文档库 最新最全的文档下载
当前位置:文档库 › 测量数据批计算在有砟轨道大机养道中的应用(改)

测量数据批计算在有砟轨道大机养道中的应用(改)

测量数据批计算在有砟轨道大机养道中的应用(改)
测量数据批计算在有砟轨道大机养道中的应用(改)

测量数据批计算在有砟轨道大机养道中的应用中铁十四局集团第五工程有限公司周可艾张福军

【内容提要】本文论述在有砟轨道大机养道期间,利用全站仪现场采集轨道坐标和高程数据,通过轻松测量软件批计算功能快速计算出待调轨道的起道量和拨道量,提供给大机现场捣固作业。工程实践证明,该方法具有操作简便、效率高、计算速度快等特点,同时具有测量精度高,减少人为误差的优点,值得在新建或改建时速160km/h及以下的有砟轨道大机养道施工中推广。

【关键词】有砟轨道、批计算大机养道

1.引言

新建或改建有砟线路在钢轨铺设完成后,为了调整钢轨的的平顺性达到设计要求,具备开通条件,需要进行多次大机捣固养道作业。大机捣固作业前需要测量人员尽快测量出轨道的空间位置,准确计算轨道的起道量和拨道量,通过大养机将轨道调整到设计位置,本文结合成绵乐铁路客运专线(成都东站至成都南站区间)的施工,对测量数据批计算的方法进行阐述。

2.工程概况

成绵乐高速铁路客运专线,起于成都东站,向北经广汉、德阳、绵阳等至江油,向南经成都南站、双流机场、眉山、青神、乐山等最终抵达峨眉山站。成绵乐高速铁路客运专线为双线电气化铁路,采用8编的CRH-2动车组,实现公交化,是西南地区首条高速铁路客运专线。

十四局集团公司承担成绵乐客运专线CMLZQ-4标段的施工,起止里程为DK136+720~DK171+550,正线全长35.8km,总投资46.77亿,线路基本上顺着成都市外环线和机场路平行设置。

成都东站至成都南站区间正线设计为有砟线路,设计时速160km/h,起止里程为DK157+490~DK163+300,区间长度5.81km。

3.作业前准备工作

3.1测量仪器和人员配置

(1).瑞士徕卡 LEICA TPS1201+ 全站仪一台

(2).GEB171外挂电池一块

(3).自制卡具棱镜

(4).测量三人

(5).笔记本电脑和打印机各一台

图1 自制卡具棱镜

3.2 线性参数输入

双击打开轻松测量软件,点击新建项目,输入新建项目名称成都东站至成都南站区间,点击确定,如图2所示。

表1新建项目

点击工程,选择编辑线路参数,依次输入平曲线参数、竖曲线参数及断链等。

表2平曲线参数输入

表3竖曲线参数输入

3.3 现场做标记

作业前,人工在钢轨上每10m用红油漆做上标记(曲线在内轨上),对应标记在轨枕头上按顺序编号,左、右线分开。

4.全站仪采集数据

设站后,全站仪现场采集数据,保存前更改编号名称,使之与钢轨上编号相一致。为加快采集数据进度,减少搬站次数,左、右线路轨道坐标和高程可在一站采集,左、右线数据宜分开保存。

全站仪数据采集前注意以下事项:

(1)设站前组合校准全站仪,满足规范要求方可使用;

(2)使用后方交会设站时,同时观测前后6~8个CPIII点;

(3)白天光照强时,用遮阳伞遮挡仪器;

(4)一站采集线路长度不宜超过120m(仪器前后各60m)。

5. 数据导出和格式转换

5.1导出数据

将采集到的数据从全站仪作业中导出到CF卡,按格式文件.txt导出,导出作业里面的点号和N、E、Z这四项到CF卡里。

图5 全站仪导出文件

表4导出文件中数据

5.2格式转换

新建一个excel文件,命名为成都东站至成都南站区间起道标高-左线。打开zx.txt,ctrl+A全部选中文件中数据,复制选中数据。打开成都东站至成都南站区间起道标高-左线,将复制数据粘贴到excel 表格中。选中数据列,点击数据--分列--分隔符号--逗号(C)--完成。

分列前分列后

表5格式转化

新建一个文本文件,将X、Y坐标以英文输入法下的逗号,分开粘贴到文本中,坐标格式如下图。

表6坐标格式

6.数据批计算

打开轻松测量软件,打开成都东站至成都南站区间项目,点击坐标反算桩号和偏距。选择批量反算,打开之前保存好的文本,软件自动反算出桩号和偏距,将反算好的数据整理到excel文件成都东站至成都南站区间起道标高-左线中。根据反算出的桩号计算出设计高程,点击批量计算高程

,将反算好的数据整理到excel文件成都东站至成都南站区间起道标高-左线中。

表7 数据批计算样本

7. 大机养道和验收

将经批计算完成的有砟轨道拨道量和起道量打印,交给大养机进行捣固作业。经五捣三稳后,线路平顺性经成都铁路局工务段验收合格,满足规范要求,具备开通条件。

序号项目允许偏差(mm)检验方法

1 高低 5 10m弦量

2 轨向 5 直线10m弦量、曲线20m弦量

3 扭曲(基长6.25m) 5 万能道尺测量

4 轨距+4/-2 万能道尺测量

5 水平 5 万能道尺测量

表8 轨道静态几何尺寸允许偏差和检验方法

8.结束语

成都东站至成都南站区间双线11.62km,原计划投入2全站仪和6名测量员,采用上述批量计算处理数据方法,实际投入1台全站仪和3名测量员。区间11.62km线路仅用10天时间完成了线路的五捣三稳作业,比原计划节约了5天,加快了施工进度,顺利通过成都铁路局工务段验收。

工程实践证明,测量数据批计算在时速160km/h及以下的有砟铁路的大机养道作业中,具有测量精度高、数据处理快的优点,值得推广应用。

参考文献

[1]《铁路工程测量规范》TB10101-2009;

[2]《铁路轨道工程施工质量验收标准》TB-10413-2003;

[3]《国家三、四等水准测量规范》GB/T12898-2009。

CRTSI型板式无砟轨道结构

CRTS I型板式无砟轨道结构 西南交通大学王其昌 (2009.05) 1、结构组成 CRTS I型板式无砟轨道结构由钢轨、弹性扣件、轨道板、水泥乳化沥青砂 浆充填层、混凝土底座、凸型挡台及其周围填充树脂等组成。图 1.1 (a)、(b) 为平板式、框架式板式无砟轨道,图 1.2和图1.3分别为其横纵断面图。 (a) (b) 图1.1 CRTS I型板式无砟轨道 图「2 CR T型板式板式无砟轨道横断面图 图1.3 CRTS I型板式无砟轨道纵断面图 时速200?250公里及时速300?350公里客运专线CRTS I型板式无砟轨道通用参考图[图号:通线(2008) 2201及通线(2008) 2301],已经铁道部经济规

划设计院2008年7月发布。 2、路基地段CRTS I 型板式无砟轨道 图2.1为路基地段CRTS I 型板式无砟轨道,设计应符合下列规定: L 」 L 」 图2.1路基地段CRTS I 型板式无砟轨道 (1) 底座在路基基床表层上设置。 (2) 底座每隔一定长度,对应凸形挡台中心位置,设置横向伸缩缝。 (3) 线间排水应结合线路纵坡、桥涵等线路条件具体设计。当采用集水井 方式时,集水井设置间隔应根据汇水面积和当地气象条件计算确定。 严寒地区线 间排水设计应考虑防冻措施。 (4) 线路两侧及线间路基表面以沥青混凝土防水材料封闭,路基面防水材 料的性能应符合相关规定。 3、桥梁地段CRTS I 型板式无砟轨道 图3.1为桥梁地段CRTS I 型板式无砟轨道,设计应符合下列规定: (1) 底座在梁面上构筑,底座通过梁体预埋套筒植筋与桥梁连接。在底座 一定宽度范围内,梁面应进行拉毛或凿毛处理设计。 (2) 底座对应每块轨道板长度,在凸形挡台中心位置,设置横向伸缩缝。 (3) 底座范围内,梁面不设防水层和保护层;底座范围以外,根据桥梁设 计的相关规定设置防水层和保护层。 (4) 桥上扣件纵向阻力及梁端扣件结构型式应根据计算确定。 ____ A 廉中心应

无砟轨道质量缺陷处理方案.

CRTSⅠ型板式无碴轨道质量缺陷处理方案 无砟道床的伤损等级分为Ⅰ、Ⅱ、Ⅲ级。对Ⅰ级伤损应做好记录,定期观察其发展变化;对Ⅱ级伤损应适时维修;对Ⅲ级伤损应及时维修。 CRTSⅠ型板式无砟道床伤损形式及伤损等级判定标准 CRTSⅠ型板式无砟轨道静态检查记录表

附录一混凝土裂缝修补-表面封闭法 一、修补材料 1. 用于表面封闭的涂层材料主要性能应满足表附1-1的要求。 表面封闭涂层材料的性能要求表附1-1 2.底涂材料可选用经适当稀释的表面封闭涂层材料。 二、主要修补机具 钢丝刷、真空吸尘器、计量工具、搅拌工具、盛料容器、涂刷工具等。 三、修补工艺 1.清理裂缝区域后,使用钢丝刷将裂缝两侧刷毛,用真空吸尘器清除灰尘。 2.称量并配制表面封闭用修补材料。 3.沿裂缝表面涂刷一层底涂材料。 4.待底涂材料表干后,涂刷表面封闭用涂层材料,涂刷3遍以上,以涂层厚度达到300μm以上为宜。每遍涂刷都要等到上遍涂层材料表干后再涂,且两次涂刷的方向相互垂直。

四、环境要求 施工适宜温度5~30℃,雨雪天不得施工。 附录二混凝土裂缝修补-无压注浆法 一、修补材料 无压注浆法修补混凝土裂缝宜采用低粘度树脂材料和弹性聚氨酯材料。低粘度树脂材料的性能应满足表附2-1的要求,弹性聚氨酯材料的性能应满足表附2-2的要求。 低粘度树脂材料性能要求表附2-1

弹性聚氨酯树脂材料性能要求表附2-2 二、主要修补机具 手动双组份注浆器、切割机、电热吹风机、真空吸尘器、角磨机等。 三、修补工艺 1.用切割机将裂缝扩宽。扩缝宽度5~10mm,深度不小于5mm。 2.用真空吸尘器清除裂缝内杂物。 3.采用电热吹风机去除裂缝内水分。 4.通过手动双组份注浆器向裂缝沟槽内注入低粘度树脂材料,使其渗入混凝土裂缝内部。 5.对于活动裂缝,在裂缝沟槽内通过手动双组份注浆器注入弹性聚氨酯树脂材料,使其填满裂缝沟槽;对于非活动裂缝,可先在裂缝沟槽内撒入石英砂后,再注满低粘度树脂材料。 6.当修补材料固化后,将裂缝表面打磨平整。 四、环境要求 施工适宜温度5~30℃,雨雪天不得施工。

高速铁路有砟、无砟轨道结构及精调.

第二章高速铁路有砟、无砟轨道结构及精调 第一节概述 无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。以下是无砟轨道的主要优势和缺点。 一、无砟轨道的优势主要有: 1、轨道结构稳定、质量均衡、变形量小,利于高速行车; 2、变形积累慢,养护维修工作量小; 3、使用寿命长—设计使用寿命60年; 二、无砟轨道的缺点主要有: 1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2型 板式500万。 2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉 降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。 3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型 存在较大困难。 4、一旦损坏整治困难:尤其是连续式无砟轨道。 第二节无砟轨道结构 一、国外铁路无碴轨道结构型式 国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。无碴轨道已成为高速铁路的发展趋势。 1.日本 日本是发展无碴轨道最早的国家之一。早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90年代则达到80%以上。

无砟轨道精调技术方案

无碴轨道精调技术方案 1、编制依据 1《无碴轨道铁路工程工程测量技术》。 2《高速铁路工程测量规范》。 3《高速铁路工程测量规范条文说明》。 4 业主下达的相关文件。 2、编制范围 新建兰渝铁路1标段DK84+950—DK100+707段范围黑山隧道无碴轨道施工。 3、无砟道床施工前具备的条件 ⑴CRTS-I型双块式无砟轨道道床施工应在隧道施工结束后,并对隧道沉降变形等进行系统的观测和分析,满足《客运专线无砟轨道铺设条件评估技术指南》要求并经业主指定的有资质的单位评估合格并出具评估报告后,开始安排施工作业。 ⑵无砟轨道控制网(CPⅢ网)的测设工作已完成,测量精度满足《高速铁路工程测量规范》的要求,并已报设计单位评估合格。 4、测量网控制 无砟轨道测量基础网采用CPⅢ控制网技术,测量精度严格按《高速铁路工程测量规范》执行。在道床施工准备期间,必须查验与铺设段轨道工程有关的线下工程施工质量检验报告、沉降变形观测资料及评估报告,接收线下工程单位的线路测量资料及控制基桩,对线路范围内CPⅡ网进行加密、复测后,在施工工点范围内建立独立、完整、

精确的基标控制网。CPⅢ控制基标每50-80m设一对。成对布设在线路两侧的两个基标点里程差不超过1m。一次布设的CPⅢ施工基标精密控制网最短长度不得少于2km。 5、测量放线 步骤1:通过不少于4对CPⅢ控制点按设计道床板位置在每一个纵断面上放出道床板边线控制点(直线段10m一个断面,曲线段5m 一个断面),采用钢钉精确定位做好标记,红油漆标识,用墨线弹出道床板边线。 步骤2:通过不少于4对CPⅢ控制点按设计道床板轨面标高在两侧护墙上放出道床板轨面绝对标高点(直线段10m一个断面,曲线段5m一个断面),采用黑色记号笔在两侧护墙上做好标记,红油漆标识,用墨线弹出道床板轨面绝对高程线。 ▲人员:测量员3人,普工2人。 ▲机具、材料:测量仪器1套(放线定位);墨斗(弹线);钢卷尺;红油漆。 6、轨排粗调 粗调顺序。对某两个特定轨排架而言,粗调顺序为:1→4→5→8→2→3→6→7→1→2→3→4→5→6→7→8。(见图1) 图1 轨排粗调顺序 步骤1:中线调整。配备全站仪和测量手簿,采用自由设站法定

无砟道床施工技术考试题库

无砟轨道考试题库 一、填空题 1、桥上采用(CRTSⅠ)型双块式无砟轨道,结构组成为:钢轨、WJ-8B型扣件、SK-2型双块式轨枕、(道床板)及(混凝土底座)等组成。 2、采用 SK-2 型双块式预制轨枕(通线[2011]2351-Ⅰ),其质量应满足《客运专线铁路双块式无砟轨道双块式混凝土轨枕暂行技术条件》(科技基〔2008〕74 号)的要求。轨枕间距一般取(650)mm,一般不宜小于(600)mm,32m 简支梁枕间距与双块式通用图(图号:通线[2011]2351-Ⅲ)要求一致。 3、桥上道床板采用的钢筋混凝土等级为(C40),钢筋为HRB400,现场浇注而成,宽度为(2800)mm,高度为(260)mm。道床板顶面根据具体情况设置一定的横向排水坡,纵横向钢筋及纵向钢筋间根据综合接地和轨道电路绝缘要求设置焊接接头或绝缘卡。道床板构筑于混凝土(底座上),相邻道床板板缝(100)mm,简支梁轨枕中心与板端的最小距离为(250)mm。连续梁梁端轨枕中心与梁端的距离为(235)mm,连续梁与相邻简支梁轨枕中心间距不应大于(650)mm。 4、底座为(C40)钢筋混凝土结构,混凝土底座直接浇筑在桥面上,并与桥梁用桥面预埋钢筋连接。混凝土底座采用(分块式)结构,底座长度与宽度跟道床板的长度与宽度(相同)。每块底座上设置两个抗剪凹槽,凹槽内铺设弹性缓冲垫层,道床板与底座之间设置 4mm 的聚丙烯土工布,其技术性能应满足相应技术条件的规定。 5、正线超过设置,曲线超高在(底座)上设置,采用外轨抬高方式。超高渐变在缓和曲线全长上完成。 6、隧道内 CRTS Ⅰ型双块式无砟轨道结构由(钢轨、扣件、

铁路工程中无砟轨道施工的测量技术与精度控制

铁路工程中无砟轨道施工的测量技术与精度控制 发表时间:2019-09-21T00:01:54.377Z 来源:《基层建设》2019年第19期作者:周志强[导读] 摘要:传统形式的有砟轨道,在受到列车荷载作用影响下,会导致道床出现道砟粉化及磨损的问题,从而导致结构变形,使轨道使用寿命受到严重影响。 中铁十一局集团第三工程有限公司湖北省十堰市 442012摘要:传统形式的有砟轨道,在受到列车荷载作用影响下,会导致道床出现道砟粉化及磨损的问题,从而导致结构变形,使轨道使用寿命受到严重影响。在列车高速行驶的情况下,还可能造成道砟飞溅,容易引发安全事故问题,无砟轨道不仅具有较高的稳定性和平顺性,而且几何变形不高、便于维护,具有较长的使用寿命。也正是受到这些特点的影响,无砟轨道的施工具有较高的要求,需要通过准确 的测量来确保施工的质量,所以有必要针对无砟轨道施工过程中的测量技术以及精度控制进行深入的研究。 关键词:铁路工程;无砟轨道施工;测量技术;精度控制 一、铁路工程中的无砟轨道施工测量技术 1、轨道测量控制网 在铁路工程当中,测量控制网分为高程控制网和平面控制网,而根据施测阶段、功能以及目的,又可以分为施工控制网、勘测控制网以及运维控制网。为了确保控制测量质量能够对勘测、施工以及运维等阶段的要求加以满足,确保铁路工程建设及运营管理等工作的顺利进行,需要保证各阶段中的高程、平面控制测量能够具有统一的标准,即在平面控制方面应统一采用CPI作为标准,而高程控制则可以将二等水准基点作为标准,在铁路工程中的平面测量控制网主要是由线路平面控制网、基础平面控制网以及轨道控制网组成。高程测量控制网包括轨道控制网和线路水准基点控制网,其中前者主要作为运营维护、轨道精调以及铺设调整等工作的高程控制基准,而后者主要用于铁路施工、勘测工作的高程基准。 2、板式无砟轨道板精调技术 当前阶段,我国在客运专线当中应用的无砟轨道形式主要有以下几种:CRTSⅠ型、Ⅱ型、Ⅲ型无砟轨道,其中CRTSⅡ型无砟轨道又分为板式和双板式。而CRTSⅠ型无砟轨道主要是在钢筋混凝土底座上利用水泥沥青砂浆铺设调整层。其中设置了凸形挡台限位,在确保轨道板铺设能够满足相关精度需求的基础上,通常会通过调整扣件的方式对钢轨最终的几何状态进行控制,其系统构成包括混凝土底座、GA 砂浆层、轨道板、凸形挡台、钢轨以及扣件系统等。即便隧道、路桥在线下基础方面存在差异,但CRTSⅠ型板式无砟轨道的构成并不会发生改变,而我国首条应用无砟轨道结构形式的铁路,已经对相关技术进行了有效的消化,并对制造Ⅱ型板的工艺进行研究和实验,经过不断的摸索和总结,已经开发出了独具特色的Ⅱ型板制造工艺,而这种轨道结构形式即为CRTSⅡ型板无砟轨道形式。 3、无砟轨道平顺性检测技术 在完成轨道板精调以后,需要使用CA砂浆进行浇筑,而铺设精度在通过验收以后,就可以进行铺轨和扣件安装,完成轨道铺设需要使用轨检小车来测量轨道的几何状态,并利用扣件进行轨道的调整,使其进度能够达到设计要求。从理论上来讲,要求线路中心轴为轨距中心,在直线段当中要与两根铁轨平行,在曲线段当中要与曲线切线平行,我国标准轨距是1435mm,轨距变化率要保持在1mm/1.5m,以±1mm作为验收标准,在活动端设有复位弹簧,确保在轨检小车运行过程中能够与轨道内侧紧密相连,而具体测量范围在-35~35mm。在铁路工程中,轨面高程以及轨道中线是工程质量的直观反映,通过将线路高程、坐标与设计值进行对比得出其中的偏差,可以对轨道自身的几何状态进行全面的反映,在测量轨道高程和坐标的过程中,需要通过高精度全站仪对轨检小车当中的棱镜中心三维坐标进行实测。根据标定好的轨面情况、线路中心线以及小车几何参数,将对应里程中的轨面高程及中心线位置换算出来,并与设计参数进行对比,从而得出设计和实测的差值,利用相关技术规范完成评价。水平轨向就是轨道里程方向上的内线状态,而高低轨向则是轨道顶面部分的线形状态,如果横向轨道不良,会导致列车在横下加速度过程中缺乏稳定性,而高低轨向不良则会对列车垂向加速度造成影响,对于高低轨向和水平轨向的平顺检测,可以对德国长、短波不平顺检测法加以借鉴,并使用300m弦或30m弦的轨道平顺性核检。 4、全站仪自由设站程序设计 第一,利用全站仪对2个CPⅢ控制点进行手动瞄准,结合后方交会原理对近似的全站仪位置进行确定;第二,根据待测点坐标以及近似全站仪坐标,对待测控制点自身的棱镜方向值进行计算,并通过相关指令,使全站仪将剩余控制点的自动观测完成;第三,针对CPⅢ观测值对数据稳定性进行检测,查看观测值是否存在超限问题,并将其中不合格的点剔除在外。 二、控制无砟轨道施工测量精度的具体措施 1、做好测量仪器设备的配置工作 第一,要对高精度全站仪加以准备,要求其具有ATR自动照准功能;第二,准备精密水准仪,要求该仪器能够对数据进行显示和存储,且误差要小于0.3mm/km;第三,对电子轨道尺加以配置,要求具有数码显示功能,且精度误差在0.5mm以内。 2、线路基标测设 对于无砟轨道施工而言,线路基标是其实现精度控制的基础,具体测设内容包括加密基标记控制基标,基标方面的测设精度不但会对无砟轨道施工精度造成影响,同时还会影响到施工的效率,具体测定方法为:第一,选定CPⅢ控制点,并以此为基础,采用精密水准测量以及设站极坐标法对施工高程和平面进行测设;第二,在直线段中以100m为一个间距进行控制基标的设置,而曲线段则每间隔60m就要设置一个控制基标;第三,对特殊路段需要进行控制基标的加密设置,结合轨排长度,在直线段中应以12.5m为一个间隔进行设置,而曲线段要以6.25m为一个间隔进行设置;第四,在混凝土地板强度达到一定水平以后,对控制基标以及加密基标进行布设,并做好标识,在完成基标布设以后,要在道床板顶面使用墨线标记中心线位置。 3、轨排架精确调整 为了确保测量数据的准确性,在借助轨道检测小车完成测量时,应该严格按照测量规定要求进行,通常在测站20~80m的范围内测量准确度较高,所以顺接段以及搭接段的测量长度应控制在62.5~20m,具体长度需要结合两次测量数据对比以及测量距离来确定。在此过程中,需要对测站位置、数据的收集和分析保持重视,在精调过程中,需要将小车静置在待测轨道当中,利用全站仪进行小车棱镜点的测量,从而对设计位置、轨道位置、位置偏差以及调轨方向进行实时的显示,使现场调轨作业能够获得相应的指导。 4、测量控制网复测

无砟轨道施工方案-工具轨法

拉日铁路TJ5标隧道无砟轨道专项施工方案 一、编制说明 1.1编制依据 1、国家、铁道部、西藏自治区现行的有关法律、法规; 2、国家、铁道部现行的设计、施工规范、验收标准、安全规程、定型图、标准图等各项技术标准和《铁路轨道工程施工质量验收标准》(TB10413)、《客运专线无砟轨道铁路工程施工质量验收暂行标准》(铁建设【2007】85号)等技术标准; 3、拉萨至日喀则铁路站前工程TJ5标段施工承包合同文件; 4、铁道部拉日铁路建设总指挥部提供的指导性施工组织设计和相关设计、调查参考资料; 5、中铁第一勘察设计院集团有限公司的设计文件、图纸和技术交底等资料; 6、西藏自治区自然环境、气候条件和当地材料资源条件等; 7、现场调查所获得的有关资料; 8、我集团公司拥有的科技工法成果和现有的企业管理水平、劳动力设备技术能力,以及长期从事铁路施工所积累的丰富的施工经验; 9、上级和本单位有关文件。 1.2编制原则 1、严格遵守国家、铁道部现行的设计、施工规范、验收标准等各项技术标准的原则。充分领会设计意图,结合我集团公司的实际施工能力和水平,确保工期、质量、安全等满足设计图纸和建设方要求。 2、根据工程实际情况,围绕工程进度,周密部署,合理安排施工顺序,保证按期完成任务。 3、借鉴其它隧道无砟轨道施工的经验和工法,针对本标段隧道工程特点,制定切实可行的施工方案、创优规划和质量保证措施,确保施工目标兑现。 4、充分利用隧道土建施工场地、临时工程布置、设备配置,减少消耗,降低成本。 5、遵循“重视环境、保护环境”的原则组织文明施工。 1.3采用的技术规范标准 《客运专线无砟轨道设计指南》铁建设函【2005】754号; 《客运专线铁路无砟轨道铺设条件评估技术指南》铁建设函【2006】158号; 《铁路轨道设计规范》TB10082-2005;

(整理)CRTSⅠ型板式无砟轨道施工技术.

CRTSⅠ型板式无砟轨道施工技术 一、概述 CRTSⅠ型板式无砟轨道由钢轨、弹性分开式扣件(本项目为WJ-7A 型扣件)、充填式垫板、轨道板、水泥乳化沥青砂浆调整层、钢筋混凝土底座、凸形挡台及其周围填充树脂等组成。结构分路基、桥梁和隧道地段,结构高度分别为787mm、687mm。轨道板均为预制,标准板长度为4962mm、3685mm和4856mm,一标范围内用到异型板长度有两种分别为4652mm和3345mm。 二、轨道结构设计 (一)总体设计 1.桥梁地段 桥梁地段轨道结构高度为687mm(钢轨176+扣件39+轨道板220+砂浆50+底座202),底座板宽度为2.8m。底座在梁面分段设置,每块轨道板长度底座设置20mm伸缩缝,伸缩缝对应凸形挡台中心并绕过凸形挡台。底座范围内梁面不设防水层和保护层,轨道中线2.6m范围内的梁面在梁场预制时应进行拉毛处理,梁体采用预埋套筒植筋与底座连接。

注意:1.底座施工之前检查梁面是否按要求拉毛。 2.轨道施工完成后再进行桥梁防水层的施工。 3.严格控制梁缝处扣件间距,一般不应大于700mm,困难条件下最大不超过725mm,不满足要求时底座进行悬出,悬出量最大不超过50mm。采取底座悬出措施后扣件间距也不能满足困难条件下要求时应对梁缝进行处理。 4.严格控制梁面高程,保证底座厚度在允许范围内。 2.路基地段 路基地段轨道结构高度为787mm(钢轨176+扣件39+轨道板220+砂浆50+底座302),底座板宽度为3.0m。底座在基床表层上分段设置,普通路基地段每3~4块轨道板长对应的底座长度设置一处伸缩缝。伸缩缝宽20mm。两块底座板之间伸缩缝处设置10根传力杆,传力杆为直径38mm的光圆钢筋。设置标准按《公路水泥混凝土路面施工技术规范》(JTG F30-2003)中表9.1执行。混凝土整体浇筑路基上每块轨道板对应一处伸缩缝,伸缩缝宽20mm。同时,在混凝土路基沉降缝上方底

无砟轨道施工方案

2.3.8无砟轨道施工方案 2.3.8.1 总体施工方案 本标段无砟轨道采用CRTS Ⅲ型板式无砟轨道。其由钢轨、扣件、预制轨道板、配筋的自密实混凝土、限位凹槽、中间隔离层(土工布)和钢筋混凝土底座等部分组成。CRTS Ⅲ型板式无砟轨道结构见“图2-3-8 CRTS Ⅲ型板式无砟轨道横断面图”。轨道板采用单元分块式结构,在路基和桥梁地段轨道板间采用不连接的分块式结构。 轨道中心线 轨道板中间隔离层 自密实混凝土 钢筋混凝土底座 图2-3-8 CRTS Ⅲ型板式无砟轨道横断面图 扣件:采用WJ-8B型弹性扣件。 轨道板:采用先张法预应力轨道板,标准轨道板型号为P5600、P4925和P4856三种,板厚均为200mm,承轨台高度为38mm,混凝土强度等级为C60。 自密实混凝土及限位凹槽:轨道板下铺设自密实混凝土,强度等级为C40,设计厚度为90mm,长度和宽度与轨道板对齐,中间设置单层钢筋焊网。自密实混凝土与混凝土底座采用限位凹槽的方式进行限位和纵横向力的传递,每块轨道板下设置两个限位凹槽,凹槽尺寸为700mm×1000mm,限位凹槽处加设配筋,限位凹槽周围(侧面)设置弹性垫层,弹性垫层应满足结构受力、变形和材料耐久性要求。 中间隔离层:采用厚度为4mm的土工布。 底座:采用钢筋混凝土结构,双层CRB550级冷轧带肋钢筋焊网,直径为φ12mm。底座伸缩缝宽度为20mm,采用聚苯乙烯泡沫塑料板填缝;路基地段底座混凝土强度等级为C35,底座宽度3100mm,底座板厚度为300mm。每3块~4块轨道板对应长度设置宽度为20mm伸缩缝,在伸缩缝位置设置传力杆;桥梁地段底座混凝土强度等级为C40,长度为对应每块轨道板长度,底座宽度为2900mm,底座板厚度为200mm。

CRTSⅢ型板式无砟轨道结构组成及施工工艺

CRTSⅢ型板式无砟轨道结构及施工工艺 CRTSⅢ型板式无砟轨道结构组成 1.桥梁地段无砟轨道结构 桥梁地段CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自 密实混凝土层、隔离层、底座等部分组成。轨道结构高度为762mm。轨道板宽2500mm,厚210mm;自密实混凝土层厚100mm,宽度2500mm, 采用C40混凝土;底座C40钢筋混凝土结构,宽度2900mm,直线地段厚 度200m。轨道板与自密实层间设门型钢筋。自密实层设凸台,与底座 凹槽对应设置,凹槽尺寸为1000×700mm,凹槽周围设橡胶垫板。 2.路基地段无砟轨道结构 路基地段CRTSⅢ型板式无砟轨道由钢轨、弹性扣件、轨道板、自 密实混凝土层、隔离层、底座等部分组成。轨道结构高度为862mm。轨道板宽2500mm,厚210mm;自密实混凝土层宽度2500mm,厚100mm,

采用C40混凝土;底座C40钢筋混凝土结构,宽度3100mm,直线地段厚 度300m,每3块板下底座为一块,相连底座间设传力杆结构。轨道板 与自密实层间设门型钢筋。自密实层设凸台,与底座凹槽对应设置,凹槽尺寸为1000×700mm,凹槽周围设橡胶垫板。 CRTSⅢ型板式无砟轨道施工工艺 1.2 工程特点 CRTSⅢ型板式无砟轨道工程施工工序繁多,技术复杂,质量标准高,须专业化队伍精心施做。底座板施工、自密实混凝土配制及灌注、铺装与精调等技术含量高,施工难度大,需认真研究并借鉴在建同类工程经验。施工便道条件较差,轨道板运输困难且存在较大风险。桥上、隧道内作业面狭窄,物流组织困难。 2 主要施工方案 无砟轨道系统由钢筋混凝土底座板、中间隔离层、自密实混凝土填充层和轨道板组成(见图1)。轨道板采用工厂预制。根据工期和线路铺设长度配备无碴轨道施工设备,每套设备负责2个作业单元交

无砟轨道铺设测量实施细则

新建杭州至长沙铁路客运专线(浙江段L标 无砟轨道铺设 测量监理实施细则 编制 _______________________ 审核 _______________________ 审批 _______________________

华铁徳铁国际联合休杭长铁路客专(浙江)监理总站 二0一二年二月 目录 无砟轨道铺设测量监理实施细则 (4) 第一章编制依据 (4) 第二章专业工程特点 (4) 一?工程概况: (4) 二?必须具备的测量条件 (5) 三?无砟轨道铺设特点 (5) 第三章测量监理工作范围及重点 (6) 一?工作范围 (6) 二?工作重点 (6) 第四章测量监理工作流程 (6) 第五章测量监理工作控制要点、目标 (6) 1. 审核测量方案及测量报告 (8) 2. CPI、CPII控制网和高程控制网复测及CPII加密报告的审核 (8) 3. 接口工程测量验收 (8) 4. 底座板放样 (8) 5. 底座板的测量验收 (8) 6. 轨道板粗铺、GRP点测量及轨道板精调检测 (8) 7. 钢轨铺设及轨道精调 (9)

第二节工作目标 (9) 1. ............................................................................................................ 测 量方案及测量成果报告 (9) 2. CPI、CPII控制网和高程控制网复测及CPII加密报告的审核 (12) 3. 接口工程测量验收 (15) 4. 底座板放样 (15) 5. 底座板的测量验收 (16) 6. 轨道板粗铺、GRP点测量及轨道板精调检测 (16) 7. 钢轨铺设及轨道精调 (16) 第六章监理工作方法及措施 (17) 第一节测量监理工作方法 (17) 1. 旁站监督 (17) 2. 见证 (17) 3. 平行测量 (17) 4. 巡检 (17) 5. 指令文件 (17) 6. 监理工程师通知单 (17) 7. 监理工作联系单 (18) 8. 观测暂停令: (18) 第二节测量监理工作措施 (18) 1. 事前控制措施 (18) 2. 过程控制措施 (18) 3. 成果资料提交........................... 错误!未定义书签。 无砟轨道铺设测量监理实施细则

CRTSⅡ型板式无砟轨道结构设计

CRTSⅡ型板式无砟轨道施工工法 1 前言 沪杭客运专线设计采用Ⅱ型板式无砟轨道,设计时速350km/h。通过学习、研究德国博格公司原始技术资料,借签京津城际积累下来的经验教训,外出实地参观学习同时在建的京沪高铁,积极与设计、业主、监理、兄弟单位以及这方面的专家沟通、咨询,充分利用各方面的资源,立足现场实际,提早着手准备,探索、总结、现场观摩、培训学习,在仅一个多月的无砟轨道紧张施工中大胆实施、积极创新,形成了自己一套相对成熟、完善的CRTSⅡ型无砟轨道施工工法。 2 特点 2.1 施工工艺成熟、可靠,质量保证。 2.2 工艺简单,操作方便,可形成流水作业。 2.3 施工效率高,尤其适合快速施工。 3 适用范围 该工法适用于CRTSⅡ型板式无砟轨道结构的高速铁路、客运专线、城际轨道交通等工程的路基、桥上无砟轨道施工。 4 工艺原理 CRTSⅡ型轨道板铺设工艺分两种工况:铺装路基上CRTSⅡ型板和铺装长桥上CRTSⅡ型板。 4.1 桥上无砟轨道结构设计 桥上CRTSⅡ无砟轨道结构由两布一膜滑动层/高强挤塑板、混凝土底座板、水泥乳化沥青砂浆调整层和轨道板四部分组成。自上而下分为:20cm 厚混凝土轨道

板,2cm~4cm 沥青砂浆垫层,19cm 厚(直线段)混凝土底座板,“土工布+塑料膜+土工布”滑动层(简称两布一膜)。梁缝处1.5m 范围内为消除梁端转角对底座板的内力,加装5cm 厚高强挤塑板。 Ⅱ型轨道板标准长度6.45m,板缝5cm,板间用张拉锁纵向连接。轨道板铺设于桥面上经精调和灌浆后进行纵向张拉连接成为整体。为了适应连续底座板连续结构,在桥梁两端路基上设置摩擦板及端刺(桥上设临时端刺),以限制底座板中的应力及温度变形,两端刺间底座板纵向跨梁缝连续,在桥梁固定支座上方通过梁体设置的预埋螺纹钢筋和抗剪齿槽与梁体固结,形成底座板纵向传力结构。底座板两侧设置侧向挡块,限制底座板横、竖向位移和翘曲。水泥乳化沥青砂浆是填充于底座板/支承层与轨道板之间的结构层,主要起充填、支撑、承力和传力作用,并可对轨道提供一定的弹韧性,是轨道结构中的重要结构层,水泥乳化沥青砂浆充填层标准厚度为2cm~4cm。底座板与梁面之间设两布一膜滑动层(剪力齿槽部分除外),形成底座板与梁面可相对滑动的状态。桥上CRTSⅡ型板式无砟轨道一般构造详见图4-1。 图4-1 桥上无砟轨道一般构造断面图 4.2 路基上无砟轨道结构设计

无砟轨道技术培训考试题(含答案)

无砟轨道技术培训考试试卷 姓名分数 选择题(请把正确的答案写在括号内,只有一个正确答案,每题5分,共100分) 1、XX铁路预制箱梁面预埋钢筋及底座内连接钢筋为的HRB335钢筋,连接套筒 长,梁内预埋钢筋及底座内连接钢筋丝头拧入套筒深度相同,均为。( C ) A 14mm;50mm;25mm B 16mm;50mm;25mm C 16mm;42mm;21mm D 14mm;42mm;21mm 2、轨道工程底座板施工时,当工地昼夜平均气温高于时,应采取夏季施工措施,混凝土的入模温度不宜超过;当工地昼夜平均气温连续3d低于+5℃或最低气温低于时,应采取冬期施工措施。( B ) A 35℃; 35℃; -5℃ B 30℃; 30℃; -3℃ C 30℃; 30℃; -5℃ D 35℃; 30℃; -3℃ 3、轨道工程底座板混凝土浇筑后,应避免与流动水接触,并在内覆盖和洒水养护,保持混凝土处于湿润状态,当环境温度低于时,禁止洒水养护,采取适当保温措施,养护期一般不少于。( A ) A 12h;5℃;7d B 14h;5℃;14d C 12h;3℃;7d D 12h;5℃;14d 4、无砟轨道混凝土底座板顶面高程的允许偏差为,宽度,中线位置。( D ) A +3mm,-5mm;±10mm;5mm B ±10mm;±10mm;3mm C +3mm,-10mm;±5mm;3mm D ±5mm;±10mm;3mm 5、桥上CRTS I型板式无砟轨道结构高度为:176mm(钢轨)+40mm(扣件,当采用复合垫板并使用充填式垫板时)+20mm(承轨台)+200mm(轨道板)+ (CA砂浆)+ (底座)=。( B ) A 30mm;201mm;667mm B 50mm;201mm;687mm C 50mm;301mm;787mm D 30mm;301mm;767mm ( A ) 6、凸形挡台外形尺寸允许偏差:圆形凸形挡台直径,中线位置,顶面高程。 A ±3mm;3mm;0,+5mm B ±5mm;3mm;±5mm C ±5mm;5mm;0,+5mm D ±5mm;5mm;0,+5mm

宁杭客运专线CRTSⅡ型无砟轨道板精调测量技术研究及应用

龙源期刊网 https://www.wendangku.net/doc/199332567.html, 宁杭客运专线CRTSⅡ型无砟轨道板精调测量技术研究及应用 作者:郑小刚 来源:《城市建设理论研究》2012年第31期 摘要:宁杭客运专线设计铺设CRTSⅡ型板式无砟轨道,轨道板精调测量系统SPPS是针 对高速铁路CRTSⅡ型轨道板安装施工而专门研制的精确测量定位系统。本文对精调测量系统SPPS的应用与创新进行了简要陈述,为CRTSⅡ型板式无砟轨道施工质量提供测量控制技术保障。 关键词: CRTSⅡ型;无砟轨道板;精调测量系统(SPPS);测量精度 中图分类号:U213.2 文献标识码:A 文章编号: 1 工程概述 宁杭铁路客运专线衔接京沪高速铁路、沪汉蓉快速通道、杭长客运专线等,与沪宁城际铁路、沪杭甬客运专线等构成长三角快速城际铁路网,是我国高速铁路客运网的重要组成部分。起讫里程DK1+852.41~DK250+097.27,正线全长249km(双线),线间距5m,设计速度 350km/h,全部采用CRTSⅡ型板式无砟轨道铺设。 2 CRTS Ⅱ型板式无砟轨道简介 CRTSⅡ型板式无砟轨道利用成型的组合材料代替道碴,将轮轨力分布并传递到路基基础上,具有“少维修”特点。 板式无砟轨道主要由基础防冻层、支承层/底座板、防排水系统、轨道板、轨道扣件系统、轨道以及其他附属设施构成。 轨道板替代普通铁路的道碴和轨枕,通过扣件系统直接安放钢轨,轨道板铺设精度直接影响轨道的平顺性,为满足高速列车运行要求,在安装轨道板时必须精确定位,安装定位的最终值与设计理论值的偏差必须控制在亚毫米级精度范围内。 3 精调测量系统SPPS概述 轨道板精调测量系统简称SPPS (Slab Precise Position System),是针对高速铁路CRTSⅡ型无砟轨道板铺设施工而专门研制的测量定位系统。

III型板式无砟轨道施工测量系统(0806)

III型板式无砟轨道模注检测 和施工测量系统 成都普罗米新科技有限责任公司

目录 一、系统方案 (2) 1.1. III型板式无砟轨道施工技术概述 (2) 1.2. III型板式无砟轨道施工测量系统 (4) 1.2.1. III型板式无砟轨道施工测量系统基本原理 (4) 1.2.2. III型板式无砟轨道施工测量系统的组成 (5) 二、III型板式无砟轨道施工布板软件 (7) 2.1. 计算起算数据 (8) 2.2. 主要功能 (8) 三、III型板式无砟轨道钢模检测与调整系统 (13) 3.1. 系统组成 (13) 3.2. 基本原理 (13) 3.3. 轨道板模型检测工装 (14) 3.4. 轨道板模型调整方法 (15) 3.5. 所需设备 (15) 3.6. 轨道板钢模调整软件 (16) 四、III型板式无砟轨道成品板检测系统 (17) 4.1. 系统组成 (17) 4.2. 检测内容 (17) 4.3. 检测方法 (18) 4.4. 成品板检测报告 (19) 五、III型板式无砟轨道精调测量定位系统 (21) 5.1. 系统组成 (21) 5.2. 作业流程 (22) 5.3 测量标架 (22) 5.4 III型板式无砟轨道精调定位测量软件的界面 (23) 5.5实测过程 (24) 六、长钢轨精调测量定位检测系统 (25) 6.1. 系统组成 (25) 6.2. 检测步骤 (25) 6.3.实测过程 (26) 6.4. 轨道检测数据分析处理 (27)

一、系统方案 1.1. III型板式无砟轨道施工技术概述 III型板式无砟轨道是板式无砟轨道的新技术体系,其无砟轨道板的关键施工技术为:在路基地段是纵联板,在桥梁段是单元板。单元板之间已经没有凸台,改成了轨道板下方形凸出的混凝土定位锥设置概念的初铺定位,两种板外形完全一样,承轨槽都带有挡肩,曲线地段承轨槽面依靠钢模承轨槽的调整预制成空间曲面;轨道板与底座混凝土之间依靠灌注自密实混凝土固定。因此,III型板式无砟轨道的技术体系是真正意义上的具有中国自主知识产权的新型高铁无砟轨道技术体系。其无砟轨道板的施工的基本工艺流程如下图所示。

无砟轨道与有砟轨道的对比

湖南高速铁路职业技术学院毕业论文 (2012届) 论文题目:无砟轨道与有砟轨道的对比 姓名:卿景明 系(院):湖南高速铁路职业技术学院 专业名称:铁道工程 指导老师:*** 2012 年 5 月20 日 中文摘要

随着高速铁路的大规模建设、既有线提速改造及重载铁路的快速发展,作为铁路重要基础设施的轨道结构需要不断更新、技术不断完善。高速铁路的技术核心是高速度,它对轨道结构就有了高平顺性和高稳定性的要求。传统的轨道结构已不适应目前铁路发展的需要,结构形式和设计方法必须相应改变。 在高速发展的今天,轨道交通已经成为了主流的交通工具,特别是城市轨道交通,而轨道交通现在基本都采用无砟轨道的技术进行施工,它相比于有砟轨道确实有一定的优势但也不可避免有各方面的劣势。 随着我国铁路建设水平的不断发展和提高,铁路的建设模式正逐步从客货共线形式向客货分离形式转变,通过对客运专线无砟轨道与有砟轨道的技术、经济比较,无砟轨道已成为客运专线的发展趋势。由于国内铁路建设和运输条件与国外存在差异,没有一种成熟的结构形式能够完全用“拿来主义”坐在国内运用。因此我国铁路轨道技术的发展应当总结国外铁路无砟轨道与有砟轨道的结构特点,充分分析国内的铁路结构和运用条件,选择技术先进、经济合理的轨道结构形式,对比分析无砟轨道与有砟轨道的各种技术,从而优化轨道结构。 关键词:高速铁路无砟轨道有砟轨道 Abstract

With the high speed railway, large-scale construction of existing railway-speed-increasing transformation and overloaded railway of rapid development, as an important railway infrastructure of track structure need to constantly updated, technology improvement. High-speed rail technology core is high speed, it to track structure is the GaoPingShun sex and the high reliability requirements. The traditional rail structure can meet the needs of the development of the current railway, structure form and design method must change accordingly. In the current rapid development of rail transit has become the mainstream of transportation, especially on urban rail transit, and rail traffic now are the basic technology to track a frantic jumble no construction, it is compared to the frantic jumble of a certain track advantage but also hard to avoid the disadvantages. With China's level of railway construction development and improve, railway construction mode gradually from the passenger and freight line forms to passenger separation form change, through to the special passenger line frantic jumble no tracks with a frantic jumble of technology, economy comparison orbit, frantic jumble no track has become the development trend of the passenger special line. Because domestic railway construction and transportation conditions and foreign different, not a kind of mature structure form can completely with "copycat" sat in the domestic use. So China's railway track technology development should be summarized foreign railway tracks with a frantic jumble no frantic jumble the structure characteristics of the track, the full analysis of the domestic railway structure and applying condition, select the advanced technology, reasonable economy of track structure form, comparison and analysis of the frantic jumble no tracks with a frantic jumble of orbit technology, so as to optimize the rail structure. Keywords

无砟轨道测量方法研究概论

无砟轨道测量方法研究 班级: 土木09-2 学号:091020804 姓名:王顺

摘要 本次设计介绍了高速铁路无砟轨道平面和高程控制网设计、GPS测量、各种结构形式无砟轨道施工工艺以及安装控制测量方法。重点对CPⅠ、CPⅡ、CPⅢ三级控制网的布设方法和测量精度做了详细的阐述,从前期的接桩复测,到控制网的加密与测量,线下工程的竣工测量,桥涵、路基、隧道的变形监测,均是对后面铺设无砟轨道做好准备,较详细的论述了工程测量技术和方法,以达到铺设的精度要求。 论述要点: 1、概述:主要叙述国内外无砟轨道发展历程,铺设的精度要求,工程测量的基本流程。 2、从控制测量的特点,平面控制测量、高程控制测量等详细说明无砟轨道的测量方法。 3、CPI、C PⅡ、CPⅢ控制网的布设及测量方法。 4、高程控制网的建立。 5、无砟轨道施工工艺及安装测量。

第一章概述 一、概述 无砟轨道是以钢筋混凝土或沥青混凝土道床取代散粒体道砟道床的整体式轨道结构。与有砟轨道相比,无砟轨道具有以下特点: (1)良好的结构稳定性、连续性和平顺性; (2)良好的结构耐久性和少维修性能; (3)减少工务养护、维修设施; (4)减少客运专线特级道砟的需求; (5)免除高速行车条件下有砟轨道的道砟飞溅; (6)有利于适应地形选线,减少线路的工程投资; (7)可减轻桥梁二期恒载,降低隧道净空; (8)一旦基础变形下沉,修复困难,要求有坚实、稳定的基础。 二、国外无砟轨道的应用情况 自20世纪60年代开始,世界各国铁路相继开展了各种类型无砟轨道结构的研究。在日本,板式轨道已在新干线大量铺设,新建铁路的无砟轨道已超过全线的90﹪,铺设总长度达2700km。在德国,Rheda、B?gl、Züblin等无砟轨道已在新建的高速线上全面推广,无砟轨道占线路总长度的80﹪以上,铺设总长度达到800km。 国外无砟轨道结构形式众多,应用较广、较为广泛的几种无砟轨道结构形式如下: 1.雷达(Rheda)型无砟轨道 Rheda型无砟轨道是将预制轨枕埋入连续浇筑的混凝土道床板中的无砟轨道结构。Rheda型无砟轨道于1972年首先铺设于德国比勒菲尔德至哈姆线的雷达车站,经过30多年不断的优化和完善,从最初的Rheda传统型(图1-1)发展到现在的最新结构形式Rheda2000型(图1-2)。Rheda型无砟轨道在德国得到了广泛应用,其铺设长度达到无砟轨道总长度的一半以上。

相关文档
相关文档 最新文档