软件,选项卡选择125K模块; 3、打开串口操作 设置串口号为COMx,设置波特率为9600 ,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签ID并显示在ListView控件中,16进制数据listview控件显示的是16进制标签ID , 10 进制数据 listview控件显示的是10进制标签ID ,实验结果如下图; 思考题 1多张卡在一起时,能否正确识别卡号请说明原因 答:多张卡在一起时,无法正确识别卡号,因为125kHz 的读卡器没有采用防冲撞算法2变卡和阅读器的相对位置和距离,观察读卡结果并解释;在卡和阅读器之间放置不同的障碍物,观察读卡结果并解释。 答 : 当卡和阅读器的距离超过 5cm后,读卡结果并不理想,几乎读不到数据。 属薄片(如几张纸、塑料板)时,读卡结果正常;而放置金属障碍物时,读卡结果就不正常 了 五、小结 通过本实验,初步熟悉了 RFID 寻卡的步骤,还尝试了多卡一起时的系统响应,结果发现不能多 卡一起识别。识别距离不能太远,否则无法识别。

超高频rfid读写器技术方案

健新科技JX-PU2902多功能RFID读写笔配合智能手机、智能平板等各类型终端,实现RFID 智能识别功能和智能移动终端功能的完美结合,轻松实现各行业资产盘点、智能巡检、人员物资管理等移动互联网应用。 ◆手写笔设计:纳米超纤触控笔头,手写笔外形设计,可作为触控笔使用; ◆RFID空口协议:EPCglobal UHF Class 1 Gen 2、ISO18000-6C、ISO 18000-6B ◆操作简单:两个按键即可实现所有操作功能 ◆状态指示:设备状态通过两组7色LED灯显示,清晰明了 ◆蓝牙4.0:内置蓝牙4.0模块,可与所有具备蓝牙功能的终端进行通信连接,所有具 备蓝牙功能的智能终端均可作为采集终端 ◆内置锂电池:内置350mAh锂电池,支持USB充电 一、技术指标 二、健新RFID读写笔产品优点 三、基于RFID读写笔的系统应用 四、应用系统的优点: 五、典型应用: 在某品牌空调外壳中嵌入超高频RFID标签,售后维修通过扫描空调RFID标签获得准确的产品信息,防止售后维修点虚假维修报账。 4S店车辆库存盘点:在一个区域的某类汽车品牌4S店管理中,采用超高频RFID 标签对车辆进行定位,采用RFID蓝牙读写笔对各4S店的车辆进行盘点,防止各 4S店之间库存车辆相互串货。 电力资产管理:在某电网公司,采用超高频RFID标签对资产进行标识, 使用RFID蓝牙读写笔及平板电脑对电力资产设备进行盘点,解决高压设备的远距离识别问题。 行业应用 电力:变电所、变压器、高压铁塔、线杆、高压线路、发电厂、电能表读数、安全用具巡检巡更 石油:输油管道、天然气管道、油罐库区、油田油井设施巡检巡更 铁路:路基、路轨、桥梁、水电、机车、库房、候车大厅、乘警巡逻巡检巡更 电信:光缆、电话线路、电话亭、线杆、发射机站巡检巡更 公安:巡警、交警、警车、岗哨、狱警巡逻巡检巡更 军队:边防、岗哨、弹药库、军需库巡逻巡检巡更 粮库:防火、防水、防虫、温度、湿度控制巡检巡更 林业:森林防火、森警巡逻、动植物保护、防猎巡检巡更 矿业:煤矿井下安全、井上设施、车辆、煤场巡检巡更 医院:护士查房、人员考核、保安巡逻巡检巡更 邮政:邮箱、库房、趟车的频次/时限管理巡检巡更

物联网实验报告

实验名称:RFID开发实验 一、实验环境 硬件:UP-MobNet-II型嵌入式综合实验平台,PC机 软件:Vmware Workstation +Ubuntu12.04+ MiniCom/Xshell + ARM-LINUX交叉编译开发环境Rfid_900M模块QT测试程序 二、实验内容 1、了解UHF的基本概念、国际标准、协议内容 2、了解UHF的标准接口 3、了解UHF的应用范围及领域 4、掌握对功率和功放相关命令的操作 三、实验原理 超高频射频识别系统的协议目前有很多种,主要可以分为两大协议制定者:一是ISO(国际标准化组织);二是EPC Global。ISO组织目前针对UHF(超高频)频段制定了射频识别协议ISO 18000-6,而EPC Global组织则制定了针对产品电子编码(Electronic Product Code)超高频射频识别系统的标准。目前,超高频射频识别系统中的两大标准化组织有融合的趋势,EPC Class 1 Generation 2标准可能会变成ISO 18000-6标准的Type c。本文主要讨论的是针对ISO 18000-6 标准的射频识别系统,本节讨论的是ISO 18000-6 协议中与系统架构相关的物理层参数。 ISO 18000-6 目前定义了两种类型:Type A 和Type B。下面对这两种类型标准在物理接口、协议和命令机制方面进行分析和比较。 1.物理接口 ISO 18000-6 标准定义了两种类型的协议—Type A 和Type B。标准规定:读写器需要同时支持两种类型,它能够在两种类型之间切换,电子标签至少支持一种类型。 (1)Type A 的物理接口 Type A 协议的通信机制是一种“读写器先发言”的机制,即基于读写器的命令与电子标签的应答之间交替发送的机制。整个通信中的数据信号定义为以下四种:“0”,“1”,“SOF”,“EOF”。通信中的数据信号的编码和调制方法定义为: ①读写器到电子标签的数据传输 读写器发送的数据采用ASK 调制,调制指数为30%(误码不超过3%)。 数据编码采用脉冲间隔编码,即通过定义下降沿之间的不同宽度来表示不同的数据信号。 ②电子标签到读写器的数据传输 电子标签通过反向散射给读写器传输信息,数据速率为40kbits。数据采用双相间隔码来进行编 码,是在一个位窗内采用电平变化来表示逻辑,如果电平从位窗的起始处翻转,则表示逻辑“1”;如果电平除了在位窗的起始处翻转,还在位窗的中间翻转,则表示逻辑“0”。 (2)Type B 的物理接口 Type B 的传输机制也是基于“读写器先发言”的,即基于读写器命令与电子标签的应答之间交换的机制。 ①读写器到电子标签的数据传输 采用ASK 调制,调制指数为11%或99%,位速率规定为10kbits 或40kbits,由曼彻斯特编码来完成。具体来说就是一种on-offkey格式,射频场存在代表“1”,射频场不存在代表“0”。曼彻斯特编码是在一个位窗内采用电平变化来表示逻辑“1”(下降沿)和逻辑“0”(上升沿)

超高频rfid读写器技术方案

RFID 如有帮助,欢迎下载支持 健新科技JX-PU2902多功能RFID 读写笔配合智能手机、智能平板等各类型终端,实现 智能识别功能和智能移动终端功能的完美结合,轻松实现各行业资产盘点、智能巡检、人员 物资管理等移动互联网应用。 手写笔设计:纳米超纤触控笔头,手写笔外形设计,可作为触控笔使用; RFID 空口协议:EPCglobal UHF Class 1 Gen 2、IS018000-6C ISO 18000-6B 操作简单:两个按键即可实现所有操作功能 状态指示:设备状态通过两组 7色LED 灯显示,清晰明了 蓝牙4.0 :内置蓝牙4.0模块,可与所有具备蓝牙功能的终端进行通信连接,所有具 备蓝牙功能的智能终端均可作为采集终端 内置锂电池:内置350mAh fi 电池,支持USB 充电 一、 技术指标 二、 健新RFID 读写笔产品优点 三、 基于RFID 读写笔的系统应用 四、 应用系统的优点: 五、 典型应用: 在某品牌空调外壳中嵌入超高频 RFID 标签,售后维修通过扫描空调 RFID 标签获得准确的产 品信息,防止售后维修点虚假维修报账。 4S 店车辆库存盘点:在一个区域的某类汽车品牌 4S 店管理中,采用超高频 RFID 标签对车辆进行定位,采用 RFID 蓝牙读写笔对各 4S 店的车辆进行盘点,防止各 4S 店之间库存车辆相互串货。 电力资产管理:在某电网公司,采用超高频RFID 标签对资产进行标识, 使用 RFID 蓝牙读写笔及平板电脑对电力资产设备进行盘点,解决高压 设备的远距 离识别问题。 行业应用 电力: 变电所、变压器、高压铁塔、线杆、高压线路、发电厂、电能表读数、安全用具 巡检巡更 石油: 输油管道、天然气管道、 油罐库区、 油田油井设施巡检巡更 铁路: 路基、路轨、桥梁、水电、机车、库房、候车大厅、乘警巡逻巡检巡更 电信: 光缆、电话线路、电话亭、线杆、发射机站巡检巡更 公安: 巡警、交警、警车、岗哨、狱警巡逻巡检巡更 军队: 边防、岗哨、弹药库、军需库巡逻巡检巡更 粮库: 防火、防水、防虫、温度、湿度控制巡检巡更 林业: 森林防火、森警巡逻、动植物保护、防猎巡检巡更 矿业: 煤矿井下安全、井上设施、车辆、煤场巡检巡更 医院: 护士查房、人员考核、保安巡逻巡检巡更 邮政: 邮箱、库房、趟车的频次/时限管理巡检巡更

RFID实验报告66232

实验报告 课程名称射频识别实验 学生学院自动化学院 专业班级 14级物联网2班 学号 91 学生姓名卢阳 指导教师高明琴 2016 年 11 月 20 日

实验一125K H z R F I D实验 一、实验目的 1、掌握125kHz只读卡、125kHz读写卡的基本原理 2、熟悉和学习125kHz只读卡协议、125kHz读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz只读卡卡号,并对125kHz读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 2、注意事项 切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID 读写器串口波特率为 9600bps 2、环境部署 ⑴准备 125K 低频 RFID 模块,参考章节设置跳线为模式 2,将模块的电源拨码开关设 置为 OFF,参考章节通过交叉串口线将模块与电脑的串口相连,给模块接 5V 电源; ⑵将模块的电源拨码开关设置为 ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行 RFID 实训系统.exe 软件,选项卡选择 125K 模块; 3、打开串口操作 设置串口号为 COMx,设置波特率为 9600,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将 125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签 ID 并显示在 ListView 控件中,16 进制数据 listview 控件显示的是 16 进制标签 ID,10 进制数据 listview 控件显示的是 10 进制标签 ID,实验结果如下图;

进步RFID读写器的读取效果的解决办法

、管路敷设技术,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接、电气课件中调试下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进、电气设备调试高中资料试卷技术卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试

通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用电力保护装置

可以看出,在零中频接收模拟输出除了所需要的标签回传数据外,数据帧同步头还混杂了直流偏移干扰以及高频噪声.由于距离较远,有用信号的p-p 值仅有110,波形畸变严重,信噪比较差。 经过CIC 及带通滤波,可以得到图4所示的曲线,此时滤波器去除了混杂的噪声,波 形变得比较圆滑整齐,能够较容易的分辨出数据帧的同步头和数据位.图中同时显示了过零检测的解码曲线(位于图形下方,方波上边标注的是过零检测的0和1及其样本点数量;下方标注解码结果。2B4 :0,表示第2字节的第4位解码为0),该算法在横轴坐标240左边出现了解码判决错误(1B5:1,码元0被判决为1),表明处理畸变干扰能力有限。 图4 直接过零检测解码的效果 同时采用直流偏移校正和相干检测方法对同一个数据进行处理,得到的曲线及效果参见图5。解码结果波形显示算法改善了同步头的解码效果。同时,横轴坐标240左边被正确的解码(1B5:0),证明了该算法在远距离标签返回信号幅度比较小或者标签信号中值波动的情况下,仍然可以正确获得EPC 数据。 图5 直流偏移校正及相干检测解码的效果 5 结论 本文通过分析零中频架构超高频RFID 读写器数字接收机设计中的性能瓶颈,明确了影响接收性能的噪声干扰、直流偏移及解码问题的成因及解决思路.从基带数字信号处理角度,在过采样滤波处理基础上,给出直流偏移校正和相关解码等解决办法.经过测试验证 、管路敷设技术通过管线不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资料试卷连接管口处理高中资料试卷弯扁度固定盒位置保护层防腐跨接地线弯曲半径标等,要求技术交底。管线敷设技术中包含线槽、管架等多项方式,为解决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。线缆敷设原则:在分线盒处,当不同电压回路交叉时,应采用金属隔板进行隔开处理;同一线槽内强电回路须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。、电气课件中调试对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行 高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工作;对于继电保护进行整核对定值,审核与校对图纸,编写复杂设备与装置高中资料试卷调试方案,编写重要设备高中资料试卷试验方案以及系统启动方案;对整套启动过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。对于调试过程中高中资料试卷技术问题,作为调试人员,需要在事前掌握图纸资料、设备制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况 ,然后根据规范与规程规定,制定设备调试高中资料试卷方案。 、电气设备调试高中资料试卷技术电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故障高中资料试卷破坏范围,或者对某些异常高中资料试卷工况进行自动处理,尤其要避免错误高中资料试卷保护装置动作,并且拒绝动作,来避免不必要高中资料试卷突然停机。因此,电力高中资料试卷保护装置调试技术,要求电力保护装置做到准确灵活。对于差动保护装置高中资料试卷调试技术是指发电机一变压器组在发生内部故障时,需要进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

基于FPGA的超高频RFID读写器设计

基于FPGA的超高频RFID读写器设计 [日期:2008-10-9 17:48:00] 作者:未知来源:射频识别技术(RFID)是利用射频方式进行远距离通信以达到物品识别目的,可用来追踪和管理几 乎所有物理对象在工业自动化、商业自动化、交通运输控制管理、防伪等众多领域,甚至军事用途都 具有广泛的应用前景,并且引起了广泛的关注 1 引言 RFID系统一般包括读写器和电子标签(或称应答器)2个部分RFID电子标签(Tag)由芯片与天线(Antenna)组成,每个标签具有惟一的电子编码标签附在物体上以标识目标对象RFID读写器(Reader)的主要任务是控制射频模块向标签发射读写信号,并接收标签的应答对标签信息进行解码,并将信息传输到主机以供处理根据应用的不同,阅读器可以是手持式或固定式本文重点介绍的就是读写器的开发 EPC规范已经颁布第一代规范规范把标签细分为Class 0,Class 1,Class 2三种其中Class 0和Class 1标签都是一次写入多次读取标签,Class 0标签只能由厂商写入信息,用户无法修改,因而又称为只读标签,主要用于供应链管理)Class 1则提供了更多的灵活性,信息可由用户写入一次Class 0和Class 1标签采用不同的空中接口标准进行通信,因此两类标签不能互操作Class 2标签具备多次写入能力,并增加了部分存储空间用于存储用户的附加数据Class 2标签允许加入安全与访问控制、感知网络和Ad Hoc网络等功能支持目前EPCglobal正在制定第二代标签标准,即UHF Class l Generation 2(C1G2)C1G2具有随时更新标签内容的能力,保证标签始终保存最新信息EPC规范 l_0版本包括EPC Tag数据规范、Class 0(900 MHz)标签规范、C1ass 1(13.56 MHz)标签接口规范、Class l(860~930 MHz)标签射频与逻辑通讯接口规范、物理标识语言(PhysicalMarkup Language,PML) 本文重点介绍EPC Class 1读写器系统设计、数字部分设计及FPGA在数字实现上的应用由于U 频段RFID技术的应用还处在早期的发展阶段,符合EPCClass 1协议的读写器在国内还没有相关产品面世本文对相关开发有一定的参考价值 2 EPC Class lb系统设计 一个完整的RFID系统包括:读写器、天线、标签和PC机读写器完成对标签(Tag)的读写操作通过RS 232或RS 485总线完成PC机的命令接收和EPC卡号的上传图l是读写器的系统组成框图读写器组成包括与PC机的串口通信部分、单片机和FPGA组成的数字部分、射频部分RF单元实现和标签的通信,数字部分完成对射频部分的控制、回波命令解析PC机接收卡号实现上位机的控制下面对

RFID实验资料报告材料

实验报告 课程名称 RFID射频识别实验学生学院自动化学院 专业班级 15级物联网4班 学号 学生 指导教师高明琴

2017年 11 月 12 日 实验一125K H z R F I D实验 一、实验目的 1、掌握125kHz只读卡、125kHz读写卡的基本原理 2、熟悉和学习125kHz只读卡协议、125kHz读写卡协议 二、实验容与要求 学会使用综合实验平台识别125kHz只读卡卡号,并对125kHz读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 1、注意事项 切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID 读写器串口波特率为9600bps

2、环境部署 ⑴准备125K 低频RFID 模块,参考1.4.2 章节设置跳线为模式2,将模块的电源拨码开关设 置为OFF,参考1.4.3 章节通过交叉串口线将模块与电脑的串口相连,给模块接5V 电源; ⑵将模块的电源拨码开关设置为ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行RFID 实训系统.exe 软件,选项卡选择125K 模块; 3、打开串口操作 设置串口号为COMx,设置波特率为9600,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签ID 并显示在ListView 控件中,16 进制数据listview 控件显示的是16 进制标签ID,10 进制数据listview 控件显示的是10 进制标签ID,实验结果如下图; 思考题 1多卡在一起时,能否正确识别卡号?请说明原因

RFID实验报告

第一次实验 10月17日 1. 125khz硬件基本实验 1.1 125khz 时钟信号测量实验 一、实验目的 熟悉和学习iso/iec 18000-2,iso18000标准规范的从电子标签返回的时钟信号。 二、实验内容 通过示波器观测从电子标签返回的时钟clk信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用ch1 探头,地接到j22测试架,ch1探针接到j23测试架设置示波器:触发源选择ch,其余设置可以参照图5-2-12。 2、操作 打开控制软件,系统默认实验模式即为lf 125khz模式,打开串口,启动只读自动识别标签。 3、观测信号,如图5-3-1所示: 图5-3-1 解调电子标签返回的时钟信号图 1.2 125khz mod信号测量实验 一、实验目的 熟悉和学习iso/iec 18000-2,iso18000标准规范的对射频进行调制的信号。 二、实验内容 通过示波器观测微处理器对射频芯片进行调制的mod信号。 三、基本原理 负载调制的基本原理。 四、所需仪器 供电电源、示波器。 五、实验步骤 1、测试线连接 连接示波器:使用ch1 探头、ch2探头,地都接到j22测试架,ch1探针接到j23测试架,ch2接到j24测试架。 设置示波器:触发源选择ch,其余设置可以参照图5-3-2。 2、操作 打开控制软件,系统默认实验模式即为lf 125khz模式,打开串口,选择读写卡操作的读数据。 3、观测信号,如图5-3-2所示: 图5-3-2 射频调制信号图 1.3 125khz 调制解调信号测量实验 一、实验目的 熟悉和学习iso/iec 18000-2,iso18000标准规范的对射频进行调制和解调的信号。 二、实验内容 通过示波器观测射频调制的mod信号和解调的demod信号。

RFID实验报告

实验报告 课程名称 RFID射频识别实验 学生学院自动化学院 专业班级 15级物联网4班 学号 学生姓名 指导教师高明琴 2017年 11 月 12 日 实验一125K H z R F I D实验 一、实验目的 1、掌握125kHz只读卡、125kHz读写卡的基本原理 2、熟悉和学习125kHz只读卡协议、125kHz读写卡协议 二、实验内容与要求 学会使用综合实验平台识别125kHz只读卡卡号,并对125kHz读写卡进行数据读写操作,观察只读卡和读写卡协议。 三、实验主要仪器设备 PC机一台,实验教学系统一套。 四、实验方法、步骤及结果测试 1、注意事项

切记:插、拔各模块前最好先关闭电源,模块插好后再通电 RFID 读写器串口波特率为9600bps 2、环境部署 ⑴准备125K 低频RFID 模块,参考1.4.2 章节设置跳线为模式2,将模块的电源拨码开关设 置为OFF,参考1.4.3 章节通过交叉串口线将模块与电脑的串口相连,给模块接5V 电源; ⑵将模块的电源拨码开关设置为ON,此时模块的电源指示灯亮,表明模块电源上电正常; ⑶运行RFID 实训系统.exe 软件,选项卡选择125K 模块; 3、打开串口操作 设置串口号为COMx,设置波特率为9600,点击“打开”按钮执行串口连接操作; 4、寻卡操作 串口打开成功后,将125K 标签放入天线场区正上方,RFID 模块检测到标签存在后,将获取到标签ID 并显示在ListView 控件中,16 进制数据listview 控件显示的是16 进制标签ID,10 进制数据listview 控件显示的是10 进制标签ID,实验结果如下图; 思考题 1多张卡在一起时,能否正确识别卡号?请说明原因 答:多张卡在一起时,无法正确识别卡号,因为125kHz的读卡器没有采用防冲撞算法 2变卡和阅读器的相对位置和距离,观察读卡结果并解释;在卡和阅读器之间放置不同的障碍物,观察读卡结果并解释。 答:当卡和阅读器的距离超过5cm后,读卡结果并不理想,几乎读不到数据。 属薄片(如几张纸、塑料板)时,读卡结果正常;而放置金属障碍物时,读卡结果就不正常了 五、小结

超高频射频识别系统读写器设计

第28卷 第3期2005年9月 电 子 器 件 Chinese Journal of Electro n Devices   Vo l.28No.3 Sep.2005 Design of UHF RFID Interrogator ZH A NG X iao-p eng1,2,ZH U Yun-long1,L UO H ai-bo1 1.S heny ang Institute o f Au tomation,Chinese A cad emy o f S ciences,S henyang110016,China; 2.G radu ate S chool of the Chine se A cad emy o f S ciences,B eij ing100039,China Abstract:UH F RFID system is becom ing more w idespread due to its advantag e,such as fast read-w rite speed,large m em ory,long recog nition distance and simultaneous read-w rite multi-tag.This paper intro-duces the characteristic and structure and principle and r ead-wr ite method of an UHF RFID tag accorded w ith ISO18000-6Standard,and presents the solution of its interr ogator,ex patiates hardw are design of in-terro gator and flow of softw are prog ram.Its has m er its of fast read-w rite speed(single tag64bit/6ms) and hig h reco gnition rate,and long recog nition distance(≥4m)prove out as a result of practical applica-tio n. Keywords:RFID;tag;interrog ato r;UHF EEACC:7210 超高频射频识别系统读写器设计 张晓鹏1,2,朱云龙1,罗海波1 (1.中国科学院沈阳自动化研究所,沈阳110016;2.中国科学院研究生院,北京100039) 摘 要:超高频射频识别系统具有读写速度快、存储容量大、识别距离远和同时读写多个标签等特点,已经在物流等领域得到越来越广泛的应用。介绍了符合I SO18000-6标准的超高频R FID电子标签主要特点、结构、工作原理及读写方法,提出了相应读写器的解决方案,重点阐述了读写器的硬件设计及软件程序流程。实际应用结果表明该读写器读写速度快(单个标签64bit/6ms)、识别率高,识别距离远(≥4m)。 关键词:射频识别;标签;读写器;超高频 中图分类号:TM931 文献标识码:A 文章编号:1005-9490(2005)03-0542-04 射频识别(RFID,Radio Frequency Identifica-tio n)技术是一种新兴的自动识别技术。它是利用无线射频方式进行非接触双向数据通信,以达到目标识别并交换数据的目的。可用来跟踪和管理几乎所有的物理对象,在工业自动化、商业自动化、交通运输控制管理、防伪及军事等众多领域都有广泛的应用前景。按照工作频段的不同,RFID系统还可以分为低频(135kHz以下)、高频(13.56M Hz)、超高频(860~960MHz)和微波(2.4GHz以上)等几类[1~2]。目前大多数RFID系统为低频和高频系统,但超高频(U HF)频段的RFID系统具有操作距离远、通讯速度快、成本低、尺寸小等优点,更适合未来物流、供应链领域的应用,也为实现“物联网”提供了可能。因此超高频RFID系统的发展是当前RFID系统 收稿日期:2005-01-30 基金项目:中科院先进制造基地创新项目(F040210) 作者简介:张晓鹏(1979-),女,硕士研究,研究方向为RFI D软硬件系统及其应用,zhang xp@https://www.wendangku.net/doc/1011440330.html,; 朱云龙(1967-),男,研究员,博士生导师,中科院沈阳自动化研究所先进制造技术实验室主任,主要研究方向为CIM S、分布式智能技术、协同制造理论与方法以及SCM/ERP/CRM系统管理软件的开发等; 罗海波(1967-),男,研究员,硕士生导师,主要研究方向为模式识别与图像处理、DSP系统设计、实时信号处理系统。

rfid实验报告

RFID原理与应用 实验报告 2016– 2017学年第二学期 级物联网工程专业 课程名称 RFID原理与应用 学号 姓名 指导教师王超梁 2017年月日

实验一RFID通信系统编解码和调制解调仿真 一、实验目的 射频识别技术是一种通过高频电磁破实现物体识别的无线电技术,一个完整的射频识别系统由射频识别阅读器,射频识别标签和射频识别软件系统三大部分组成,根据工作频段的不同,RFID系统编解码方式、调制解调方式不同,不同的编解码和调制解调方式可以提高RFID系统的通信效率,分析与设计RFID系统中不同编解码算法和调制解调方式具有很强的实用性。分析RFID系统不同编解码算法和调制解调方式,并进行仿真,比较不同编解码算法和调制方式对波形的影响,同时对现有算法进行优化和改进,从而提高RFID系统的效率。 二、实验内容 1. RFID实验箱各模块的划分和作用; 电子标签各种编解码算法的仿真; 3. RFID电子标签调制解调的仿真; 4. 记录并截图电子标签各编解码算法和调制解调的波形。 三、预备知识 了解RFID的通信模型和原理;了解调制解调和编解码算法及波形;了解RFI实验箱各模块的功能;了解RFID系统的组成和各部分的作用。 四、实验设备 1. 硬件环境配置 计算机:Intel(R) Pentium(R) 及以上; 内存:1GB及以上; 实验设备:韩柏电子RFID实验箱一套; 2. 软件环境配置 操作系统:Microsoft Windows 7 Professional Service Pack 1; RFID开发环境:AVR Studio,Miniscope。 五、实验分析 1.采用Manchester编码方式,对编码数据和解码数据波形的对比。 2.采用AM调制方式(AM/FM/PM),对数据ASK调制和解调波形的对比。

远程超高频RFID读写器

远程超高频RFID读写器(USB接口1-6M) 描述: 远距离读写器自动识别是信息数据自动识读、输入的重要方法和手段,它是以计算机技术和通讯技术发展为基础的一项综合性科学技术。自动识别技术在近几十年中取得了长足的发展,初步形成了一个包括条码技术、磁条(卡)技术、射频技术、光字符识别技术、生物识别技术、远距离读写器等集计算机、光、机、电、通讯等技术为一体的高新科技技术。 通常,远距离读写器标签内部所需要的能量比阅读器小得多,这就要求阅读器的接收灵敏度很高。在某些系统中,远距离读写器中的接收和发射相互独立,特别是上行信号和下行信号频率不同时经常采用这样的结构。 技术上讲,有可能选择对不同应用全合适的功率值,但有时必须服从一些人为的限制。通常100mW~500mW的发射功率适用于各种RFID远距离读写器系统。在不同的地区、不同领域远距离读写器必须服从无线电电波管理委员会的规定。 SOLID-399X远距离读写器具有多协议兼容、读取速率快、多标签识读、线极化天线、防水型外观设计等优点,可广泛的应用于各种RFID系统中,非常适合客户基于该硬件平台做二次开发。 SOLID-399X远距离读写器典型的应用场合有: ☆物流和仓储管理:物品流动与仓储管理以及邮件、包裹、运输行李等的流动管理; ☆智能停车场管理:停车场的管理与收费自动化; ☆生产线管理:生产工序定点的识别; ☆产品防伪检测:利用标签内存储器写保护功能,对产品真伪进行鉴别; ☆其它领域:在俱乐部管理、图书馆、学生学籍、消费管理、考勤管理、就餐管理、泳池管理等系统都得到了广泛的使用. 使用说明 当远距离读写器上电并连接上PC后,PC上位机软件将能够识别到读写器,此时代表读写器已经正常工作,当标签接近远距离读写器时,上位机软件将显示该标签的信号强度及标签ID。本RFID读写器可以同时读取多个标签ID。 该远距离读写器使用射频感应读取标签数据,使用读写器时应尽量避免与金属接近,当读写器靠近金属时,射频电波将被金属吸收屏蔽,而会导致读写器读卡距离缩短。同时读写器安装位置应远离马达(电机)、变压器等设备,以减少对读写器的影响。

超高频 RFID 读写器设计原理

超高频RFID 读写器设计原理 摘要:RFID技术是一种非接触的自动识别技术,通过无线射频的方式进行非接触双向数据通信,对目标加以识别并获取相关数据。RFID系统通常主要由电子标签、读写器、天线3部分组成。读写器对电子标签进行操作,并将所获得的电子标签信息反馈给PC机。 引言 RFID技术是一种非接触的自动识别技术,通过无线射频的方式进行非接触双向数据通信,对目标加以识别并获取相关数据。RFID系统通常主要由电子标签、读写器、天线3部分组成。读写器对电子标签进行操作,并将所获得的电子标签信息反馈给PC机。射频识别技术以其独特的优势,逐渐被广泛应用于生产、物流、交通运输、防伪、跟踪及军事等方面。按工作频段不同,RFID系统可以分为低频、高频、超高频和微波等几类。目前,大多数RFID 系统为低频和高频系统,但超高频频段的RFID系统具有操作距离远,通信速度快,成本低,尺寸小等优点,更适合未来物流、供应链领域的应用。尽管目前,RFID超高频技术的发展已比较成熟,也已经有了一些标准,标签的价格也有所下降;但RFID超高频读写器却有变得更大,更复杂和更昂贵的趋势,其消耗能量将更多,制造元件达数百个之多。然而,这里的设计采用高度集成的R1000,可以解决上述问题,既可降低芯片设计中的复杂性和生产成本,又能使制造商制造出体积更小,更有创新性的读写器,从而开拓新的RFID应用领域。 1 读写器硬件结构设计 该设计选用W78E465作为主控模块,IntelR1000收发器作为射频模块。该设计可以作为手持终端,并用RS 232串行通信模块和电平转换接口MAX232与上位机相连。系统硬件原理见图1. 1.1 主控模块 W78E365是具有带ISP功能的FLASH EPROM的低功耗8位微控制器,可用于固件升级。它的指令集与标准8052指令集完全兼容。W78E365包含64 KB的主ROM,4 KB的辅助FLASH EPROM,256 B片内RAM;4个8位双向、可位寻址的I/0口;一个附加的4位I/O口P4;3个16位定时/计数器及1个串行口。这些外围设备都由有9个中断源和4级中断能力的中断系统支持。为了方便用户进行编程和验证,W78E365内含的ROM允许电编程和电读写。一旦代码确定后,用户就可以对代码进行保护。

02实验2 RFID超高频读写器参数设置及功率频率对标签读取距离影响

实验2 RFID超高频读写器设置及功率频率对标签读取距离影响 班级:13物联网工程1班座号学号:20130865129 姓名:王智源任课教师:余文琼课程名称:RFID(射频识别)技术日期:2016.3.7 实验目的:熟悉RFID超高频读写器设置与使用,了解超高频读写器各参数的含义和设置方法,探究读写器功率及频率对标签读取距离影响 实验设备:每2人一组,每组一个RFID实验箱(RF-ST001)、一台计算机 实验材料: 1、超高频读写器模块1块、超高频读写器天线1块(白色方块)、超高频标签2条 2、连接线:电源线1条、USB转串口线(方口线)1条、超高频馈线1条 实验软件: 读写器控制软件RFIDReader、安装设置好USB转串口驱动程序 软件所在位置: ftp://ywq:123456@218.5.241.13,教师——教学辅助材料——0RFID(射频识别)技术准备知识: 国际上目前还没有统一的RFID编码规则,日本支持的UID标准和欧美支持的EPC标准是当今影响力最大的两大标准。 1.EPC的Gen1协议 Gen1标准是EPCglobal的前身Auto-IDCenter制定的。EPC的Gen1是第一代之意,Gen 是generation(世代)的缩写。它包括Class0协议和Class1协议,其中Class0协议下的标签是只读的,不可以写入;而Class1协议下的标签虽是可读写的,但是只能写一次,写完后就成为只读标签,这两种协议下的标签都不具有保密性。Class0和Class1协议都是EPC 的标准协议。 2.EPC的Gen2协议 Gen2是EPCglobal制定的Class1UHF频段射频识别空中接口的第二代标准。在Gen2协议下的标签可以重复读写,并且增加了保密性能。此后EPCGlobal和国际标准化组织合作以该标准为基础出台了ISO18000-6C国际标准。 目前几乎所有的标签厂商停止Gen1协议的超高频芯片的开发和生产,超高频领域市场上主流产品均为符合C1G2协议产品。 实验内容与要求: 1、超高频读写器的添加与设置:掌握各参数设置与使用,了解各参数的意义 2、改变RFID 超高频读写器的功率,观察对应功率下标签最大读取距离的变化趋势(教 师考核点1) 3、改变RFID 超高频读写器的频率,观察对应频率下标签最大读取距离的变化趋势(教 师考核点2) 4、将自己做的实验报告提交到院FTP指定处: 实验报告将为你未来工作积累经验,请认真总结你的经验和教训,将实验报告写出自己的特点,这将为以后留下最适合自己特点的宝贵资料 实验步骤:(请学生将以下实验步骤补充完整,并截几幅你认为重要的图,插入相应的位置,特别是容易出错的或出现标志性结果的图,并加以简单的文字说明) 一、读写器的添加与设置: 1.硬件连接:确认超高频读写器已用馈线连接超高频天线(白色方形)、已用USB连

RFID实验报告(读写一体)

郑州轻工业学院 实验报告名称:《课程名称》综合实验 院(系):计算机与通信工程学院 专业班级:网络工程(物联网技术13-01)指导教师: 时间:2015-2016(1)

郑州轻工业学院 实验报告名称:《课程名称》综合实验 院(系):计算机与通信工程学院 专业班级:网络工程(物联网技术13-01)姓名: 学号: 指导教师:杨永双陈燕 成绩评定表 时间:2015-2016(1)

目录 1实验任务和目的 (7) 2实验过程和结果............................................................................................ 错误!未定义书签。 2.1实验过程 ........................................................................................... 错误!未定义书签。 2.2实验结果 ........................................................................................... 错误!未定义书签。3实验总结和心得............................................................................................ 错误!未定义书签。4附录(代码)................................................................................................ 错误!未定义书签。

提高RFID读写器的读取效果的解决办法

提高RFID读写器的读取效果的解决办法 1 前言 超高频RFID系统空中接口标准包括ISO/IEC系列,F2C系列,以及中国正在研究制定的国家标准,数字接收机可实现软件升级和多协议支持,相比模拟接收机具备易于调试、应用灵活的优势,因而在超高频姗读写器中得到了广泛应用.提高超高频RFID读写器的读取效果一直是近年来的研究重点.在经过详尽分析和实验验证后,本文给出相关问题的解决办法。 超高频RFID读写器是与标签之间采用反向散射原理完成通信,根据当前主要的UHF频段空中接口标准ISO/IEC 18000-6C,标签在无源状态下以同频半双工方式通讯.基本的通信过程是,读写器采用幅移键控(ASK)等方式来调制载波,在特定频率的信道上将信息发送给一个或多个标签.之后读写器仍然需要发射CW载波,在指定的时间内来等待标签的应答。 零中频架构具有不需要中频环节,能够减小功耗,降低电路复杂度,易于调试等优点.零中频RFID数字接收机电路框图如图1所示.天线接收进来的射频信号通过环行器后直接进入下变频器,转换完成的基带信号通过LNA放大、低通滤波,输出两路I、Q基带信号交由基带进行数字信号处理。 图1 零中频RFID数字接收机电路框图 读写器的通信效果受到发射机输出功率、接收机灵敏度、收发天线增益、收发隔离度、标签功耗、标签天线增益,以及环境状况等参数的影响.其中,发射端最大有效全向发射功率(EIRP)受到国家无线电发射设备管制,收发隔离度受到环行器等器件隔离度限制(一般只能达到25dB),在标签、天线和环境等参数一定的条件下,接收机的性能对读写器整机性能起决定性作用。 2 接收机性能影响因素分析 超高频RFID读写器接收机工作时也需要发射机发出无调制的载波.接收机接收到的包括标签反射信号、天线噪声、环境反射、发射机直接耦合,以及接收机自身的噪声等。在标签能获得足够工作能量的前提下,读写器的工作距离主要取决于标签反向散射信号在读写器的解调输出能否满足最低信噪比要求.根据文献[3],可用下面的公式来标示读写器决定的最大工作距离:

相关文档