文档库 最新最全的文档下载
当前位置:文档库 › 建筑工程及给排水专业中英文对照翻译

建筑工程及给排水专业中英文对照翻译

建筑工程及给排水专业中英文对照翻译
建筑工程及给排水专业中英文对照翻译

Laminar and Turbulent Flow

Observation shows that two entirely different types of fluid flow exist. This was demon- strated by Osborne Reynolds in 1883 through an experiment in which water was discharged from a tank through a glass tube. The rate of flow could be controlled by a valve at the outlet, and a fine filament of dye injected at the entrance to the tube. At low velocities, it was found that the dye filament remained intact throughout the length of the tube, showing that the particles of water moved in parallel lines. This type of flow is known as laminar, viscous or streamline, the particles of fluid moving in an orderly manner and retaining the same relative positions in successive cross- sections.

As the velocity in the tube was increased by opening the outlet valve, a point was eventually reached at which the dye filament at first began to oscillate and then broke up so that the colour was diffused over the whole cross-section, showing that the particles of fluid no longer moved in an orderly manner but occupied different relative position in successive cross-sections. This type of flow is known as turbulent and is characterized by continuous small fluctuations in the magnitude and direction of the velocity of the fluid particles, which are accompanied by corresponding small fluctuations of pressure.

When the motion of a fluid particle in a stream is disturbed, its inertia

will tend to carry it on in the new direction, but the viscous forces due to the surrounding fluid will tend to make it conform to the motion of the rest of the stream. In viscous flow, the viscous shear stresses are sufficient to eliminate the effects of any deviation, but in turbulent flow they are inadequate. The criterion which determines whether flow will be viscous of turbulent is therefore the ratio of the inertial force to the viscous force acting on the particle. The ratio

μ

ρvl const force Viscous force Inertial ?= Thus, the criterion which determines whether flow is viscous or turbulent is the quantity ρvl /μ, known as the Reynolds number. It is a ratio of forces and, therefore, a pure number and may also be written as ul /v where is the kinematic viscosity (v=μ/ρ).

Experiments carried out with a number of different fluids in straight pipes of different diameters have established that if the Reynolds number is calculated by making 1 equal to the pipe diameter and using the mean velocity v , then, below a critical value of ρvd /μ = 2000, flow will normally be laminar (viscous), any tendency to turbulence being damped out by viscous friction. This value of the Reynolds number applies only to flow in pipes, but critical values of the Reynolds number can be established for other types of flow, choosing a suitable characteristic length such as the chord of an aerofoil in place of the pipe diameter. For a

given fluid flowing in a pipe of a given diameter, there will be a critical velocity of flow corresponding to the critical value of the Reynolds number, below which flow will be viscous.

In pipes, at values of the Reynolds number > 2000, flow will not necessarily be turbulent. Laminar flow has been maintained up to Re = 50,000, but conditions are unstable and any disturbance will cause reversion to normal turbulent flow. In straight pipes of constant diameter, flow can be assumed to be turbulent if the Reynolds number exceeds 4000.

Pipe Networks

An extension of compound pipes in parallel is a case frequently encountered in municipal distribution system, in which the pipes are interconnected so that the flow to a given outlet may come by several different paths. Indeed, it is frequently impossible to tell by inspection which way the flow travels. Nevertheless, the flow in any networks, however complicated, must satisfy the basic relations of continuity and energy as follows:

1. The flow into any junction must equal the flow out of it.

2. The flow in each pipe must satisfy the pipe-friction laws for flow in a single pipe.

3. The algebraic sum of the head losses around any closed circuit must be zero.

Pipe networks are generally too complicated to solve analytically, as was possible in the simpler cases of parallel pipes. A practical procedure is the method of successive approximations, introduced by Cross. It consists of the following elements, in order:

1. By careful inspection assume the most reasonable distribution of flows that satisfies condition 1.

2. Write condition 2 for each pipe in the form

h L = KQ n

(7.5) where K is a constant for each pipe. For example, the standard pipe-friction equation would yield K= 1/C2and n= 2 for constant f. Minor losses within any circuit may be included, but minor losses at the junction points are neglected.

3. To investigate condition 3, compute the algebraic sum of the head losses around each elementary circuit. ∑h L= ∑KQ n. Consider losses from clockwise flows as positive, counterclockwise negative. Only by good luck will these add to zero on the first trial.

4. Adjust the flow in each circuit by a correction, ΔQ , to balance the head in that circuit and give ∑KQ n = 0. The heart of this method lies in the determination of ΔQ . For any pipe we may write

Q = Q 0 +ΔQ

where Q is the correct discharge and Q 0 is the assumed discharge. Then, for a circuit

100/Q h n h Q Kn Q K Q L L n n ∑∑∑∑?-=-=- (7.6) It must be emphasized again that the numerator of Eq. (7.6) is to be summed algebraically, with due account of sign, while the denominator is summed arithmetically. The negative sign in Eq. (7.6) indicates that when there is an excess of head loss around a loop in the clockwise direction, the ΔQ must be subtracted from clockwise Q 0’s and added to counterclockwise ones. The reverse is true if there is a deficiency of head loss around a loop in the clockwise direction.

5. After each circuit is given a first correction, the losses will still not balance because of the interaction of one circuit upon another (pipes which are common to two circuits receive two independent corrections, one for each circuit). The procedure is repeated, arriving at a second correction, and so on, until the corrections become negligible.

Either form of Eq. (7.6) may be used to find ΔQ . As values of K appear in both numerator and denominator of the first form, values proportional to the actual K may be used to find the distribution. The

second form will be found most convenient for use with pipe-friction diagrams for water pipes.

An attractive feature of the approximation method is that errors in computation have the same effect as errors in judgment and will eventually be corrected by the process.

The pipe-networks problem lends itself well to solution by use of a digital computer. Programming takes time and care, but once set up, there is great flexibility and many man-hours of labor can be saved.

The Future of Plastic Pipe at Higher Pressures

Participants in an AGA meeting panel on plastic pipe discussed the possibility of using polyethylene gas pipe at higher pressures. Topics included the design equation, including work being done by ISO on an updated version, and the evaluation of rapid crack propagation in a PE pipe resin. This is of critical importance because as pipe is used at higher pressure and in larger diameters, the possibility of RCP increases.

Several years ago, AGA’s Plastic Pipe Design Equation Task Group reviewed the design equation to determine if higher operating pressures

could be used in plastic piping systems. Members felt the performance of our pipe resins was not truly reflected by the design equation. It was generally accepted that the long-term properties of modern resins far surpassed those of older resins. Major considerations were new equations being developed and selection of an appropriate design factor.

Improved pipe performance

Many utilities monitored the performance of plastic pipe resins. Here are some of the long-term tests used and the kinds of performance change they have shown for typical gas pipe resins.

Elevated temperature burst test

They used tests like the Elevated Temperature Burst Test, in which the long-term performance of the pipe is checked by measuring the time required for formation of brittle cracks in the pipe wall under high temperatures and pressures (often 80 degrees C and around 4 to 5-MPa hoop stress). At Consumers Gas we expected early resins to last at least 170 hrs. at 80 degrees C and a hoop stress of 3 MPa. Extrapolation showed that resins passing these limits should have a life expectancy of more than 50 yrs. Quality control testing on shipments of pipe made from

these resins sometimes resulted in product rejection for failure to meet this criterion.

At the same temperature, today’s resins last thousands of hours at hoop stresses of 4.6 MPa. Tests performed on pipe made from new resins have been terminated with no failure at times exceeding 5,700 hrs. These results were performed on samples that were squeezed off before testing. Such stresses were never applied in early testing. When extrapolated to operating conditions, this difference in test performance is equivalent to an increase in lifetime of hundreds (and in some cases even thousands) of years.

Environmental stress crack resistance test

Some companies also used the Environmental Stress Crack Resistance test which measured brittle crack formation in pipes but which used stress cracking agents to shorten test times.

This test has also shown dramatic improvement in resistance brittle failure. For example, at my company a test time of more than 20 hrs. at 50 degrees C was required on our early resins. Today’s resins last well above 1,000 hrs. with no failure.

Notch tests

Notch tests, which are quickly run, measure brittle crack formation in notched pipe or molded coupon samples. This is important for the newer resins since some other tests to failure can take very long times. Notch test results show that while early resins lasted for test times ranging between 1,000 to 10,000 min., current resins usually last for longer than 200,000 min.

All of our tests demonstrated the same thing. Newer resins are much more resistant to the growth of brittle crack than their predecessors. Since brittle failure is considered to be the ultimate failure mechanism in polyethylene pipes, we know that new materials will last much longer than the old. This is especially reassuring to the gas industry since many of these older resins have performed very well in the field for the past 25 yrs. with minimal detectable change in properties.

While the tests showed greatly improved performance, the equation used to establish the pressure rating of the pipe is still identical to the original except for a change in 1978 to a single design factor for all class locations.

To many it seemed that the methods used to pressure rate our pipe were now unduly conservative and that a new design equation was needed. At this time we became aware of a new equation being balloted at

ISO. The methodology being used seemed to be a more technically correct method of analyzing the data and offered a number of advantages.

Thermal Expansion of Piping and Its Compensation

A very relevant consideration requiring careful attention is the fact that with temperature of a length of pipe raised or lowered, there is a corresponding increase or decrease in its length and cross-sectional area because of the inherent coefficient of thermal expansion for the particular pipe material. The coefficient of expansion for carbon steel is 0.012 mm/m?C and for copper 0.0168mm/m?C. Respective module of elasticity are for steel E = 207×1.06kN/m2 and for copper E = 103×106 kN/m2. As an example, assuming a base temperature for water conducting piping at 0?C, a steel pipe of any diameter if heated to 120?C would experience a linear extension of 1.4 mm and a similarly if heated to copper pipe would extend by 2.016 mm for each meter of their respective lengths. The unit axial force in the steel pipe however would be 39% greater than for copper. The change in pipe diameter is of no practical consequence to linear extension but the axial forces created by expansion or contraction

are con- siderable and capable of fracturing any fitments which may tend to impose a restraint;the magnitude of such forces is related to pipe size. As an example,in straight pipes of same length but different diameters, rigidly held at both ends and with temperature raised by say 100?C, total magnitude of linear forces against fixed points would be near enough proportionate to the respective diameters.

It is therefore essential that design of any piping layout makes adequate com- pensatory provision for such thermal influence by relieving the system of linear stresses which would be directly related to length of pipework between fixed points and the range of operational temperatures.

Compensation for forces due to thermal expansion. The ideal pipework as far as expansion is concerned, is one where maximum free movement with the minimum of restraint is possible. Hence the simplest and most economical way to ensure com- pensation and relief of forces is to take advantage of changes in direction, or where this is not part of the layout and long straight runs are involved it may be feasible to introduce deliberate dog-leg offset changes in direction at suitable intervals.

As an alternative,at calculated intervals in a straight pipe run specially designed expansion loops or “U” bends should be inserted. Depending upon design and space availability, expansion bends within a straight pipe run can feature the so called double offset “U” band or the

horseshoe type or “lyre” loop.The last named are seldom used for large heating networks; they can be supplied in manufacturers’ standard units but require elaborate constructional works for underground installation.

Anchored thermal movement in underground piping would normally be absorbed by three basic types of expansion bends and these include the “U”bend, the “L”bend and the “Z”bend.In cases of 90 changes indirection the “L” and “Z”bends are used.Principles involved in the design of provision for expansion between anchor points are virtually the same for all three types of compensator. The offset “U” bend is usually made up from four 90° elbows and straight pipes; it permits good thermal displacement and imposes smaller anchor loads than the other type of loop. This shape of expansion bend is the standardised pattern for prefabricated pipe-in-pipe systems.

All thermal compensators are installed to accommodate an equal amount of expansion or contraction; therefore to obtain full advantage of the length of thermal movement it is necessary to extend the unit during installation thus opening up the loop by an extent roughly equal the half the overall calculated thermal movement.This is done by “cold-pull” or other mechanical means. The total amount of extension between two fixed points has to be calculated on basis of ambient temperature prevailing and operational design temperatures so that distribution of stresses and reactions at lower and higher temperatures are controlled

within permissible limits. Pre-stressing does not affect the fatigue life of piping therefore it does not feature in calculation of pipework stresses .

There are numerous specialist publication dealing with design and stressing calculations for piping and especially for proprietary piping and expansion units; comprehensive experience back design data as well as charts and graphs may be obtained in manufacturers’publications, offering solutions for every kind of pipe stressing problem.

As an alternative to above mentioned methods of compensation for thermal expansion and useable in places where space is restricted, is the more expensive bellows or telescopic type mechanical compensator. There are many proprietary types and models on the market and the following types of compensators are generally used.

The bellows type expansion unit in form of an axial compensator provides for expansion movement in a pipe along its axis; motion in this bellows is due to tension or compression only.There are also articulated bellows units restrained which combine angular and lateral movement; they consist of double compensator units restrained by straps pinned over the center of each bellowsor double tied thus being restrained over its length.Such compensators are suitable for accommodating very pipeline expansion and also for combinations of angular and lateral movements.

层流与紊流

有两种完全不同的流体流动形式存在,这一点在1883年就由Osborne Reynolds 用试验演示证明。在试验里,水通过玻璃管从水箱里放出。流量由出口处的阀门来控制,一股很细的染色流束由入口注入玻璃管内。在较低的流速时,可以看到染色流束在玻璃管中保持着一条完整的迁流。这表明流体粒子以平行的层状流动。这种粘性流体的流动就是我们所知的层流,流体各层的质点以有序的方式移动,并在连续的截面上保持着相同的相对位置。

打开出口阀门,管子里的速度就提高。随着速度提高,最后会达到这样的程度,即染色流束起初开始摆动然后破碎,这样颜色就扩散在整个截面上,这表明流体粒子已不再有次序流动却在连续的截面上占有相对不同的位置。这种流体的流动形式就是紊流,它的特点就是不断产生无数大小不等的涡团,质点掺混使得空间各点的速度随时间无规则地变化。与之相关联,压强也随之无规则地变化。

当一条流束中的某个流体粒子的运动被扰乱,则它的惯性会使它移向新的方向,但周围流体的粘滞力会使它与其余流束的运动保持一致。在粘性流体中,粘性切应力足以抵消任何偏差的影响,但在紊流中是不够的。因此,确定流动是粘滞性的还是紊流性的标准就是作用在粒子上的惯性力和粘性力之比:

μ

ρvl const force Viscous force Inertial ?=

这样,用来判断流动是粘滞性的还是紊流性的标准就是ρvl/μ,也就是雷诺数。这是力之间的比,因此理论上也可以写成ul/v(v=μ/ρ,流体的运动粘滞系数)。

在不同管径的直管里用许多不同流体所进行的试验已经证实,如雷诺数是通过使L等于管径并且使用平均速度v来计算,那么在低于临界值ρvd/μ = 2000的条件下流动一般是层流(粘滞流动),任何紊流的倾向都会由于粘滞摩擦而受到抑制。这个雷诺数的值仅适用于管道中的流体,但雷诺数的临界值可以用来确定其他形式的流动,例如选择合适的弦杆翼剖面来代替管道直径。对于已知直径的管道中的流体而言,会有一个临界流速v c,以及对应的雷诺数,如果低于这个数,则表明流体是粘滞流动。

在管道中,雷诺数值大于2000的情况下,流体不一定就变为紊流。层流可以维持到Re = 50,000,但是条件并不稳定,任何干扰都会使其它又变为一般的紊流。在直径一定的直管中,如果雷诺数超过4000那么流体就有可能变为紊流。

管网

平行复合管道的延伸是市政分配系统中常见的一种情况,在这种

情况下管道相互连接,使得通向某一出口的流体可以来自不同的路径。的确,通过观察往往很难说清楚流体将流经哪一个管路。但是,不管管网有多复杂,其中的流体都必须确保连续性与能量的基础关系。如下所述:

1.流入接合处的流体必须与流出的等量;

2.在每根管中的流体都必须满足流体在单管中的管道摩擦定律;3.在任何闭合回路中,水头损失的代数和必须为0。

管网一般来讲由于太过复杂而难以分析解决,但在简单一些的情况下是可以

的,例如平行管。Cross 介绍了一种实用的程序,采用的是连续性近似法。它由以下的原理组成,包括:

1.通过仔细的观察采取最合理的流体分配方案以满足条件1;2.对每根管道以方程h L = KQ n来判断是否满足条件2,式中K是每根管的特性

常数。例如,标准管道摩擦方程中的K = 1/C2以及n = 2。任何环路中较小的沿程水头损失可能是包括的,但局部水头损失可以忽略不计。

3.为了研究条件3,计算每个基本环路中水头损失的代数和。∑h L = ∑KQ n。假

设顺时针方向流动的损失为正,逆时针的则为负,那么在第一次试验中,它们的和只有在非常幸运的情况下才会为零。

4.通过一个修正值ΔQ来调整每条环路中的流体,使该管路中的

水头平衡,并

给出∑KQ n = 0。这个方法的核心取决于ΔQ 的确定。对于任何管道我们有:

Q = Q 0 +ΔQ

式中Q 是准确的流量而Q 0是假定的流量。那么,对于一个环路而言:

010

0/Q h n h Q Kn Q K Q L L n n ∑∑∑∑?-=-=- (7.6) 必须再次强调的是方程(7.6)的分子和分母都是采用了适当的计算符号确定的。方程(7.6)中的负号表明,当顺时针方向的环路上有过量的水头损失时,ΔQ 必须从顺时针方向的Q 0中减去,并增加到逆时针方向上去。如果顺时针方向的环路上水头损失不足时,情况正好相反。

5.在每条环路都给予了一个最初的修正值后,由于环路之间的相互影响,损失仍不平衡(一些两条环路共有的管道就有两个单独的修正值,每个值对应一条环路)。重复这样的程序,获得第二个修正值,乃至第三、第四个等等,直到修正值可以忽略不计。

方程(7.6)的两种形式都可以用来找出ΔQ 。由于K 值同时出现在第一种形式的分子和分母上,相应实际的K 值就可以用来确定分配量。结合水管的管道摩擦力图表,第二种方程形式使用起来最简便。

近似法最吸引人的一个特点就是计算上的误差与判断误差有相同的效果,而最终它们会在过程中被加以改正。

管网问题非常适合于采用计算机来解决。编制程序需花费大量的时间和精力,但是一旦完成,就有很大的机动灵活性,许多耗人费时的劳动就可省去。

更高压力下塑料管道的前景

美国煤气协会AGA的一个针对塑料管道的专案小组的成员讨论了在较高压力下使用聚乙烯输气管的的可能性。讨论的主题包括有设计方程(其中包括国际科学组织ISO在更新版本上完成的工作),以及对PE管树脂上裂缝快速扩展的评估。这一点非常重要,因为当管道在较高压力下使用、而管径更大的情况下,钢筋混凝土管的可能性增加了。

若干年以前,AGA的塑料管道设计任务小组检查了设计方程,以确定是否能在塑料管道系统中使用更高的工作压力。小组成员认为管道树脂的性能并没有通过设计方程反映出来。一般认为新的树脂塑管在耐用性上远远胜过过去的树脂塑管,因此主要考虑的问题是新方程的发展以及合适的设计要素的选择。

改良的管道性能

许多设备用来监测塑料管道树脂的性能。在这里讲述一下一些针对典型的输气管道树脂进行过的耐久性测试,以及几种性能上的变

化。

温升爆裂测试

他们使用像温升爆裂测试之类的测试。在这一测试中管系的耐久性能通过高温和高压下管壁形成脆裂所需的时间来校核(通常是80摄氏度和4-5MPa的环压下)。在供应燃气时我们希望老的树脂塑管在80摄氏度、3MPa的环压下至少可以坚持使用170个小时。推断表明通过了这些极限的树脂预期其寿命应该能超过50年。装运时对这些树脂塑管质量检测,有时会由于没有达到这一标准而对该产品拒绝使用。

在相同温度条件下,今天的树脂塑管在4.6MPa环压下可持续使用数千小时。测试表明用新树脂制造的管道可使用超过5700小时而没有任何损坏。这些结果是在临测试前检出的(树脂)抽样得出的。这种压力从未在早期的测试中使用过。根据工作条件推断,测试性能上的区别与数百年的寿命增长是相等的(某些情况下甚至是数千年)。

环压下的防裂测试

也有些公司进行了环压下的防裂测试,用来测量管道中脆裂的形成,并加大了压力来减短测试的时间。

这个试验表明了在防止脆裂上的惊人的改进。例如,在我的公司

里对于我们的早期树脂塑管进行试验需要20小时以上的时间和50摄氏度的温度。而现在的树脂塑管能够良好地持续1000小时以上而没有损坏。

槽口测试

可以快速进行的槽口测试,用来测量带有槽口的管道或专门浇铸的试验管中脆裂的形成。这对新的树脂塑管非常重要,因为其他的试验需要很长的时间才能使管道发生损坏。槽口测试的结果说明早期的树脂塑管持续的试验时间在1000到10000分钟之间,而现在的树脂塑管则通常可持续超过200000分钟。

我们所有的试验证实了相同的结果。更新的树脂塑管比起它们的前辈,对脆裂的防止有着更好的效果。由于认为脆裂是聚乙烯管道中结构的最终损坏,因此我们知道新的材料比起旧的来能够持续使用更久。这对于燃气工业特别可靠,因为许多这些旧的树脂塑管在过去的25年时间里表现得非常好,而它们的性能只在最小范围内进行了些改变。

测试表明了管道性能很大的改进,过去用来建立管道压力等级的方程式仍然与原有的相同,除了1978年对于一个针对所有等级的设计因素的改变。

从许多方面来看,如今将管道按压力进行分级是非常保守的,因此也就需要一个新的设计方程式。现在我们知道,国际科学组织正在

花名翻译大全附带花语

花名翻译大全附带花语 中国水仙new year lily 自尊/单恋 石榴pomegranate 相思/永生 月桂victor\'s laurel 胜利/不诚实 报春花polyanthus 初恋/自作多情 木棉cotton tree 热情 紫丁香lilac 青春的回忆 吊钟lady\'s eardrops 尝试/热心 紫荆chinese redbud 故情/手足情 百合lily 纯净/神圣 紫罗兰wall flower 信任/爱的羁绊 桃花peach 被你俘虏 紫藤wistaria 沉迷的爱 杜鹃azalea 爱的快乐/节制 铃兰lily-of-the-valley 纤细/希望/纯洁牡丹tree paeony 富贵/羞怯 银杏ginkgo 长寿 芍药paeony 害羞 蝴蝶兰moth orchid 幸福/纯洁/吉祥 辛夷violet magnolia 友情/爱自然 蟹爪仙人掌christmas cactus 锦上添花玫瑰rose 爱情/爱与美 郁金香tulip 名誉/慈善/美丽 茶花common camelia 美德/谦逊

千日红common globe-amaranth 永恒的爱/不朽非洲堇african vioet 永恒的美 天人菊indian blanket 团结/协力 栀子花cape jasmine 喜悦/纯洁 木槿rose of sharon 劝告/短暂的美 风信子hyacinyh 悲哀/永远怀念 百子莲african lily 爱的来临 牵牛花morning glory 爱情/依赖 君子兰kafir lily 宝贵/高贵 荷包花lady\'s pocketbook 聚集财富 含笑花banana shrub 矜持/含蓄 非洲菊african daisy 神秘/兴奋 含羞草esnsitive plant 敏感 茉莉arabian jasmine 你属于我/亲切 猪笼草pitcher plant 财源广进 凌霄花creeper 好高骛远 树兰orchid tree 平凡而清雅 康乃馨caronation 温馨/慈祥 鸡冠花cockscomb 永生/爱美/痴情 荷花lotus 神圣/纯洁 鸢萝cypress vine 关怀/依附 菩提bo-tree 结婚/圣洁 大理花dahlia 移情别恋/优雅 圣诞百合christmas bell 温暖的心 一串红scarlet sage 热切的思念

各专业的英文翻译

中国教育在线考研频道提供考研全方面信息指导及咨询服务,为您成功考研提供一切帮助。 哲学Philosophy 马克思主义哲学Philosophy of Marxism 中国哲学Chinese Philosophy 外国哲学Foreign Philosophies 逻辑学Logic 伦理学Ethics 美学Aesthetics 宗教学Science of Religion 科学技术哲学Philosophy of Science and Technology 经济学Economics 理论经济学Theoretical Economics 政治经济学Political Economy 经济思想史History of Economic Thought 经济史History of Economic 西方经济学Western Economics 世界经济World Economics 人口、资源与环境经济学Population, Resources and Environmental Economics 应用经济学Applied Economics 国民经济学National Economics 区域经济学Regional Economics 财政学(含税收学)Public Finance (including Taxation) 金融学(含保险学)Finance (including Insurance) 产业经济学Industrial Economics 国际贸易学International Trade 劳动经济学Labor Economics 统计学Statistics 数量经济学Quantitative Economics 中文学科、专业名称英文学科、专业名称 国防经济学National Defense Economics 法学Law 法学Science of Law 法学理论Jurisprudence 法律史Legal History 宪法学与行政法学Constitutional Law and Administrative Law 刑法学Criminal Jurisprudence

材质中英文对照表

一、材质中英文对照表 1.摇粒绒:Polar Fleece 2.珊瑚绒:coral fleece / soft terry 3.羊羔绒:Berber fleece / polyester faux sherpa 4.短毛绒:short plush 5.长毛绒:long plush 6.毛绒:fur 7.天鹅绒:velvet 8.拖把绒:cord velour 9.PV绒:PV plush 10.毛巾布:terry 11.灯芯绒:corduroy 12.双色毛绒:two-tone faux fur 13.毛线针织:knitting 14.麂皮绒:microfiber/microsuede 15.格利特:glitter 16.亮片:sequin 17.佳积布:nylex 18.尼龙布:nylon 19.汗衫布:jersey 20.沙丁布:satin 21.网布:mesh 22.帆布:canvas 23.斜纹棉布: cotton twill 24.PU 25.镜面PU:patent PU 26.平纹PU:smooth PU 27.EV A 28.点塑底:fabric with dot / skid free dot/non skid dot 29.TPR 30.PVC注塑:PVC injected 二、鞋子装饰物(ornament) 1.松紧带:elastic gore 2.魔术贴:velcro 3.电绣:embroidery 4.蝴蝶结:bow 5.爱心:heart 6.鞋带:lace 7.鞋眼:eyelet 8.人造钻石:rhinestone 9.搭带:strap 10.拉环:loop 11.毛球:POM 12.织唛标:Woven label 13.烫印:heat seal 14.贴片:patch 15.拉链:zipper 三、颜色 1. 豹纹:leopard/ cheetah 2. 斑马纹:zebra 3. 虎纹:tiger 4. 米黄色:beige 5. 桃红色:fuschia 6. 淡紫色:lilac 7. 海军蓝:Navy 8. 咖啡色:Brown 9. 迷彩:camo 10. 湖水蓝:blue atoll/ turq / lake blue 11. 格子:plaid / gingham 12. 紫色:purple 13. 灰色:grey/gray 14. 条纹:strip 15. 银光粉:neon pink 16. 金属色:metallic 17. 栗色:chestnut AI Artwork 设计稿

spss软件的菜单及所有单词中英文翻译大全

SPSS 统计软件的主菜单及子菜单

spss软件的中英文翻译 Absolute deviation, 绝对离差 Absolute number, 绝对数 Absolute residuals, 绝对残差 Acceleration array, 加速度立体阵 Acceleration in an arbitrary direction, 任意方向上的加速度Acceleration normal, 法向加速度 Acceleration space dimension, 加速度空间的维数Acceleration tangential, 切向加速度 Acceleration vector, 加速度向量 Acceptable hypothesis, 可接受假设 Accumulation, 累积 Accuracy, 准确度 Actual frequency, 实际频数 Adaptive estimator, 自适应估计量 Addition, 相加 Addition theorem, 加法定理 Additivity, 可加性 Adjusted rate, 调整率 Adjusted value, 校正值 Admissible error, 容许误差 Aggregation, 聚集性 Alternative hypothesis, 备择假设 Among groups, 组间 Amounts, 总量 Analysis of correlation, 相关分析 Analysis of covariance, 协方差分析 Analysis of regression, 回归分析 Analysis of time series, 时间序列分析 Analysis of variance, 方差分析 Angular transformation, 角转换 ANOVA (analysis of variance), 方差分析 ANOVA Models, 方差分析模型 Arcing, 弧/弧旋 Arcsine transformation, 反正弦变换 Area under the curve, 曲线面积 AREG , 评估从一个时间点到下一个时间点回归相关时的误差ARIMA, 季节和非季节性单变量模型的极大似然估计 Arithmetic grid paper, 算术格纸 Arithmetic mean, 算术平均数

选矿专业英语

1 总论 采矿mining 地下采矿underground mining 露天采矿open cut mining, open pit mining, surface mining 采矿工程mining engineering 选矿(学)mineral dressing, ore beneficiation, mineral processing 矿物工程mineral engineering 冶金(学)metallurgy 过程冶金(学)process metallurgy 提取冶金(学)extractive metallurgy 化学冶金(学)chemical metallurgy 物理冶金(学)physical metallurgy 金属学Metallkunde 冶金过程物理化学physical chemistry of process metallurgy 冶金反应工程学metallurgical reaction engineering 冶金工程metallurgical engineering 钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel 有色冶金(学)nonferrous metallurgy 真空冶金(学)vacuum metallurgy 等离子冶金(学)plasma metallurgy 微生物冶金(学)microbial metallurgy 喷射冶金(学)injection metallurgy 钢包冶金(学)ladle metallurgy 二次冶金(学)secondary metallurgy 机械冶金(学)mechanical metallurgy 焊接冶金(学)welding metallurgy 粉末冶金(学)powder metallurgy 铸造学foundry 火法冶金(学)pyrometallurgy 湿法冶金(学)hydrometallurgy 电冶金(学)electrometallurgy 氯冶金(学)chlorine metallurgy 矿物资源综合利用engineering of comprehensive utilization of mineral resources 中国金属学会The Chinese Society for Metals 中国有色金属学会The Nonferrous Metals Society of China 2 采矿 采矿工艺mining technology 有用矿物valuable mineral 冶金矿产原料metallurgical mineral raw materials 矿床mineral deposit 特殊采矿specialized mining 海洋采矿oceanic mining, marine mining 矿田mine field

中文姓氏的英文翻译对照表

中文姓氏的英文翻译对照表 中文姓氏的英文翻译对照表.txt我们用一只眼睛看见现实的灰墙,却用另一只眼睛勇敢飞翔,接近梦想。男人喜欢听话的女人,但男人若是喜欢一个女人,就会不知不觉听她的话。在互联网上混的都时兴起个英文名字,一是方便注册用户名,二是有个好英文名容易显得自己比较Cool。但是起英文名时,中文姓氏还是要保留的,并且姓氏一般都有专门的英文翻译,比如“刘德华”的英文名是Andy,刘姓对应的英文翻译是Lau,所以全称便是“Andy Lau”。当然了,我们一般人直接用汉语拼音作为姓氏的英文翻译也可以,但在比较正式的场合下,最好还是用相应的英文翻译。 姓氏的英文翻译跟汉语拼音是有一些细微差别的,这主要由中西方人发音的不同特点来决定的。比如,从声母上来看,D开头的姓,英文翻译对应的是T,G对应的是K,X对应的是HS,Z、J 一般对应的是C,韵母也会有一些细微差别。详细的,请参考如下中文姓氏的英文翻译对照表,正在起英文名的朋友可以看看。 A: 艾--Ai 安--Ann/An 敖--Ao B: 巴--Pa 白--Pai 包/鲍--Paul/Pao 班--Pan 贝--Pei 毕--Pih 卞--Bein 卜/薄--Po/Pu 步--Poo 百里--Pai-li C: 蔡/柴--Tsia/Choi/Tsai 曹/晁/巢--Chao/Chiao/Tsao 岑--Cheng 崔--Tsui 查--Cha

常--Chiong 车--Che 陈--Chen/Chan/Tan 成/程--Cheng 池--Chi 褚/楚--Chu 淳于--Chwen-yu D: 戴/代--Day/Tai 邓--Teng/Tang/Tung 狄--Ti 刁--Tiao 丁--Ting/T 董/东--Tung/Tong 窦--Tou 杜--To/Du/Too 段--Tuan 端木--Duan-mu 东郭--Tung-kuo 东方--Tung-fang E: F: 范/樊--Fan/Van 房/方--Fang 费--Fei 冯/凤/封--Fung/Fong 符/傅--Fu/Foo G: 盖--Kai 甘--Kan 高/郜--Gao/Kao 葛--Keh 耿--Keng 弓/宫/龚/恭--Kung 勾--Kou 古/谷/顾--Ku/Koo 桂--Kwei

中英文对照版合同翻译样本

1.Sales Agreement The agreement, (is) made in Beijing this eighth day of August 1993 by ABC Trading Co., Ltd., a Chinese Corporation having its registered office at Beijing, the People’ Repubic of China (hereinafter called “Seller”) and International Trading Co., Ltd., a New York Corporation having its registered office at New York, N.Y., U.S.A. (hereinafter called “Buyer”). 2.WITNESSETH WHEREAS, Seller is engaged in dealing of (product) and desires to sell (product)to Buyer, and WHEREAS, Buyer desires to purchase(product) from Sellers, Now, THEREFORE, it is agreed as follows: 3.Export Contract th This Contract is entered into this 5 day of August 1993 between ABC and Trading Co., Ltd. (hereinafter called “Seller”) who agrees to sell, and XYZ Trading Co., Ltd. (hereinafter called “Buyer”) who agrees to buy the following goods on the following terms and condition. 4.Non-Governmental Trading Agreement No. __ This Agreement was made on the_day of_ 19_, BETWEEN _(hereinafter referred to as the Seller) as the one Side and _ (hereinafter referred to as the Buyer) as the one other Side. WHEREAS, the

冶金专业英语大全

coking plant 炼焦厂electrometallurgy 电冶金学powder metallurgy 粉末冶金学 blast furnace 鼓风炉mouth, throat 炉口hopper, chute 料斗stack 炉身belly 炉腰bosh 炉腹crucible 炉缸slag tap 放渣口taphole 出铁口,出渣口pig bed 铸床 mould 铸模(美作:mold) tuyere, nozzle 风口ingot mould 锭模(美作:ingot mold) floor 平台hearth 炉底charger 装料机ladle 铁水包,钢水包dust catcher 除尘器washer 洗涤塔converter 转炉hoist 卷扬机compressor 压缩机tilting mixer 可倾式混铁炉regenerator 蓄热室heat exchanger 热交换器gas purifier 煤气净化器turbocompressor 涡轮压缩机burner 烧嘴cupola 化铁炉,冲天炉emptier 排空装置trough 铁水沟,排渣沟skip 料车rolling mill 轧机,轧钢机blooming mill 初轧机 roller 辊bed 底座rolling-mill housing 轧机机架drawbench 拔管机,拉丝机 drawplate 拉模板shaft furnace 竖炉refining furnace 精炼炉 reverberatory furnace 反射炉hearth furnace 床式反射炉firebrick lining 耐火砖衬retort 反应罐muffle 马弗炉roof, arch 炉顶forge 锻造press 压锻pile hammer 打桩锤drop hammer 落锤die 拉模blowlamp 吹炬(美作:blowtorch)crusher 破碎机 iron ore 铁矿石coke 焦炭bauxite 铁钒土alumina 铝cryolite 冰晶石flux 熔剂limestone flux 石灰石溶剂haematite 赤铁矿(美作:hematite)gangue 脉石 cast iron 铸铁cast iron ingot 铸铁锭slag 炉渣soft iron 软铁pig iron 生铁 wrought iron 熟铁iron ingot 铁锭puddled iron 搅炼熟铁round iron 圆铁 scrap iron 废铁steel 钢crude steel 粗钢mild steel, soft steel 软钢,低碳钢 hard steel 硬钢cast steel 坩埚钢,铸钢stainless steel 不锈钢electric steel 电工钢,电炉钢high-speed steel 高速钢moulded steel 铸钢refractory steel 热强钢,耐热钢 alloy steel 合金钢plate, sheet 薄板corrugated iron 瓦垅薄钢板tinplate, tin 马口铁finished product 成品,产品semifinished product 半成品,中间产品ferrous products 铁制品coiled sheet 带状薄板bloom 初轧方坯metal strip, metal band 铁带,钢带 billet 坯锭,钢坯shavings 剃边profiled bar 异型钢材shape, section 型钢angle iron 角钢frit 烧结wire 线材ferronickel 镍铁elinvar 镍铬恒弹性钢ferrite 铁氧体,铁醇盐cementite 渗碳体,碳化铁pearlite 珠光体charging, loading 装料,炉料fusion, melting, s melting 熔炼remelting 再熔化,重熔refining 精炼casting 出铁to cast 出铁 tapping 出渣,出钢,出铁to insufflate, to inject 注入heating 加热preheating 预热tempering 回火temper 回火hardening 淬水annealing 退火reduction 还原 cooling 冷却decarbonization, decarburization 脱碳coking 炼焦slagging, scorification 造渣carburization 渗碳case hardening 表面硬化cementation 渗碳fritting, sintering 烧结puddling 搅炼pulverization 粉化,雾化nitriding 渗氮alloy 合金floatation, flotation 浮选patternmaking 制模moulding 成型(美作:molding)calcination 煅烧amalgamation 汞齐化rolling 轧制drawing 拉拔extrusion 挤压wiredrawing 拉丝stamping, pressing 冲压die casting 拉模铸造forging 锻造turning 车削milling 铣削machining, tooling 加工autogenous welding, fusion welding 氧炔焊arc welding 电弧焊electrolysis 电解trimming 清理焊缝blowhole 气孔采矿mining地下采矿underground mining 露天采矿open cut mining, open pit mining, surface mining 采矿工程mining engineering 选矿(学)mineral dressing, ore beneficiation, mineral pr ocessing 矿物工程mineral engineering冶金(学)metallurgy 过程冶金(学)process metallurgy 提取冶金(学)extractive metallurgy 化学冶金(学)chemical metallurgy 物理冶金(学)physical metallurgy 金属学Metallkunde 冶金过程物理化学physical chemistry of process metallurgy

胡壮麟语言学术语英汉对照翻译表-(1)(DOC)

胡壮麟语言学术语英汉对照翻译表 1. 语言的普遍特征: 任意性arbitrariness 双层结构duality 既由声音和意义结构 多产性productivity 移位性displacement:我们能用语言可以表达许多不在场的东西 文化传播性cultural transmission 2。语言的功能: 传达信息功能informative 人济功能:interpersonal 行事功能:Performative 表情功能:Emotive 寒暄功能:Phatic 娱乐功能recreatinal 元语言功能metalingual 3. 语言学linguistics:包括六个分支 语音学Phonetics 音位学phonology 形态学Morphology 句法学syntax 语义学semantics 语用学pragmatics 4. 现代结构主义语言学创始人:Ferdinand de saussure 提出语言学中最重要的概念对之一:语言与言语language and parole ,语言之语言系统的整体,言语则只待某个个体在实际语言使用环境中说出的具体话语 5. 语法创始人:Noam Chomsky 提出概念语言能力与语言运用competence and performance 1. Which of the following statements can be used to describe displacement. one of the unique properties of language: a. we can easily teach our children to learn a certain language b. we can use both 'shu' and 'tree' to describe the same thing. c. we can u se language to refer to something not present d. we can produce sentences that have never been heard befor e. 2.What is the most important function of language? a. interpersonal b. phatic c. informative d.metallingual 3.The function of the sentence "A nice day, isn't it ?"is __ a informative b. phatic c. directive d. performative

英文翻译工具

五分钟搞定5000字-外文文献翻译【你想要的工具都在这里】 五分钟搞定5000字-外文文献翻译 工具大全https://www.wendangku.net/doc/199650812.html,/node/2151 在科研过程中阅读翻译外文文献是一个非常重要的环节,许多领域高水平的文献都是外文文献,借鉴一些外文文献翻译的经验是非常必要的。由于特殊原因我翻译外文文献的机会比较多,慢慢地就发现了外文文献翻译过程中的三大利器:G oogle“翻译”频道、金山词霸(完整版本)和CNKI“翻译助手"。 具体操作过程如下: 1.先打开金山词霸自动取词功能,然后阅读文献; 2.遇到无法理解的长句时,可以交给Google处理,处理后的结果猛一看,不堪入目,可是经过大脑的再处理后句子的意思基本就明了了; 3.如果通过Google仍然无法理解,感觉就是不同,那肯定是对其中某个“常用单词”理解有误,因为某些单词看似很简单,但是在文献中有特殊的意思,这时就可以通过CNKI的“翻译助手”来查询相关单词的意思,由于CNKI的单词意思都是来源与大量的文献,所以它的吻合率很高。

另外,在翻译过程中最好以“段落”或者“长句”作为翻译的基本单位,这样才不会造成“只见树木,不见森林”的误导。 注: 1、Google翻译:https://www.wendangku.net/doc/199650812.html,/language_tools google,众所周知,谷歌里面的英文文献和资料还算是比较详实的。我利用它是这样的。一方面可以用它查询英文论文,当然这方面的帖子很多,大家可以搜索,在此不赘述。回到我自己说的翻译上来。下面给大家举个例子来说明如何用吧 比如说“电磁感应透明效应”这个词汇你不知道他怎么翻译, 首先你可以在CNKI里查中文的,根据它们的关键词中英文对照来做,一般比较准确。 在此主要是说在google里怎么知道这个翻译意思。大家应该都有词典吧,按中国人的办法,把一个一个词分着查出来,敲到google里,你的这种翻译一般不太准,当然你需要验证是否准确了,这下看着吧,把你的那支离破碎的翻译在google里搜索,你能看到许多相关的文献或资料,大家都不是笨蛋,看看,也就能找到最精确的翻译了,纯西式的!我就是这么用的。 2、CNKI翻译:https://www.wendangku.net/doc/199650812.html, CNKI翻译助手,这个网站不需要介绍太多,可能有些人也知道的。主要说说它的有点,你进去看看就能发现:搜索的肯定是专业词汇,而且它翻译结果下面有文章与之对应(因为它是CNKI检索提供的,它的翻译是从文献里抽出来的),很实用的一个网站。估计别的写文章的人不是傻子吧,它们的东西我们可以直接

专业英语翻译

3 Earthquakes Earthquakes is trembling or shaking movement of the Earth’s surface.Most earthquakes are minor https://www.wendangku.net/doc/199650812.html,rger earthquakes usually begin with slight tremors but rapidly take the form of one or more violent shocks,and end in vibrations of gradually diminishing force called aftershocks.The subterranean point of origin of an earthquake is called its focus;the point on the surface directly above the focus is the epicenter .The magnitude and intensity of an earthquake is determined by the use of scales,e.g.,the Richter scale and Mercalli scale. Most earthquakes are causally related to compressional stress or tensional stress built up at the margins of the huge moving lithospheric plates that make up the Earth’s surface.The immediate cause of most shallow earthquakes is the sudden release of stress along a fault,or fracture in the Earth’s crust resulting in moving of the opposing blocks of rock past one another.These movements cause vibrations to pass through and around the Earth in wave form,just as ripples are generated when a pebble is dropped into water.V olcanic eruption,rockfalls,landslides,and explosions can also cause a quake,but most of these are of only local extent. 6 Evidence from radiometric dating indicates that the Earth is about 4,570 million years old.Geologists have divided Earth’s history into a series of time intervals.These time intervals are not equal in length like the hours in a day.Instead the time intervals are variable in length.Different spans of time on the time scale are usually delimited by major geological or paleontological events,such as varying rock type or fossils within the strata and mass extinctions.For example,the boundary between the Cretaceous period and the Paleogene period is defined by the first appearance of animals with hard parts. The geologic time scale was formulated during 地震 地震颤动或发抖运动的地球表面。大部分地震是轻微地震。大地震通常开始轻微的颤动而迅速采取一个或更猛烈冲击的形式,并最终在逐渐减少振动的力称为余震。地震起源的地下点称为重心;表面上以上的重点是中心点。地震的震级和强度的尺度,确定使用例如,李希特尺度和麦加利震级。 大部分地震是因果关系的压应力或拉应力建立在巨大岩石圈板块的运动,使地球表面的空间。最浅的地震的直接原因是沿断层应力的突然释放,或断裂在地壳导致岩石过去彼此对立块体运动。这些运动引起的振动通过环绕地球以波的形式,就像涟漪时产生一个石子投进水中。火山喷发,崩塌,滑坡,和爆炸也可以引起地震,但这些只是局部性的范围。 证据来自辐射测年表明,地球的年龄大约是4570000000岁。地质学家划分地球历史划分成一系列的时间。这些时间间隔的长度像一天中的时间是不相等的。相反,时间间隔的长度是可变的。时间在时间尺度不同跨度通常是由主要的地质或古生物事件分隔的,如不同的地层和大规模物种灭绝的岩石或化石类型。例如,白垩纪和古近纪是用坚硬的部分动物的第一次出现定义之间的边界。

纺织品专业词汇翻译中英文对照表

纺织品专业词汇翻译中英文对照表纺织品[转]纺织品专业词汇翻译中英文对照表纺织品Braided Fabric 编织物 Deformation 变形;走样 Fast Colours 不褪色;色泽牢固 Punch Work 抽绣 Embroidery 刺绣品 Acetate Fibre 醋酯纤维 Hemp 大麻 Damp Proof 防潮 Sanforizing, Pre-Shrunk 防缩 Textiles 纺织品 Crochet 钩编编织物 Gloss, Lustre 光泽 Synthetic Fibre 合成纤维 Chemical Fibre 化学纤维 Jute 黄麻 Gunny Cloth (Bag) 黄麻布(袋) Mixture Fabric, Blend Fabric 混纺织物Woven Fabric 机织织物 Spun Silk 绢丝 Linen 麻织物 Woolen Fabrics 毛织物(品) Cotton Textiles 棉纺织品 Cotton Velvet 棉绒 Cotton Fabrics 棉织物(品) Non-Crushable 耐绉的 Viscose Acetal Fibre 黏胶纤维Matching, Colour Combinations 配色Rayon Fabrics 人造丝织物 Artificial Fibre 人造纤维 Crewel Work 绒线刺绣 Mulberry Silk 桑蚕丝, 家蚕丝 Silk Fabrics 丝织物 Silk Spinning 丝纺 Linen Cambric 手帕亚麻纱 Plain 素色 Figured Silk 提花丝织物 Jacquard 提花织物 Applique Embroidery 贴花刺绣Discolourization 褪色 Mesh Fabric 网眼织物 Bondedfibre Fabric 无纺织物

采矿工程专业英语翻译

采矿工程专业英语 专业:矿业工程姓名:常晓贇学号:1370845 Page1: Evidence of early copper mining exists in many parts of the world . For example , a recent archeometallurgical expedition has uncovered a prehistoric mining complex at PhuLon(“Bald Mountain”)on the Mekong River in Thailand , that ma y be dated as early as 2000BC.Workers at this complex used massive river cobble mauls to break the friable skarn matrix that held squatz veins rich in malachite (Pigott, 1988). The world's oldest known copper smelting furnace,dating to 3500BC, has been found near the modern Timna copper mine in Israel (Raymond , 1986). 在世界上许多地方都有早期铜开采存在的证据。例如,最近一个冶金考古探险队发现了一个史前采矿综合体在在泰国湄公河的PhuLon(“秃山”)上,这可能要追溯到公元前2000年。工人们用大量鹅卵石撞击易碎的富含孔雀石的矽卡岩脉石(Pigott,1988)。世界上已知的最古老的铜矿石冶炼炉可以追溯到公元前3500年,它被发现是在以色列的现在亭纳铜矿(Raymond,1986)。 The link between native copper and malachite might well have been suggested to Neolithic man by the common association of these two forms of the metal in outcrops.But the process by which he then learned how to extract copper from the malachite remains an historic mystery . One suggested answer is that both metal smelting and pottery making appeared to have evolved about the same time . The potter , the first technician in the management of heat , had under his control all the materials and conditions necessary for smelting copper(Raymond, 1986). 自然铜矿和孔雀石之间的联系更可能被新石器时代的人建议为这两种金属露头形式之间常见的关联。但是他们如何学会从孔雀石中提取铜的过程仍然是一个历史之谜。一个可能的答案是金属冶炼和陶器制作都是在同一时期出现的。陶器制作,第一个在高温下来操作的技术,它对于控制所有材料和条件成为冶炼铜的必要条件(Raymond,1986)。

公司章程翻译中英文对照

……公司章程ARTICLES OF ASSOCIATION of ……CO., LIMITED

……公司章程 ARTICLES OF ASSOCIATION OF ……CO., LIMITED 根据《中华人民共和国公司法》(以下简称《公司法》)及其他有关法律、行政法规的规定,特制定本章程。 In accordance with the PRC Company Law (hereinafter referred to as the "Company Law") and other relevant laws and regulations, these articles of association are hereby formulated. 第一章公司名称和住所 CHAPTER 1 The Name and Domicile of the Company 第一条公司名称: Article 1 The name of the Company is 第二条公司住所: Article 2 The domicile of the Company is 第二章公司经营范围 CHAPTER 2 Business Scope of the Company

第三条公司经营范围: Article 3 The business scope of the Company is (subject to approval in business license and the Administration for Industry and Commerce ) -------- 第三章公司注册资本 CHAPTER 3 The Registered Capital of the Company 第四条公司注册资本:人民币---万元。公司增加、减少及转让注册资本,由股东做 出决定。公司减少注册资本,还应当自做出决定之日起十日内通知债权人,并于三十 日内在报纸上至少公告一次,减资后的注册资本不得低于法律规定的最低限额。公司 变更注册资本应依法向登记机关办理变更登记手续。 Article 4 The registered capital of the Company is------ RMB. Resolutions on the increase, reduction or transfer of the Company's registered capital shall be made by the shareholers. The Company may reduce its registered capital according to the regulations set in these Articles of Association. Where such reduction of capital occurs, the Company shall inform its creditors of the reduction of registered capital within ten (10) days following the date on which the reduction resolution is adopted, and make at least one announcement regarding the reduction in a newspaper within thirty (30) days. After the reduction, the registered capital of the Company shall not be less than the statutory minimum limit. It shall apply

相关文档