文档库 最新最全的文档下载
当前位置:文档库 › 雷诺数为22000的二维方柱绕流仿真计算

雷诺数为22000的二维方柱绕流仿真计算

雷诺数为22000的二维方柱绕流仿真计算
雷诺数为22000的二维方柱绕流仿真计算

模板受力计算

墩柱模板设计计算书 (以B2#为例) 设计说明:墩柱高度为8米,截面规格为为9米×4米。设计模板的面板为6mm厚Q235钢板,纵肋采用[10#槽钢,间距为350mm,背楞采用28#槽钢,间距为1000,浇注时采用泵送混凝土,浇注速度为 1.5米 /小时。 I 荷载 砼对模板的侧压力: F=0.22×r c×t0×β1×β2V1/2 =0.22×26×(200/(15+25))×1.2×1.15×21/2 =55.8 KN/m2 V=2m/ h(浇注速度) t=25℃(入模温度) 倾倒混凝土时产生的水平荷载为2 KN/m2 振捣混凝土时产生的水平荷载为2 KN/m2 荷载组合为:(55.8×1.2+4×1.4)×0.85=61.7 KN/m2 II面板验算 已知:板厚h=6mm 取板宽b=10mm q=F〃b=0.617N/mm按等跨考虑

1、强度验算: Mmax =0.1×ql2=0.1×0.617×3502=7558.3 N〃mm 截面抵抗矩W=bh2/6=10×62/6=60 mm3 最大内力:σ=Mmax/W= 7558.3/60=126N/ mm2<215N/ mm2 满足要求。 2、挠度验算: I=bh3/12=10×63/12=180 mm4 ω=0.677×ql4/100EI =0.677×0.617×3504/(100×2.06×105×180) =1.7mm 满足要求。 III 竖肋验算 已知:l=1000mm a=500mm q=0.0617×350=21.6N/mm W[10=39.7×103mm3 I[10=198.6×104mm4

模板方案及完整计算书

模板施工方案 XXXXXX宿舍楼

编制:_______________ 审核:_______________ 审批:_______________ xxxxxx有限公司 、编制依据 1 、 xxxxxx宿舍楼工程施工图纸,施工组织设计 2 、 建筑施工手册(第五版) 3 、 建筑施工规范大全 4、_、 建筑施工现场检查手册等工程概况 1 、 xxxxx佰舍楼工程,位于xxxxxxx。工程结构形式为剪力墙结构,基础为条形基础与平板式筏 板基础,建筑面积3797.22平米,地上六层,建筑高度22.05米。 三、施工准备 1 、 据工程各构件尺寸提出模板工程详细计划,包括:模板、钢管、扣件.加固穿墙螺栓.蝶形卡 及木方子等。 2 、 材料部门按计划组织周转工具进场。 3 、模板支设以前,应做好各种预留.预埋及钢管隐验。 四、施工方法 (一)墙模板工程 剪力墙全部采用木模板配o 14穿墙螺栓,用0 48X 3.5钢管和5X 10方木作为横纵龙骨进行加固。龙骨横向间距700,纵向间距20;穿墙螺栓水平方向间距700,垂直向间距600。为保证剪力墙位置及断面尺寸正确,支模前,在水平钢筋上放置定制好的混凝土支撑。

施工方法:模板位置弹好以后,先安一面模板,相邻模板搭接要紧密,然后安装斜撑及穿墙螺栓。清扫干净墙内杂物,安装另一侧模板。安装完后,安装纵横龙骨,先安纵向(用铅丝临时固定),后安横向,同时用穿墙螺栓外垫碟形卡,两端拧上双螺母固定,调整斜撑并拧紧穿墙螺栓螺母,必须保证模板牢固可靠。 验收要求:模板位置误差w 5mm,垂直误差w 6mm . 注意事项: (1)支模前先复标高及内外墙线位置,看不清线或受钢筋位移影响不支模; (2)支模前,模板表面要涂刷隔离剂; (3)外围剪力墙所用穿墙螺栓中间必须加止水片。 (二)柱模施工柱模施工采用木模板,钢管柱箍竖向龙骨、斜撑和对拉螺栓进行加固、找正。 施工方法: (1)首先根据柱断面尺寸配模。 (2)模板安装前,先配置对拉螺栓(作用及方法同前),安装时从一面开始安装,安装完毕后安装钢管柱箍(用0 48X3.5钢管及十字扣件拉紧),然后调整至正确位置再进行加固, 柱箍间距400—600mm。 (3)安装竖向钢管龙骨,用以竖向调直及增加柱模整体性。 (三)梁模板施工; 梁底模板根据图纸设计尺寸情况进行整体配模,待梁底支撑脚手架搭设完毕后进行入模、调整位置、加固,形成梁底模整体。 1、支撑系统: 梁底支撑系统采用双或三排脚手架,全部使用0 48X 3.5钢管、扣件搭设。 所有支撑脚手架均设扫地杆,因操作人员行走要求,第一大道横杆高度可为1800mm因为本工程梁较密,固搭设满堂红脚手架。架体搭设时及时加剪力撑。 2、施工方法: ( 1 )梁模 a. 放梁位置 b. 在梁两侧立钢管支柱(间距400-500mn),支柱下要夯实并铺通长木脚手架板; c. 距地200mm加设纵横扫地杆;距地1800mm 3300mm设纵横水平拉杆。 d. 按梁底标高调整支柱高度,安设梁底支撑龙骨(间距》500mn)并将龙骨找平, e. 安装梁底模,并按施工规范要求起拱; f. 安装两侧模,侧模和底模通过角模进行接连;

(完整版)流量系数的计算

1 流量系数KV的来历 调节阀同孔板一样,是一个局部阻力元件。前者,由于节流面积可以由阀芯的移动来改变,因此是一个可变的节流元件;后者只不过孔径不能改变而已。可是,我们把调节阀模拟成孔板节流形式,见图2-1。对不可压流体,代入伯努利方程为: (1) 解出 命图2-1 调节阀节流模拟 再根据连续方程Q= AV,与上面公式连解可得: (2) 这就是调节阀的流量方程,推导中代号及单位为: V1 、V2 ——节流前后速度; V ——平均流速; P1 、P2 ——节流前后压力,100KPa; A ——节流面积,cm; Q ——流量,cm/S; ξ——阻力系数; r ——重度,Kgf/cm; g ——加速度,g = 981cm/s; 如果将上述Q、P1、P2 、r采用工程单位,即:Q ——m3/ h;P1 、P2 ——100KPa;r——gf/cm3。于是公式(2)变为: (3) 再令流量Q的系数为Kv,即:Kv = 或(4)这就是流量系数Kv的来历。

从流量系数Kv的来历及含义中,我们可以推论出: (1)Kv值有两个表达式:Kv = 和 (2)用Kv公式可求阀的阻力系数ξ = (5.04A/Kv)×(5.04A/Kv); (3),可见阀阻力越大Kv值越小; (4);所以,口径越大Kv越大。 2 流量系数定义 在前面不可压流体的流量方程(3)中,令流量Q的系数为Kv,故Kv 称流量系数;另一方面,从公式(4)中知道:Kv∝Q ,即Kv 的大小反映调节阀流量Q 的大小。流量系数Kv国内习惯称为流通能力,现新国际已改称为流量系数。 2.1 流量系数定义 对不可压流体,Kv是Q、△P的函数。不同△P、r时Kv值不同。为反映不同调节阀结构,不同口径流量系数的大小,需要跟调节阀统一一个试验条件,在相同试验条件下,Kv的大小就反映了该调节阀的流量系数的大小。于是调节阀流量系数Kv的定义为:当 调节阀全开,阀两端压差△P为100KPa,流体重度r为lgf/cm(即常温水)时,每小时 流经调节阀的流量数(因为此时),以m/h 或t/h计。例如:有一台Kv =50的调节阀,则表示当阀两端压差为100KPa时,每小时的水量是50m/h。 Kv=0.1,阀两端压差为167-(-83)=2.50,气体重度约为1 .0×E(-6),每小时流量大约为158 m/h。=43L/s=4.3/0.1s Kv=0.1,阀两端压差为1.67,气体重度约为1 2.2 Kv与Cv值的换算 国外,流量系数常以Cv表示,其定义的条件与国内不同。Cv的定义为:当调节阀全开,阀两端压差△P为1磅/英寸2,介质为60°F清水时每分钟流经调节阀的流量数,以加仑/分计。 由于Kv与Cv定义不同,试验所测得的数值不同,它们之间的换算关系:Cv = 1.167Kv (5)

雷诺数介绍

雷诺数介绍 测量管内流体流量时往往必须了解其流动状态、流速分布等。雷诺数就是表征流体流动特性的一个重要参数。 流体流动时的惯性力Fg和粘性力(内摩擦力)Fm之比称为雷诺数。用符号Re表示。Re是一个无因次量。 一般认为,Re≤2000时,流动型态为滞流;Re≥4000时,流动为湍流;Re数在两者之间,有时为滞流,有时为湍流,和流动环境有关。 对于一定温度的流体,在特定的圆管内流动,雷诺准数仅与流速有关。本实验是改变水在管内的速度,观察在不同雷诺数下流体流型的变化。 式中的动力粘度η用运动粘度υ来代替,因η=ρυ,则Re=duρ/μ 如下:d 管子内径m;u 流速m/s; ρ 流体密度kg/m3;μ流体粘度Pa·s。 由上式可知,雷诺数Re的大小取决于三个参数,即流体的速度、流束的定型尺寸以及工作状态下的粘度。 用圆管传输流体,计算雷诺数时,定型尺寸一般取管道直径(D),则 用方形管传输流体,管道定型尺寸取当量直径(Dd)。当量直径等

于水力半径的四倍。对于任意截面形状的管道,其水力半径等于管道戳面积与周长之比.所以长和宽分别为A和B的矩形管道,其当量直径对于任意截面形状管道的当量直径,都可按截面积的四倍和截面周长之比计算,因此,雷诺数的计算公式为

雷诺数小,意味着流体流动时各质点间的粘性力占主要地位,流体各质点平行于管路内壁有规则地流动,呈层流流动状态。雷诺数大,意味着惯性力占主要地位,流体呈紊流流动状态,一般管道雷诺数Re<2000为层流状态,Re>4000为紊流状态,Re=2000~4000为过渡状态。在不同的流动状态下,流体的运动规律.流速的分布等都是不同的,因而管道内流体的平均流速υ与最大流速υmax的比值也是不同的。因此雷诺数的大小决定了粘性流体的流动特性。下图表示光滑管道的雷诺数ReD与速度比V/Vmax的关系。 光滑管的管道雷诺数Rep与速度比V/Vmax的关系 试验表明,外部条件几何相似时(几何相似的管子,流体流过几何相似的物体等),若它们的雷诺数相等,则流体流动状态也是几何相似的(流体动力学相似)。这一相似规律正是流量测量节流装置标准化的基础。可见,雷诺数确切地反映了流体的流动特性是流量测量中常用的参数. 2.雷诺数 实验表明真正决定液流流动状态的是用管内的平均流速v、液体的运动粘度ν、管径d三个数所组成的一个称为雷诺数Re的无量纲数,即 上临界雷诺数和下临界雷诺数 临界雷诺数:

模板受力计算

目录 一模板系统强度、变形计算 ...................... 错误!未定义书签。 侧压力计算.................................. 错误!未定义书签。 面板验算.................................... 错误!未定义书签。 强度验算.................................... 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 木工字梁验算................................ 错误!未定义书签。 强度验算................................. 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 槽钢背楞验算................................ 错误!未定义书签。 强度验算................................. 错误!未定义书签。 挠度验算................................. 错误!未定义书签。 对拉杆的强度的验算.......................... 错误!未定义书签。 面板、木工字梁、槽钢背楞的组合挠度为 ........ 错误!未定义书签。二受力螺栓及局部受压混凝土的计算............... 错误!未定义书签。 计算参数.................................... 错误!未定义书签。 计算过程.................................... 错误!未定义书签。 混凝土的强度等级......................... 错误!未定义书签。 单个埋件的抗拔力计算 ..................... 错误!未定义书签。 锚板处砼的局部受压抗压力计算 ............. 错误!未定义书签。 受力螺栓的抗剪力和抗弯的计算 ............. 错误!未定义书签。 爬锥处砼的局部受压承载力计算 ............. 错误!未定义书签。

圆柱墩模板受力计算书

圆柱墩模板受力计算书

广东云浮(双凤)至罗定(榃滨)高速公路工程圆柱墩模板受力计算书 广西壮族自治区公路桥梁工程总公司 广东云浮至罗定高速公路第四合同段项目部 2011年11月

目录 1、圆柱墩设计概况 ------------------------------------------2 2、受力验算依据 --------------------------------------------3 3、圆柱墩模板方案 ------------------------------------------3 4、模板力学计算 --------------------------------------------3 4.1、模板压力计算 --------------------------------------3 4.2、面板验算 ------------------------------------------3 4.3、横肋验算 ------------------------------------------4 4.4、竖肋验算 ------------------------------------------4 4.5、螺栓强度验算 --------------------------------------5

圆柱墩模板受力计算书 1、圆柱墩设计概况 本标段范围内共设有竹沙大桥、国道G324跨线桥、双莲塘大桥、小垌大桥、及更大桥、培岭1#桥、培岭2#桥、培岭3#桥等8座大桥,共有圆柱墩149条,根据墩柱高度不同,圆柱墩直径有1.1m、1.3m、1.4m、1.6m、

柱模板计算书

柱模板(不设对拉螺栓)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计规范》GB 50017-2003 一、工程属性 新浇混凝土柱名称DKZ1 新浇混凝土柱长边边长(mm) 600 新浇混凝土柱的计算高度(mm) 5200 新浇混凝土柱短边边长(mm) 600 二、荷载组合 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]= min[0.22×24×4×1×1×21/2,24×5.2]=min[29.87,124.8]=29.87kN/m2 承载能力极限状态设计值S承=0.9max[1.2G4k+1.4Q3k,1.35G4k+1.4×0.7Q3k]= 0.9max[1.2×29.87+1.4×2,1.35×29.87+1.4×0.7×2]=0.9max[38.644,42.284]=0.9×42.284=38.056kN/m2 正常使用极限状态设计值S正=G4k=29.87 kN/m2 三、面板验算

模板设计平面图1、强度验算 最不利受力状态如下图,按二等跨连续梁验算

静载线荷载q1=1.35bG4k=1.35×0.35×29.87=14.114kN/m 活载线荷载q2=1.4×0.7bQ3k=1.4×0.7×0.35×2=0.686kN/m M max=-0.125q1l2-0.125q2l2=-0.125×14.114×0.32-0.125×0.686×0.32=-0.166kN·m σ=M max/W=0.166×106/(1/6×350×152)=12.685N/mm2≤[f]=15.44N/mm2 满足要求! 2、挠度验算 作用线荷载q=bS正=0.35×29.87=10.454kN/m ν=0.521ql4/(100EI)=0.521×10.454×3004/(100×9350×(1/12×350×153))=0.479mm≤[ν]=l/400=300/400=0.75mm 满足要求! 四、小梁验算 1、强度验算 小梁上作用线荷载q=bS承=0.3×38.056=11.417 kN/m

调节阀流量系数计算公式与选择数据

1、流量系数计算公式 表示调节阀流量系数的符号有C、Cv、Kv等,它们运算单位不同,定义也有不同。 C-工程单位制(MKS制)的流量系数,在国内长期使用。其定义为:温度5-40℃的水,在1kgf/cm2(0.1MPa)压降下,1小时内流过调节阀的立方米数。 Cv-英制单位的流量系数,其定义为:温度60℃F (15.6℃)的水,在1b/in2(7kpa)压降下,每分钟流过调节阀的美加仑数。 Kv-国际单位制(SI制)的流量系数,其定义为:温度5-40℃的水,在10Pa(0.1MPa)压降下,1小时流过调节阀的立方米数。 注:C、Cv、Kv之间的关系为Cv=1.17Kv,Kv=1.01C 国内调流量系数将由C系列变为Kv系列。 (1)Kv值计算公式(选自《调节阀口径计算指南》) ①不可压缩流体(液体)(表1-1) Kv值计算公式与判不式(液体) 低雷诺数修正:流经调节阀流体雷诺数Rev小于104时,其流量系数Kv需要用雷诺数修正系数修正,修正后的流

量系数为: 在求得雷诺数Rev值后可查曲线图得FR值。 计算调节阀雷诺数Rev公式如下: 关于只有一个流路的调节阀, 如单座阀、套筒阀,球阀等: 关于有五个平行流路调节阀, 如双座阀、蝶阀、偏心施转阀 等 文字符号讲明: P1--阀入口取压点测得的绝对压力,MPa; P2--阀出口取压点测得的绝对压力,MPa; △P--阀入口和出口间的压差,即(P1-P2),MPa;Pv--阀入口温度饱和蒸汽压(绝压),MPa;

Pc--热力学临界压力(绝压),MPa; F F--液体临 界压力比系数, F R--雷诺数系数,依照ReV值可计算出;F L--液体压力恢复系数 QL--液体体积流量,m3/h P L--液体密度,Kg/cm3 ν--运动粘度,10-5m2/s W L--液体质量流量,kg/h, ②可压缩流体(气体、蒸汽)(表1-2) Kv值计算公式与判不式(气体、蒸气)表1-2 文字符号讲明: X-压差与入口绝对压力之比(△P/P1);X T- 压差比系数; K-比热比; Qg-体积流量,Nm3/h

流量计算公式

流量计算公式 (1)差压式流量计 差压式流量计是以伯努利方程和流体连续性方程为依据,根据节流原理,当流体流经节流件时(如标准孔板、标准喷嘴、长径喷嘴、经典文丘利嘴、文丘利喷嘴等),在其前后产生压差,此差压值与该流量的平方成正比。在差压式流量计中,因标准孔板节流装置差压流量计结构简单、制造成本低、研究最充分、已标准化而得到最广泛的应用。孔板流量计理论流量计算公式为: 式中,q f为工况下的体积流量,m3/s;c为流出系数,无量钢;β=d/D,无量钢;d为工况下孔板内径,mm;D为工况下上游管道内径,mm;ε为可膨胀系数,无量钢;Δp为孔板前后的差压值,Pa;ρ1为工况下流体的密度,kg/m3。 对于天然气而言,在标准状态下天然气积流量的实用计算公式为: 式中,qn为标准状态下天然气体积流量,m3/s;As为秒计量系数,视采用计量单位而定,此式As=3.1794×10-6;c为流出系数;E为渐近速度系数;d为工况下孔板内径,mm;F G为相对密度系数,ε为可膨胀系数;F Z为超压缩因子;F T为流动湿度系数;p1为孔板上游侧取压孔气流绝对静压,MPa;Δp为气流流经孔板时产生的差压,Pa。 差压式流量计一般由节流装置(节流件、测量管、直管段、流动调整器、取压管路)和差压计组成,对工况变化、准确度要求高的场合则需配置压力计(传感器或变送器)、温度计(传感器或变送器)流量计算机,组分不稳定时还需要配置在线密度计(或色谱仪)等。 (2)速度式流量计 速度式流量计是以直接测量封闭管道中满管流动速度为原理的一类流量计。工业应用中主要有: ①涡轮流量计:当流体流经涡轮流量传感器时,在流体推力作用下涡轮受力旋转,其转速与管道平均流速成正比,涡轮转动周期地改变磁电转换器的磁阻值,检测线圈中的磁通随之发生周期性变化,产生周期性的电脉冲信号。在一定的流量(雷诺数)范围内,该电脉冲信号与流经涡轮流量传感器处流体的体积流量成正比。涡轮流量计的理论流量方程为: 式中n为涡轮转速;q v为体积流量;A为流体物性(密度、粘度等),涡轮结构参数(涡轮倾角、涡轮直径、流道截面积等)有关的参数;B为与涡轮顶隙、流体流速分布有关的系数;C为与摩擦力矩有关的系数。 ②涡街流量计:在流体中安放非流线型旋涡发生体,流体在旋涡发生体两侧交替地分离释放出两列规则的交替排列的旋涡涡街。在一定的流量(雷诺数)范围内,旋涡的分离频率与流经涡街流量传感器处流体的体积流量成正比。涡街流量计的理论流量方程为:

模板受力计算1

目录 一模板系统强度、变形计算..................... 错误!未定义书签1.1 侧压力计算 ............................. 错误!未定义书签 1.2 面板验算 ............................... 错误!未定义书签 1.3 强度验算 ............................... 错误!未定义书签 1.3.1 挠度验算.............................. 错.. 误!未定义书签1.4 木工字梁验算 ........................... 错误!未定义书签 1.4.1 强度验算.............................. 错.. 误!未定义书签 1.4.2 挠度验算.............................. 错.. 误!未定义书签1.5 槽钢背楞验算 ........................... 错误!未定义书签 1.5.1 强度验算.............................. 错.. 误!未定义书签 1.5.2 挠度验算.............................. 错.. 误!未定义书签1.6 对拉杆的强度的验算...................... 错误!未定义书签 1.7 面板、木工字梁、槽钢背楞的组合挠度为....... 错误!未定义书签 二受力螺栓及局部受压混凝土的计算 .............. 错误!未定义书签2.1 计算参数 ............................... 错误!未定义书签 2.2 计算过程 ............................... 错误!未定义书签 2.2.1 混凝土的强度等级...................... 错. 误!未定义书签 2.2.2 单个埋件的抗拔力计算.................. 错误!未定义书签 2.2.3 锚板处砼的局部受压抗压力计算.......... 错误!未定义书签 2.2.4 受力螺栓的抗剪力和抗弯的计算.......... 错误!未定义书签 2.2.5 爬锥处砼的局部受压承载力计算.......... 错误!未定义书签

现浇混凝土模板的支撑设计计算书

模板的支撑设计计算书 ●本工程的模板均采用胶合板模板,木方背楞,钢管扣件支撑,配合采用 对拉螺栓。

施工荷载 1.4×2500=3500N/m 2 钢筋自重荷载 1.2×1100=1320N/m 2 振捣荷载 1.4×2000=2800 N/m 2 合计: 15480 N/m 2 mm q bh f l bh W m 80148 .156181********* 12 22=****=*≤ (2)按剪应力验算 mm q bhf l f bh ql bh V ql V v v 201648 .1533.118100043443232/1max =****=≤≤== =τ (3)按挠度验算

mm q EI l l EI ql 487200 632.0100200 100632.034=??=< ?=ω 现浇板木胶合板模板跨度(即70×100mm 木方背楞间距)取400mm. 4) 70×100mm 木方背楞受力验算 70×100mm 木方背楞搁置在钢管大横杆上,现进行木方背楞受力验算。 (1)按抗弯强度验算 上式中q ’=15480×0.4=6.192N/mm (2))按剪应力验算 (3 根据以上计算,胶合板木方70×100mm 背楞跨度可取1200mm 。 但模板下钢管扣件支撑,每一扣件抗滑能力约为6500N ,而其上荷载为15480N/m 2,可知如支撑立杆间距布置为600mm×600mm,则扣件承受

的力为15480×0.6×0.6=5.57KN<6.5KN,可满足要求。 则木方背楞下,φ48×3.5钢管大横楞及φ48×3.5立杆间距取@600mm ,也即,木方背楞的实际跨度为600mm ,现进行大横杆及立杆验算。 5) 木方背楞下φ48×3.5钢管大横杆受力验算 作用于钢管横楞上的集中荷载为F=q ×0.6×0.4=4.39KN 则按单跨梁,最大弯距可能为: m KN Fl M ?=?== 439.04 6.039.44max (2) 按挠度验算 mm mm F EI l l EI Fl 6008364390400121867101.24820048400 4853<=????=≤≤ =ω 6) 钢管支撑立杆受力验算。 支撑立杆步距1800m ,采用φ48×3.5钢管对接连接: 立杆最大受力F=15480×0.6×0.6=5573N<扣件的抗滑能力值 2 2/205/01.36489 316.05573316 .0,1488 .151800 3.1mm N mm N A N i l <=?=?===?= ?= ?σ?μλ则查表 150mm 厚及其以下模板支撑设计

流体力学计算公式

1、单位质量力:m F f B B = 2、流体的运动粘度:ρ μ=v (μ[动力]粘度,ρ密度) 3、压缩系数:dp d dp dV V ρρκ?=?-=11(κ的单位是N m 2)体积模量为压缩系数的倒数 4、体积膨胀系数:dT d dT dV V v ρρα?-=?=11(v α的单位是C K ?1,1) 5、牛顿内摩擦定律:为液体厚)为运动速度,以应力表示为y u dy du dy du A T (,μτμ== 6、静止液体某点压强:为该点到液面的距离)h gh p z z g p p ()(000ρρ+=-+= 7、静水总压力: )h (为受压面积,为受压面形心淹没深度为静水总压力,A p ghA A p p c ρ== 8、元流伯努利方程;'2221112w h g p z g u g p z ++=++ρρ('w h 为粘性流体元流单位重量流体由过流断面1-1运动至过流断面2-2的机械能损失,z 为某点的位置高度或位置水头,g p ρ为测压管高度或压强水头,g u ρ2是单位流体具有的动能,u gh g p p g u 22'=-=ρ,u gh C g p p g C u 22'=-=ρC 是修正系数,数值接近于1) 9、总流伯努利方程:w h g v g p z g v g p z +++=++222 221221111αραρ(α为修正系数通常取1) 10、文丘里流量计测管道流量:)21)(41()()(42 122211g d d d k h k g p z g p z k Q -=?=+-+=πμρρμ 11、沿程水头损失一般表达式:g v d l h f 22 λ=(l 为管长,d 为管径,v 为断面平均流速,g 为重力加速度,λ为沿程阻力系数)

大型桁架模板受力计算(版)

中交第一航务工程局第五工程有限公司 模板受力计算书 (胸墙模板) 单位工程:锦州港第二港池集装箱码头二期工程计算内容:胸墙模板计算 编制单位:主管:计算: 审批单位:主管:校核:

锦州港第二港池集装箱码头二期工程 胸墙模板计算书 一、设计依据 1.中交第一航务工程勘察设计院图纸 2.《水运工程质量检验标准》JTS257-2008 3.《水运工程混凝土施工规范》JTJ268-96 4. 《组合钢模板技术规范》(GB50214-2001) 5. 《组合钢模板施工手册》 6. 《建筑施工计算手册》 7. 《港口工程模板参考图集》 二、设计说明 1、模板说明 在胸墙各片模板中,1#模板位于码头前沿侧,浇筑胸墙高度为3.15m,承受的侧压力最大,同时胸墙外伸部分的重量也由三角托架来承受,因此选取1#模板来进行计算。 1#模板大小尺寸为17.9m(长)×3.15m(高)。采用横连杆、竖桁架结构形式大型钢模板 面板结构采用安装公司统一的定型模板,板面为5mm钢板制作,背后为50×5竖肋。 内外横连杆采用单[10制作,间距为75cm; 桁架宽度为650cm,最大水平间距75cm,上弦杆采用背扣双[6.3,下弦杆为双∠50×50×5,腹杆为方管50×5。 2、计算项目 本模板计算的项目 ⑴模板面板及小肋 ⑵模板横连杆的验算。 ⑶模板竖桁架的验算。 ⑷模板支立的各杆件的验算。

模板计算 1、混凝土侧压力计算 混凝土对模板的最大侧压力: Pmax = 8K S +24K t V 1/2=8×2.0+24×1.33×0.57? =40.1kN/m 2 式中: Pmax ——混凝土对模板的最大侧压力 Ks ——外加剂影响系数,取2.0 Kt ——温度校正系数 10℃时取Kt =1.33 V ——混凝土浇筑速度50m 3 /h ,取0.57m/h 砼坍落度取100mm ==倾倒侧P P P max 40.1+6×1.4=48.5 kN/m 2取50KN/ m 2 其中倾倒P 为倾倒砼所产生的水平动力荷载,取6kN/㎡×1.4=8.4kN/㎡。 2、板面和小肋验算 ⑴板面强度验算 取1mm 宽板条作为计算单元,计算单元均布荷载 q=0.05×1=0.05 N/mm q 5mm 钢板参数:I=bh 3/12=300×5×5×5/12=3125mm 4 ω= bh 2/6=300×5×5/6=1250mm 3 q=0.05×300=15 N/mm σ=M/ω=0.078 ql 2/ω=0.078×15×3002/1250=85 N/mm 2<[σ]=215 N/mm 2 f max =K f ×Fl 4 /B 0=0.00247×0.05×3004 /2358059=0.43mm <300/500=0.6mm , 钢板满足要求 其中K f 为挠度计算系数,取0.00247 B 0为板的刚度,B0=Eh 3x /12(1-γ2)=2.06×105×53/12(1-0.32)=2358059 γ钢板的泊松系数,取0.3 h 为钢板厚度,h=5mm

(完整版)雷诺数计算公式.doc

雷诺数计算 R e vD 其中 D 为物体的几何限度(如直径) 对于几何形状相似的管道,无论其 ρ、 v 、 D 、 η如何不同,只要比值 Re 相同,其流动情 况就相同 泊肃叶公式 管的半径 R 管的长度 l 两端压强 p 1 , p 2 流体的粘度 ( p p 2 ) r 2 2 rl dv 0 1 dr Q V p 1 p 2 R 4 8 l / p 1 p 2 Q V 8 l R 4 萨瑟兰 公式 Viscosity in gases arises principally from the molecular diffusion that transports momentum between layers of flow. The kinetic theory of gases allows accurate prediction of the behavior of gaseous viscosity. Within the regime where the theory is applicable: ? Viscosity is independent of pressure and ? Viscosity increases as temperature increases. James Clerk Maxwell published a famous paper in 1866 using the kinetic theory of gases to study gaseous viscosity. (Reference: J.C. Maxwell, "On the viscosity or

承台模板受力验算

主桥承台木模板计算 一、计算依据 1、《施工图纸》 2、《公路桥涵施工技术规范》(JTG/T F50-2011) 3、《路桥施工计算手册》 二、承台模板设计 主桥承台平面尺寸为11.5×11.5m,高4m,由于主桥承台基坑开挖深度达10m,基坑钢支撑较多,不利于大块钢模板的吊装,故承台模板考虑采用木模板拼装。 面板采用15mm厚竹胶板(平面尺寸2440×1220mm),水平内楞为80×80mm方木,水平内楞外设竖向外楞,外楞为双拼φ48×3mm钢管,对拉螺杆采用直径20mm的螺纹钢。 承台模板立面局部示意图 承台模板平面局部示意图 三、模板系统受力验算 3.1 设计荷载计算 1、新浇混凝土对模板的侧压力 模板主要承受混凝土侧压力,本工程砼一次最大浇筑高度为4m,新浇筑混凝土作用于模板的最大侧压力取下列二式中的较小值:

1 F=0.22γc t0β1β2V2 F=γc H 式中 F—新浇筑混凝土对模板的最大侧压力(KN/m2); γc—混凝土的重力密度,取24KN/m3; t0—新浇混凝土的初凝时间,取10h; V—混凝土的浇灌速度,取0.6m/h; H—混凝土侧压力计算位置处至新浇混凝土顶面的总高度,取4m; β1—外加剂影响修正系数,取1.0; β2—混凝土坍落度影响修正系数,取1.15; 1 所以 F=0.22γc t0β1β2V2 1 =0.22×24×10×1.0×1.15×0.62 =47.03 KN/m2 F=γc H =24×4=96 KN/m2 综上混凝土的最大侧压力F=47.03 KN/m2 2、倾倒混凝土时冲击产生的水平荷载

考虑两台泵车同时浇筑,倾倒混凝土产生的水平荷载标准值取4KN/m2。 3、水平总荷载 分别取荷载分项系数1.2和1.4,则作用于模板的水平荷载设计值为:q1=47.03×1.2+4×1.4=62 KN/m2 有效压头高度为 h=F/γc =62/24=2.585 m 3.2面板验算 木模板支护方式为典型的单向板受力方式,可按多跨连续梁计算。 内楞采用竖向80×80mm方木,方木中心间距250mm,模板宽度取b=2440mm,作用于模板的线荷载:q1=62×2.44=151.28kN/m,模板截面特性 1bh2=2440×152/6=91500mm3。 为:W= 6 1bh3=2440×153/12=686250mm4; I= 12 模板强度验算: 根据《路桥施工计算手册》表8-13查得最大弯距系数为0.1。 M max=0.1q1l2=0.1×151.28×2502=9.455×105N·mm σ=M max/W=9.455×105/91500=10.3Mpa<[f m]=13Mpa,模板强度符合要求。 模板刚度验算:

柱模板计算书

柱模板计算书 计算依据: 《混凝土结构工程施工规范》(GB50666-2011) 《建筑施工模板安全技术规范》(JGJ162-2008)《建筑结构荷载规范》(GB 50009-2012) 《混凝土结构设计规范》(GB50010-2010) 《钢结构设计规范》(GB 50017-2003) 一、参数信息 1.基本参数 2.面板参数 3.柱箍 (1) B边柱箍

(2) H边柱箍 4.竖楞 (1) B边竖楞 (2) H边竖楞 5.对拉螺栓参数

6.荷载参数 柱段:Z1。

1.荷载计算及组合 (1) 新浇砼作用于模板的最大侧压力G 4k 按下列公式计算,并取其中的较小值: F 1=0.28γ c t βV1/2 F 2=γ c H 其中γ c -- 砼的重力密度,取24.000kN/m3; t 0-- 新浇砼的初凝时间,采用t =200/(T+15)计算,得 200/(20+15)=5.7h; V -- 砼的浇筑速度,取3.5m/h; H -- 砼侧压力计算位置处至新浇砼顶面总高度,取6.3m; β -- 砼坍落度影响修正系数,取1。 根据以上两个公式计算得到: F 1 =71.660 kN/m2 F 2 =151.200 kN/m2 新浇砼作用于模板的最大侧压力G 4k =min(F1,F2)=71.660 kN/m2; 砼侧压力的有效压头高度:h=F/γ=71.660/24.000=2.986m; (2) 砼下料产生的水平荷载标准值Q 2k Q 2k =2kN/m2; (3) 确定采用的荷载组合 计算挠度采用标准组合: q=71.660×1=71.660kN/m; 计算弯矩采用基本组合: q=0.9×1.1×(1.35×0.9×71.660+1.4×0.9×2)×1=88.691kN/m; 2.B边模板面板计算 根据实际受力情况进行电算,得到计算简图及内力、变形图如下:

雷诺数计算公式之通用统一化改进设想带来的思考

雷诺数计算公式之通用统一化改进设想带来的思考 1 原雷诺数的定义及公式 对于圆管内流动,定义的Reynolds数(雷诺数)计算公式: (无量纲)(1)式中——流体的流速,m/s; ——圆管的管径,m; ——流体的运动粘度,即粘度/动力粘度(N·s/m2)与[质量]密度的比值,单位为m2/s。 猜想: 1.在流体流动附着或接触的交界面上,接触两者的性质参数会影响流动状 态,所以应考虑两者的物性参数对流动研究对象的影响,而不是单一流 体的参数。 2.界面上接触的两者的密度之差或比值,流通管道直径利用等效直径或等 效园周长或等效湿周(考虑实际湿周和与空气接触边长的非湿周粘滞作 用,非湿周可用系数修正效果),固体的硬度/弹性模量/屈服强度等应 考虑到公式中去,流体或被研究对象的响应特性参数也应考虑进去; 3.基于现有公式的改进或全新构建,通过数值实验加以最接近的验证或实 验验证。 基于上述分析可提出或构建类似:界面阻力系数——影响如喷射雾化质量/物体运动稳定状态/车辆高速稳定性; 应用领域:任何接触流动/滚动/复合接触的研究对象,都可以最后综合得出一个基于对象应用的界面综合阻力系数公式。如汽车行驶(地面与轮胎/车身与空气)/舰船航行(船身与水/船身与空气)。上述复合影响将统一到一起加以研究和解决,将会更加高效和便利。 2 原雷诺数应用变形公式 对于一般流动,习惯利用水利半径代替雷诺数公式中的,则广义雷诺数计算公式变为 (2) (3)式中——通流截面积,m2; ——通流截面与管道接触的湿周长度,m。对于液体,等于在通流截面上液体与固体接触的周界长度,不包括自由液面以上的气体与固体接触的部分;对于气体,等于通流截面的周界长度。

柱模板支撑计算书

柱模板支撑计算书 一、柱模板基本参数 柱模板的截面宽度 B=600mm , 柱模板的截面高度 H=800mm ,H 方向对拉螺栓1道, 柱模板的计算高度 L = 6000mm , 柱箍间距计算跨度 d = 600mm 。 柱箍采用双钢管48mm ×2.9mm 。 柱模板竖楞截面宽度60mm ,高度50mm 。 B 方向竖楞4根,H 方向竖楞5根。 面板厚度15mm ,剪切强度1.2N/mm 2,抗弯强度12.0N/mm 2,弹性模量9000.0N/mm 2。 木方剪切强度1.4N/mm 2,抗弯强度11.0N/mm 2,弹性模量9000.0N/mm 2。 柱模板支撑计算简图 二、柱模板荷载标准值计算 强度验算要考虑新浇混凝土侧压力和倾倒混凝土时产生的荷载设计值;挠度验算只考虑新浇混凝土侧压力产生荷载标准值。 新浇混凝土侧压力计算公式为下式中的较小值: 800

其中 γc —— 混凝土的重力密度,取24.000kN/m 3; t —— 新浇混凝土的初凝时间,为0时(表示无资料)取200/(T+15),取3.000h ; T —— 混凝土的入模温度,取15.000℃; V —— 混凝土的浇筑速度,取2.500m/h ; H —— 混凝土侧压力计算位置处至新浇混凝土顶面总高度,取6.000m ; β—— 混凝土坍落度影响修正系数,取0.900。 根据公式计算的新浇混凝土侧压力标准值 F1=28.680kN/m 2 考虑结构的重要性系数0.90,实际计算中采用新浇混凝土侧压力标准值: F1=0.90×28.690=25.821kN/m 2 考虑结构的重要性系数0.90,倒混凝土时产生的荷载标准值: F2=0.90×4.000=3.600kN/m 2。 三、柱模板面板的计算 面板直接承受模板传递的荷载,应该按照均布荷载下的简支梁计算,计算如下 面板计算简图 面板的计算宽度取柱箍间距0.60m 。 荷载计算值 q = 1.2×25.821×0.600+1.40×3.600×0.600=21.615kN/m 面板的截面惯性矩I 和截面抵抗矩W 分别为: W=22.500cm 3 I=16.875cm 4 (1)抗弯强度计算 f = M / W < [f] 其中 f —— 面板的抗弯强度计算值(N/mm 2); M —— 面板的最大弯距(N.mm); 21.62kN/m A

流体主要计算公式

主要的流体力学事件有: 1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。 1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。 1781年拉格朗日首先引进了流函数的概念。 1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。 1876年雷诺发现了流体流动的两种流态:层流和紊流。 1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。 19世纪末,相似理论提出,实验和理论分析相结合。 1904年普朗特提出了边界层理论。 20世纪60年代以后,计算流体力学得到了迅速的发展。流体力学内涵不断地得到了充实与提高。 理想势流伯努利方程 (3-14) 或(3-15) 物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。 (应用条件:“”所示) 符号说明 物理意义几何意义 单位重流体的位能(比位能)位置水头 单位重流体的压能(比压能)压强水头 单位重流体的动能(比动能)流速水头 单位重流体总势能(比势能)测压管水头

总比能总水头 二、沿流线的积分 1.只有重力作用的不可压缩恒定流,有 2.恒定流中流线与迹线重合: 沿流线(或元流)的能量方程: (3-16) 注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。一般不同流线各不相同(有旋流)。(应用条件:“”所示,可以是有旋流) 流速势函数(势函数)观看录像>> ?存在条件:不可压缩无旋流,即或 必要条件存在全微分d 直角坐标

相关文档