文档库 最新最全的文档下载
当前位置:文档库 › 不等式与不等式组经典习题3(含答案)

不等式与不等式组经典习题3(含答案)

不等式与不等式组经典习题3(含答案)
不等式与不等式组经典习题3(含答案)

一.选择题

1.下列各式,是一元一次不等式的为()

A.x+2y+2020>0

B.-x>2009

C.2009/y-5<0

D.(x-2008)(x+2009)>0

2.下列说法中错误的是()

A.10不是x≥11的解

B.0是x<1的解

C.x>1是不等式x+2008>2008

D.x=-2009是x+2008<0

3.下列几种说法中正确的是()

A.如果a>b,则ac2>bc2(c≠0)

B.如果ax>-a,则x>-1

C.如果a

D.如果a0

4.下列数值:-20,-15,-10,0,15,20中,能使不等式x+30>20成立的数有()

A.2个

B.3个

C.4个

D.5个

5.不等式4(2x+m)>1的解集是x>3,则m的值为()

A.-2

B.-1/2

C.2

D.1/2

6.a为有理数且a≠0,那么下列各式一定成立的是()

A.a2+1>1

B.1-a2<0

C.1+1/a>1

D.1-1/a>1

7.已知关于x的不等式组 x<2 ,无解,则m的

x>m 取值范围是()

A.m<2

B.m≤2

C.m>2

D.m≥2

8.若a2009b-2009a的解集为()

A.x>-1

B.x>1

C.x<-1

D.x<1

9.若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m得取值范围是()

A.m>-1.25

B.m<-1.25

C.m>1.25

D.m<1.25

10.若a≠0,则下列不等式成立的是()

A.-2a<2a

B.-2a<2(-a)

C.-2-a<2-a

D.-2/a<2/a

11.下列不等式中,对任何有理数都成立的是()

A.x-3>0

B.|x+1|>0

C.(x+5)2>0

D.-(x-5)2≤0

12.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。下列两个不等式是同解不

等式的是()

A.-3x<36与x>-12

B.1/3·x≤1与x≥3

C.2x-2009<6x与-2009≤4x

D.-1/2 x+3<0与1/3·x>-2

13.不等式1/4(2x+m)>1=m(3-x)-5x的解是负数,则m得取值范围是()

A.-2

B.-1/2

C.2

D.1/2

14.不等式组-x≤1 的解集是()

x-2<3

A.x≥-1

B.x<5

C.-1≤x<5

D.x≤-1或x>5

15.若a<0,则关于x的不等式|a|x

A.x<1

B.x>1

C.x<-1

D.x>-1

16.关于x的方程5x-2m=-4-x的解在2与10之间,则m得取值范围是()

A.m>8

B.m<32

C.8

D.m<8或 m>32

17.小明准备用21元钱买笔和买笔记本,已知每支笔3元,每个笔记本2.2元,他买了两个笔

记本,请你帮他算一算,他最多还可以买笔()

A.4支

B.5支

C.6支

D.7支

18.班委会决定元旦晚会上给每一位同学赠送礼品:音乐贺卡或鲜花,已知音乐贺卡每张5元,鲜花每束2元,全班共40人,班长用150元钱最多只能买音乐贺卡()

A.23张

B.30张

C.14张

D.40张

19.某种出租车的收费标准为起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计)。某人乘坐这种出租车从甲地到乙地共付车费19元,那么甲地到乙地距离最大值是()

A.5千米

B.7千米

C.8千米

D.15千米

20.小红家离学校1600米,一天早晨由于有事耽误,结果吃完饭时只差15分钟就上课了,忙中出错,出门时又忘了带书包,结果回到家又取书包共用了3分钟,只好坐小汽车去上学,小汽车的速度是36千米/时,小汽车行驶了1分3秒时又发生堵车,她等了半分钟后,路还没有畅通,于是下车又开始步行,问:小红步行速度至少是多少时,才不至于迟到()

A.60米/分 B.70米/分 C.80米/分 D.90米/分

二.填空题

1.当a 时,4a+2010/6表示正数。

2.如果点A(x-2008,-2009)在第三象限,那么x的取值范围是

3.如果一个三角形的第三条边长分别为15、17、x,则x得取值范围是

4.不等式3x-2≥4(x-1)的所有非负整数解得和等于

5.若式子4x-3/2的值不大于3x+5的值,则x的

6.若不等式组1

x>m

7.若不等式组 2x-a<1,的解集为-23值等于

x+2>0

8.不等式组 x-4≥0 的解集是

x-6≤0

9.不等式组. x>a, 的解集为x>3,则a的取值范围是

3x+2<4x-1

10.关于x的不等式2x-a≤-3的解集如图所示,则a的值是

11.已知|2x-24|+(3x-y-m)2=0中,0

12小聪与小明玩跷跷板,大家都不用力时,跷跷板左低、右高,小聪的身体重量为p(kg),书包的重量为2kg,小明的身体重q(kg),怎样表示p、q之间的关系呢

13.一种药说明书上写着:“每日用量60―120mg分3-4次服用”一次服用这种要的剂量a的范围是

14.小红家每月水费都不少于15元,自来水公司的收费标准如下:若每户每月用水不超过5立

方米,则每立方米收费3元;若每户每月用水超过5立方米,则超出部分每立方米收费5元,设小红家每月的用水量是x吨,则可列出不等式

15.一次普法知识竞赛共有30道题,规定答对一道题得4分,答错或不答一道题-1分,在这次竞赛中,小明获得优秀奖(90或90分以上),则小明至少答对道题。

16.某汽车厂改进生产工艺后,每天生产的汽车比原来每天的产量多6辆,那么15天的生产就超过原来20天的产量,则原来每天最多能生产辆汽车。

17.一位老师说,他班学生的一半在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还生不足6名学生在操场上踢足球,则这个班的学生共有多少人

18.定义一种新运算:aΔb=a·b-a+b+1,如果3Δ4=3×4-3+4+1,试比较大小:(-3)Δ4 4Δ(-3).(填“<”,”=”,”>”)

三、解答题

(1)解不等式x-3/2>x+6/5

(2)解不等式3(x+2)-1>8-2(x-1),并把它的解集在数轴上表示出来.

(3)解不等式组 5x-2>3(x+1), 并求其正数解。

1/2·x-1≤7-3/2·x

(4)求不等式组的整数解 x-1/2 +1≥x 的整数解。

x+2>0

(5)解不等式组 x+3/2≥x+1, 并求出该不等式组的整数解的和.

1-3(x-1)<8-x

(6)如果方程组3x+y=2k+3,的解为x、y,k≤9时,求x-y的取值范围.

x+3y=5。

四、综合运用题

(1)已知不等式5x-2<6x+1的最小正正数解是方程3x-3ax/2=6的解,求a的值。

(2)k为何值时,等式|-24+3a|+(3a-k/2-b) 2=0中的b是负数?

(3)根据等式和不等式的基本性质,我们可以得到比较两个数大小的方法:若A-B>0,则A>B;若A-B=0,则A=B;若A-B<0,则A

(4)是否存在这样的正数a,使方程组3x+4=a,的解是一对非负数。

4x+3y=5

五、应用题

1.在一次爆破中,用一条0.5米长的导火索来引爆炸药,导火索的燃烧速度为0.5厘米/秒,引爆员点着导火索后,至少以每秒多少米的速度才能跑到600米以外(包括600米)的安全区域?2某车间生产机器零件,若每天预定计划多做一件,8天所做零件的总数超过100件;若每天

比预定计划少做一件,那么8天说做零件的总数不到90件,问预定计划每天做多少件?(件数是正整数)

3.哇哈哈矿泉水每瓶售价1.2元,现甲乙两家商场给出优惠政策:甲商场全场九折,乙商场20瓶以上的部分8折。若你是消费者,选哪家商场比较合适?

4.有一群猴子,一天结伴去摘桃子。分桃子时,如果每只猴子分3个,那么还剩下59个;如果每个猴子分5个,就都分得桃子,但有一个猴子分得的桃子不够5个。你能求出有几只猴子,几个桃子吗?

5.小记者团有48人要在招待所住宿,招待所一楼没住客的客房比二楼少5间,如果全部住在一楼,每间住5人,则住不满;每间住4人,则不够住。如果全部住在二楼,每间住4人,则住不满;每间住3人,

则不够住。招待所一楼和二楼各有几间尚未住客的客房?

一元一次不等式和一元一次不等式组(三)答案:

一、选择题

1.B

2.C

3.A

4.C

5.A

6.A

7.D

8.D

9.B 10.B

11.B 12.A 13.A 14.C 15.C 16.C 17.B 18.B 19.A 20.B

二、填空题

1.a>1005/2

2.x<2008

3.2

4.3

5.x≤13/2

6.m≤2

7.-3/2 8.4m>35 12.p+2>q

13.20≤a≤30 14.3×5+5(x-3)≥15 15.24 16.17 17.55 18.>

三、解答题

1.解:5(x-3)>2(x+6) 2解:3(x+2)-1>8-2(x-1)

5x-15>2x+12 3x+6-1>8-2x+2

3x>27 5x>5

x>9 x>1 画图略3.解:5x-2>3(x+1) ① 4.解:x+2>0①

x/2-1≤7-3x/2②x-1/2+1≥x②

由①得x>5/2 由①得x>-2

由②得x≤4 由②得x≤1

所以5/2

5解:x+3/2≥x+1① 6.解:3x+y=2k+3①

1-3(x-1)<8-x②x+3y=5②

由①得x≤1 ②×3-①得

由②得x>-2 8y=12-2k

所以-2

所以x的整数解有-1,0,1 把y=12-2k/8代入②得

为-1+0+1=0 x+3(12+2k/8)=5

X=3k/4+1/2

x-y=3k/4+1/2-12-2k/8=k-1

因为k≤9所以k-1≤8

四、综合运用题

1.解. 5x-2<6x+1

2.解:因为|-24+3a|+(3a-k/2-b) 2=0

解得x>-3 所以|-24+3a|=0解得a=8

所以x的最小整数值为x=-2 所以(3a-k/2-b) 2=0

所以方程3x-3ax/2=6的解为x=-2 解得b=24-k/2

把x=-2代入方程得因为b是负数所以b<0

-6+3a=6解得a=4 即24-k/2<0

所以a得值为4 所以k>48

3.解2x2-2x+2009-(x2-2x+2008) 4解:.3x+4=a①

=2x2-2x+2009- x2+2x-2008 4x+3y=5②

= x2+1 由①得x=a-4/3③,把③代

因为x2≥0 所以x2+1≥1 入②得y=5/3-(4a-16)/9

所以2x2-2x+2009> x2-2x+2008 所以x=a-4/3 y=5/3-(4a-16)/9

因为x<0 y<0所以a-4/3<0

5/3-(4a-16)/9<0 所以1/4

五、应用题

1解:设至少以每秒x的速度才能到达安全区域

0.5厘米/秒=0.005秒

0.5x、0.005≥600 所以x≥6

所以,至少以每秒6的速度才能到达安全区域

2.解:设预定计划每天做x件。8(x+1)>100 解得11.5

8(x-1)<90

因为x为正整数所以x=12,所以预计每天做12件3.解:设买x瓶矿泉水

当甲<乙时,1.2×0.9x<1.2×20+0.8(x-20)×1.2(x>20),

X<160/199(不符合实际)

当乙<甲时,1.2×20+0.8(x-20)×1.2<1.2×0.9x(x>20),

x>20

所以,当买20瓶以下时选甲商场,当买余20瓶时选乙商场4.解:设有猴子x只,则有桃3x+59

3x+59<5x 解得59/2

3x+59>5(x-1)

所以3x+59=3×30+59=149

所以有猴子30只有桃子149个

5.解:设一楼有空房x间二楼有空房(x+5)间

5x>48>4x 所以9.6

4(x+5)>48>3(x+5)

所以x=10 所以x+5=15

所以,招待所一楼有空房10间二楼有空房15间.

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

均值不等式测试题(含详解)

均值不等式测试题 一、选择题 1.已知a 、b ∈(0,1)且a ≠b ,下列各式中最大的是( ) A.a 2+b 2 B.2ab C.2a b D.a +b 2.x ∈R ,下列不等式恒成立的是( ) A .x 2+1≥x B .11 2+x <1 C .lg(x 2+1)≥lg(2x) D .x 2+4>4x 3.已知x+3y-1=0,则关于y x 82+的说法正确的是( ) A.有最大值8 B.有最小值22 C.有最小值8 D.有最大值22 4.A设实数x ,y ,m ,n 满足x 2+y 2=1,m 2+n 2=3那么mx+ny 的最大值是( ) A.3 B.2 C.5 D.2 10 5.设a>0,b>0,则以下不等式中不恒成立的是( ) A.(a+b )(b a 1 1+)≥4 B.a 3+b 3≥2ab 2 C.a 2+b 2+2≥2a+2b D.b a b a -≥- 6.下列结论正确的是( ) A .当x>0且x ≠1时,lgx+x lg 1≥2 B .当x>0时,x +x 1≥2 C .当x ≥2时,x + x 1 ≥2 D .当00且a(a+b+c)+bc=324-,则2a+b+c 的最小值为( ) A .13- B .13+ C .223+ D .223- 二.填空题: 8.设x>0,则函数y=2- x 4 -x 的最大值为 ;此时x 的值是 。 9.若x>1,则log x 2+log 2x 的最小值为 ;此时x 的值是 。 10.函数y=1 4 2-+-x x x 在x>1的条件下的最小值为 ;此时x=_________. 11.函数f(x)=2 42 +x x (x ≠0)的最大值是 ;此时的x 值为 _______________.

《一元一次不等式组的应用》典型例题

《一元一次不等式组的应用》典型例题 例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节B A,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排B A,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少? 例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果? 例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔? 例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间? 例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友? 例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg. (1)设生产x件A种产品,写出x应满足的不等式组; (2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

一元一次不等式组练习题及答案(经典)资料

一元一次不等式组 一、选择题 1、下列不等式组中,解集是2<x <3的不等式组是( ) A 、?? ?>>2 3 x x B 、???<>23x x C 、?? ?><2 3 x x D 、?? ?<<2 3 x x 2、在数轴上从左至右的三个数为a ,1+a ,-a ,则a 的取值范围是( ) A 、a < 12 B 、a <0 C 、a >0 D 、a <-12 3、(2007年湘潭市)不等式组10235 x x +?? +?? ,②4x >,③2x <,④21x ->-,从这四个不 等式中取两个,构成正整数解是2的不等式组是( ) A 、①与② B 、②与③ C 、③与④ D 、①与④ 7、如果不等式组x a x b >?? B. 109m > C. 1910m > D. 10 19 m > 二、填空题 9、若y 同时满足y +1>0与y -2<0,则y 的取值范围是______________. 10、(2007年遵义市)不等式组30 10x x -+<121 m x m x 无解,则m 的取值范围是 . 13、不等式组15x x x >-?? ????>? 的解集为x >2,则a 的取值范围是 _____________. A B C D

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

不等式与不等式组经典习题3(含答案)

一元一次不等式和一元一次不等式组(三) 一.选择题 1.下列各式,是一元一次不等式的为() A.x+2y+2020>0 B.-x>2009 C.2009/y-5<0 D.(x-2008)(x+2009)>0 2.下列说法中错误的是() A.10不是x≥11的解 B.0是x<1的解 C.x>1是不等式x+2008>2008 D.x=-2009是x+2008<0 3.下列几种说法中正确的是() A.如果a>b,则ac2>bc2(c≠0) B.如果ax>-a,则x C.如果a0 4.下列数值:-20,-15,-10,0,15,20中,能使不等式x+30>20成立的数有() A.2个 B.3个 C.4个 D.5个 5.不等式4(2x+m)>1的解集是x>3,则m的值为() A.-2 B.-1/2 C.2 D.1/2 6.a为有理数且a≠0,那么下列各式一定成立的是() A.a2+1>1 B.1-a2<0 C.1+1/a>1 D.1-1/a>1 7.已知关于x的不等式组 x<2 ,无解,则m的 x>m 取值范围是() A.m<2 B.m≤2 C.m>2 D.m≥2 8.若a2009b-2009a的解集为() A.x>-1 B.x>1 C.x<-1 D.x<1 9.若方程3m(x+1)+1=m(3-x)-5x的解是负数,则m得取值范围是() A.m>-1.25 B.m<-1.25 C.m>1.25 D.m<1.25 10.若a≠0,则下列不等式成立的是() A.-2a<2a B.-2a<2(-a) C.-2-a<2-a D.-2/a<2/a 11.下列不等式中,对任何有理数都成立的是() A.x-3>0 B.|x+1|>0 C.(x+5)2>0 D.-(x-5)2≤0 12.如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。下列两个不等式是同解不 等式的是() A.-3x<36与x>-12 B.1/3·x≤1与x≥3 C.2x-2009<6x与-2009≤4x D.-1/2 x+3<0与1/3·x>-2 13.不等式1/4(2x+m)>1=m(3-x)-5x的解是负数,则m得取值范围是() A.-2 B.-1/2 C.2 D.1/2 14.不等式组-x≤1 的解集是() x-2<3 A.x≥-1 B.x<5 C.-1≤x<5 D.x≤-1或x>5 15.若a<0,则关于x的不等式|a|x1 C.x<-1 D.x>-1 16.关于x的方程5x-2m=-4-x的解在2与10之间,则m得取值范围是() A.m>8 B.m<32 C.832

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

均值不等式的应用(习题+答案)

均值不等式应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则 ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2(2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

均值不等式含答案

课时作业15均值不等式 时间:45分钟满分:100分 课堂训练 5 3 1.已知-+-=l(.r>0,)>0),则小的最小值是( ) A V 【答案】 当且仅当3x=5y时取等号. 4 2?函数f(x)=x+~+3在(一8,一2]上( ) x A.无最大值,有最小值7 B.无最大值,有最小值一1 C.有最大值7,有最小值一1 D.有最大值一1,无最小值 【答案】D 4 【解析】Vx^-2, :.f(x)=x+~+3 ?V = __(r)+(—羽+3W_2 寸(-弓+3 4 =—1,当且仅当一x=—即x=—2时,取等号,

有最大值一1,无最小值.

1 4 3?己知两个正实数小y 满足x+y=4,则使不等式三+^上加恒 兀y 成立的实数m 的取值范围是 _____________ . 【答案】(-8,計 【分析】 对于本题中的函数,可把x+1看成一个整体,然后 将函数用x+1来表示,这样转化一下表达形式,可以暴露其内在的 形式特点,从而能用均值定理来处理. 【解析】因为x>—1, 所以x+ l>0. “ r ?+7x+10 (X +1)2+5(X +1)+4 所以尸x+1 = 吊 4 / f+D+吊+5N2 屮 +1)?苗+5=9 4 当且仅当x+l= 勒,即X=1时,等号成立. mx+n = t,那么/(X )与g(x)都可以转化为关于t 的函数? 课后作业 一、选择题(每小题5分,共40分)???当x=\时, 工+7x+l° 灯仆-1 — $ 函数〉'一 丫+1 (x>—1),取侍取:小值为9. 【规律方法】 形如 f(x) — mx _^n (加工°, dHO)或者 g(x) — 【解析】 斤胃字E+芥沁+树+2胡畔 4. 求函数y= 以+7卄10 ~x+1 (Q-1)的最小值. mx+n

不等式组经典题型解析

不等式组经典题型解析 热身题: 解不等式组?? ?>+≤--x x x x 34271(3) 类型一:不等式(组)的特殊解 例1、解不等式组?? ?+<+--≥+) 1(21)1(323x x x x ,并写出不等式组的整数解. 变式1 若不等式组?????-><+)3(211 32x x x 的整数解是关于x 的方程2x-4=ax 的解,求a 的值. 类型二:不等式组中待定系数的值或取值范围 例2、若不等式k x k x -≥-)321(的解集为2 1-≥x ,求k 的值.

例3、若不等式组?? ?<->-m x x x )1(312的解集为x <2,那么m 的取值范围是( ) A 、m =2 B 、m >2 C 、m <2 D 、m ≥2 例4、若关于x 的不等式组?? ?≤-<-1 270x m x 的整数解共有4个,则m 的取值范围是 . 变式2 如果不等式(m -8)x >8-m 的解集是x <-1,那么有( ) A 、m >8 B 、m <8 C 、m =8 D 、m ≠8 变式3 若不等式组???>+<-00a x b x 的解集为2->-2210x x a x 无解,则a 的取值范围( ) A 、a ≥1 B 、a >1 C 、a ≤-1 D 、a <-1 变式5 若关于x 的方程2x -m =3的解大于0,则m 的取值范围是 变式6 若关于x 的不等式组?? ?<->-1 02a x x 有解,则a 的取值范围是 变式7 若关于x 的不等式3x-a≤0只有两个正整数解,则a 的取值范围为 .

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

均值不等式应用全面总结+题型总结(含详细解析)

均值不等式应用全面总结+题型总结(含详细解析) 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则 2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈ ,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取“=”);若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正 所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--??231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:设2 3 0< -x ∴2922322)23(22)23(42 =?? ? ??-+≤-?=-=x x x x x x y 当且仅当,232x x -=即?? ? ??∈= 23,043x 时等号成立。 技巧三: 分离 例3. 求2710 (1)1 x x y x x ++= >-+的值域。 解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。 当 ,即 时,4 21)591 y x x ≥+? =+((当且仅当x =1时取“=”号)。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 22(1)7(1+10544=5t t t t y t t t t -+-++==++) 当,即t=时,4 259y t t ≥?=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为 ()(0,0)() A y mg x B A B g x =+ +>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。 例:求函数22 4 y x = +的值域。 24(2)x t t +=≥,则2 24 y x = +221 4(2)4 x t t t x =+=+≥+

相关文档
相关文档 最新文档