文档库 最新最全的文档下载
当前位置:文档库 › 2013年云南省数据总结入门

2013年云南省数据总结入门

1、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}
}
i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列合法\n”);return(true);}
}//算法结束。

2、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分
void Hospital(AdjMatrix w,int n)
//在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。
{for (k=1;k<=n;k++) //求任意两顶点间的最短路径
for (i=1;i<=n;i++)
for (j=1;j<=n;j++)
if (w[i][k]+w[k][j]m=MAXINT; //设定m为机器内最大整数。
for (i=1;i<=n;i++) //求最长路径中最短的一条。
{s=0;
for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。
if (w[i][j]>s) s=w[i][j];
if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。
Printf(“医院应建在%d村庄,到医院距离为%d\n”,i,m);
}//for
}//算法结束
对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。

1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。

3、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。
51. 借助于快速排序的算法思想,在一组无序的记

录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

4、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].wedge[j+1]=edge[0]; }//for
k=1; eg=e;
while (eg>=n) //破圈,直到边数e=n-1.
{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除
k++; //下条边
}//while
}//算法结束。
connect()是测试图是否连通的函数,可用图的遍历实现,

5、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

6、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#inclu

de
typedef char datatype;
typedef struct node{
datatype data;
struct node * next;
} listnode;
typedef listnode* linklist;
/*--------------------------------------------*/
/* 删除单链表中重复的结点 */
/*--------------------------------------------*/
linklist deletelist(linklist head)
{ listnode *p,*s,*q;
p=head->next;
while(p)
{s=p;
q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q);
q=s->next;}
else
{ s=q; /*找与P结点值相同的结点*/
q=q->next;
}
p=p->next;
}
return head;
}

7、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].wedge[j+1]=edge[0]; }//for
k=1; eg=e;
while (eg>=n) //破圈,直到边数e=n-1.
{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除
k++; //下条边
}//while
}//算法结束。
connect()是测试图是否连通的函数,可用图的遍历实现,

8、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。
(1).请各举一个结点个数为5的二部图和非二部图的例子。
(2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【

9、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解

答上述问题的算法,并应用该算法解答如图所示的实例。(20分)
10、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。
{int i,j,k,l;
float sum,min; //sum暂存各行元素之和
float *p, *pi, *pk;
for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.
for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.
}//for i
for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.
for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)
{pk=matrix+n*k; //pk指向第k行第1个元素.
pi=matrix+n*i; //pi指向第i行第1个元素.
for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

11、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。
(1).请各举一个结点个数为5的二部图和非二部图的例子。
(2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【

12、假设K1,…,Kn是n个关键词,试解答:
试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。

13、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在

q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问
}stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。
{top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈
{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点
{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存
if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配
{pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0)
return(null);//q、p无公共祖先
}//结束Ancestor

14、二路插入排序是将待排关键字序列r[1..n]中关键字分二路分别按序插入到辅助向量d[1..n]前半部和后半部(注:向量d可视为循环表),其原则为,先将r[l]赋给d[1],再从r[2] 记录开始分二路插入。编写实现二路插入排序算法。
15、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}
}
i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列合法\n”);return(true);}
}//算法结束。

16、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
17、给出折半查找的递归算法,并给出算法时间复杂

度性分析。
18、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}
}
i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列合法\n”);return(true);}
}//算法结束。

19、两棵空二叉树或仅有根结点的二叉树相似;对非空二叉树,可判左右子树是否相似,采用递归算法。
int Similar(BiTree p,q) //判断二叉树p和q是否相似
{if(p==null && q==null) return (1);
else if(!p && q || p && !q) return (0);
else return(Similar(p->lchild,q->lchild) && Similar(p->rchild,q->rchild))
}//结束Similar

20、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。
21、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。
{int i,j,k,l;
float sum,min; //sum暂存各行元素之和
float *p, *pi, *pk;
for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.
for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.
}//for i
for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.
for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)
{pk=matrix+n*k; //pk指向第k行第1个元素.
pi=matrix+n*i; //pi指向第i行

第1个元素.
for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

22、冒泡排序算法是把大的元素向上移(气泡的上浮),也可以把小的元素向下移(气泡的下沉)请给出上浮和下沉过程交替的冒泡排序算法。
48.有n个记录存储在带头结点的双向链表中,现用双向起泡排序法对其按上升序进行排序,请写出这种排序的算法。(注:双向起泡排序即相邻两趟排序向相反方向起泡)

23、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#include
typedef char datatype;
typedef struct node{
datatype data;
struct node * next;
} listnode;
typedef listnode* linklist;
/*--------------------------------------------*/
/* 删除单链表中重复的结点 */
/*--------------------------------------------*/
linklist deletelist(linklist head)
{ listnode *p,*s,*q;
p=head->next;
while(p)
{s=p;
q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q);
q=s->next;}
else
{ s=q; /*找与P结点值相同的结点*/
q=q->next;
}
p=p->next;
}
return head;
}

24、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问
}stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。
{top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈
{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点
{for(i=1;i<=top;i++) s1[i]=s[

i]; top1=top; }//将栈s的元素转入辅助栈s1 保存
if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配
{pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0)
return(null);//q、p无公共祖先
}//结束Ancestor

25、(1)p->rchild (2)p->lchild (3)p->lchild (4)ADDQ(Q,p->lchild) (5)ADDQ(Q,p->rchild)
25. (1)t->rchild!=null (2)t->rchild!=null (3)N0++ (4)count(t->lchild) (5)count(t->rchild)
26. .(1)top++ (2) stack[top]=p->rchild (3)top++ (4)stack[top]=p->lchild
27. (1)*ppos // 根结点 (2)rpos=ipos (3)rpos–ipos (4)ipos (5)ppos+1

26、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。
void Translation(float *matrix,int n)
//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。
{int i,j,k,l;
float sum,min; //sum暂存各行元素之和
float *p, *pi, *pk;
for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.
for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.
}//for i
for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.
for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)
{pk=matrix+n*k; //pk指向第k行第1个元素.
pi=matrix+n*i; //pi指向第i行第1个元素.
for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}
sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.
}//if
}//for i
free(p); //释放p数组.
}// Translation
[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

27、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈

拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问
}stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。
{top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈
{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点
{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存
if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配
{pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0)
return(null);//q、p无公共祖先
}//结束Ancestor


相关文档
相关文档 最新文档