文档库 最新最全的文档下载
当前位置:文档库 › 繁华城区浅埋大断面隧道减震爆破技术

繁华城区浅埋大断面隧道减震爆破技术

繁华城区浅埋大断面隧道减震爆破技术
繁华城区浅埋大断面隧道减震爆破技术

繁华城区浅埋大断面隧道减震爆破技术

摘要文章以重庆轻轨较新线临江门车站隧道为例,介绍了复杂条件下城市浅埋硬岩特大断面隧道减震爆破的施工方法。开挖爆破中由于采用了一系列综合减震措施,使其对隧道周边围岩的影响降低到了最小程度;在爆破设计中,掏槽眼增加了减震孔,周边眼增加了导向孔,并采取隔孔装药方式,对提高炮眼利用率起到了良好的作用。监测结果表明,爆破震速控制较好。

关键词城市轻轨浅埋大断面隧道车站隧道减震爆破

1 前言

城市浅埋、暗挖、硬岩大断面隧道,在我国隧道建设史上并不多见,随着城市建设的不断发展,地面空间已不能满足城市功能的要求,地下空间的开发利用已越来越显示出它的优越性。临江门车站是重庆轻轨较新线的一个中间站,位于重庆市渝中区解放碑商业步行街下,埋深1 0~14m,开挖高度为20.885m,开挖宽度为23.04m,开挖断面积为421m2。车站周边高层建筑林立,与35层高的世贸中心大厦水平距离仅4.5m,具有典型的城市浅埋硬岩大断面隧道的特点及施工难度。本文以临江门车站隧道的减震爆破施工为例,介绍城市浅埋大断面隧道减震爆破技术,以供同类工程参考。

2 工程地质及结构设计概述

临江门站在区域构造上属于解放碑向斜轴部地段,岩层产状平缓,走向与车站轴线大体一致或以小角度斜交。临江门站出露地层为第四系全新统人工填土,下伏基岩为侏罗系中统上沙溪庙组砂岩和砂质泥岩,无断层构造裂隙发育,围岩拱部为砂岩,边墙大部分为泥岩,较场口一端边墙砂岩较厚,黄花园一端边墙为泥岩,车站底部全部为泥岩。

车站洞室段水文地质条件简单,由于街道市政排水设施完备,因此,仅少量地表水沿着破裂的地下管道渗透于砂岩中,形成基岩裂隙水。场地所在区域地震基本烈度为Ⅵ度。临江门车站隧道最小覆盖层厚度为10.5m,其中地表土层厚2.8m、基岩厚7.7m;最大覆盖层厚度也只有

14.58m,其中地表土层厚4.1m、基岩厚10.5m。

车站地面两侧高层建筑林立,车站沿途两侧主要建筑物有:解放碑酒楼和新潮商场(现正在改建为图书金融大楼)、时代广场(在建)、和平电影院、新世纪百货大楼、颐之时大酒楼、重庆世贸中心(在建)、都市广场。对车站隧道影响较大的有:时代广场、世贸大厦、新世纪百货、都市广场。车站较场口端位于邹容路步行街下,街面行人密布,黄花园端地面上车流滚滚;车站地下人防洞室密布,纵横交错,与车站隧道洞室在平面和空间上有交叉、有平行、有重合,人防洞室分布在车站洞室拱部,构成了复杂的工程地质和环境地质条件。

根据临江门站的工程特点,隧道设计采用新奥法设计,车站隧道采用复合式衬砌结构。车站施工采用双侧壁导洞法分步开挖及全断面整体式衬砌,最后开挖核心部分和仰拱。施工步序如图1。

3 钻爆设计与施工

3.1 爆破特点及要求

由于车站隧道位于市中心繁华商业区,隧道埋深浅,地表高层建筑物林立,地下室开挖边界距车站开挖边线水平距离只有4.5~7.8m,基础底部标高在隧道起拱线部位;地面街道行人车辆密度大,地下人防洞室错综复杂。隧道爆破施工必须在确保高质量的隧道开挖断面和进尺的同时,将爆破震动控制在尽可能小的范围内,以保证地表及建筑物的安全和对周围环境的影响。为此,爆破必须满足:爆破震动波速应控制在1.5~2.0cm/s;为保护世贸中心大厦与车站隧道之间的岩柱,该段爆破影响围岩松动圈要求控制在2m以内;炮眼利用率在90%以上,光爆的半壁抛眼留痕迹率在80%以上;平均线性超挖不大于10cm,最大不超过15cm;相邻两循环炮眼衔接台阶不大于10cm;局部欠挖面积小于0.1m2,最大欠挖小于5cm。

3.2 钻爆设计原则

(1)以地面建筑物基础底部(或地面)至爆源中心距离(R)为安全控制半径,借助于经验公式:Q m=R3(Vkp/K)3/α,并以质点振动波速度限值(2cm/s)作为控制标准,对各部分所允许的单段用药量进行反算,并进行试爆试验,以取得合理的爆破参数。

(2)根据现场的地质及施工条件,采用微台阶分部开挖,每部分又分多次爆破,普通段循环进

尺控制在2m以内,过世贸大厦段循环进尺控制在1m以内,控制爆破规模,以达到控制质点震

动速度的目的。

(3)炮眼按浅密原则布置,控制单眼装药量和单段装药量。

(4)上导洞1部掏槽眼位尽量布置在远离建、构筑物一侧。

(5)上导洞1部及拱部4部开挖断面周边眼间均设直径为50mm的减震空眼,中导洞2、3

部开挖时在两侧各预留1m的光爆层。

(6)核心5、7部、仰拱8部的爆破以松动爆破为主,控制爆破飞石对衬砌台车及衬砌混凝土表面的破坏。

(7)地面、洞内均需配合爆破震动监测,及时调整钻爆参数,以满足环境及施工要求。

3.3 钻爆设计

3.3.1 减小爆破地震动强度的方法

本工程除了采用光面爆破施工的减震措施外,拟采用周边密排空眼减震,开挖面增打减震孔、预留光爆层等综合减震措施的爆破技术。

3.3.2 爆破参数选择

爆破参数的确定采用理论计算法、工程类比法与现场试爆相结合,在保证爆破震动速度符

合安全规定的前提下,提高隧道开挖成型质量和施工进度。

(1)炮眼深度(L)

本爆破设计的炮眼深度主要受爆破地震动强度控制,设计炮眼深度根据爆破部位不同进行

调整,一般为1.0~2.0m。

(2)炮眼数目(N)

本爆破设计炮眼直径采用Φ42mm,每次开挖面积约为36~50m2,单位面积钻眼数为1.5个(未包括光面爆破炮眼)。

(3)炮眼布置

①周边炮眼布置采用经验公式和工程类比法确定。按规定炮眼间距(E)=(8~12)d(d为炮眼

直径);抵抗线:W=(1.0~1.5)E。本设计为隔孔装药,炮眼间距为250mm,炮眼直径为42mm,能满足E值要求。

类似工程地质的装药集中度:q=0.1~0.15kg/m,由于本设计炮眼间距为250mm,且为隔孔装药,因此设计装药集中度取最小值(q=0.1kg/m)。

②掏槽眼布置主要应用于侧壁导洞1部,本爆破设计采用空眼双层复式楔形混合掏槽。

③为降低爆破地震动强度,循环进尺根据开挖部位不同来确定,掘进炮眼深度根据循环进尺来确定。

当炮眼直径在35~42mm的范围内时,抵抗线(W)与炮眼深度有如下关系式:W=(15~25)d 或W=(0.3~0.6)dL,在坚硬难爆的岩体中或炮眼较深时,应取较小的系数,反之则取较大的系数。

(4) 单眼装药量的计算

周边眼装药参数在上面已确定,其它炮眼的装药量均可按下列公式计算:

q=k.a.w.L.λ(kg)(1)

式中:q———单眼装药量(kg);

k———炸药单耗(kg/m3);

a———炮眼间距(m);

w———炮眼爆破方向的抵抗线(m);

L———炮眼深度(m);

λ———炮眼部位系数(参照表1选取)。

(5)炮眼堵塞

堵塞作用是使炸药在受约束条件下能充分爆炸以提高能量利用率,因此堵塞长度不小于20 cm,堵塞材料采用炮泥(砂∶粘土∶水=3∶1∶1)。要求堵塞密实,不能有空隙或间断。

(6)爆破器材的选择

炸药:采用二号岩石销铵炸药,周边炮眼采用Φ25mm小药卷,其它炮眼采用Φ32mm标准药

卷。

雷管:孔外采用火雷管起爆,连接件及孔内均采用非电毫秒雷管(1-15段)。为避免爆破时冲击波的叠加,选择非电毫秒雷管时应选用段间隔为75ms以上的各段雷管(1、5、7、9、11、1 3、14、15共8种段别的非电毫秒雷管)。

导火索及导爆索:火雷管采用导火索引爆;周边炮眼间隔装药,采用导爆索传爆。

(7)装药结构(图2)

掏槽眼和底板眼采用反向起爆,周边眼采用间隔不偶合装药形式。为保证每个周边眼内炸药同时起爆,需使用导爆索连结各药卷。

(8)装药连线

因雷管段数较少、炮眼较多,单段装药量受爆破震速要求的限制较小,因此,采用雷管分段控制和孔外微差爆破相结合的方法,以减少单段起爆药量和起爆次数。

3.3.3 爆破安全验算

地表建筑距隧道的最短距离为10.4m,距世贸大厦地下基础的最短距离为4.5m,震速控制在1.5cm/s(视建筑物结构形式而定)。

Qm=K/R3(Vkp/K′)3/α(2)

式中:Qm———最大一段允许用药量(kg);

Vkp———震动安全速度(cm/s);

R———爆源中心到震速控制点的距离(m);

K———与爆破技术、地震波传播途经介质的性质有关的系数,取160(试验测定值);

α———爆破震动衰减系数,取1.8(试验测定值);

K′———在爆破施工实践中的爆破震动衰减修正系数(表2),相关于不同的减震措施及爆破临空面的数量。

4 爆破监测与分析

4.1 爆破震动监测

爆破震动监测主要采用由DSVM-4C振动测试仪、891-II型拾振器、计算机、打印机等组成的震动测试系统,量测过程由计算机自动进行控制(图3)。

拾振器1、拾振器2、拾振器3分别用来测量震动速度的水平径向分量(vr)、水平切向分量(vτ)和垂直分量(vz)。爆破震动监测结果如表3所示。

4.2 围岩松动圈监测

为了监测爆破对临江门车站与世贸中心之间岩柱的影响,采用美国GSSI公司生产的SIR-1 0H雷达对爆破后的断面进行连续探测,以形成CT剖面,监测围岩松动圈的变化,分析爆破震动对该段岩柱的影响。表4为部分地段通过地质雷达探测松动圈的探测结果。

从表4可以看出,在车站洞室各部位上松动圈的分布是较为均匀的,这种均匀性保证了松动圈外岩石仍然有一定的完整性,没有明显的薄弱环节,而且因为选用雷达精度较高,测得的松动圈内大部分围岩未受到明显破坏,因而具有较强的承载能力。

5 结论及建议

由于采用了一系列综合减震措施,使开挖爆破对隧道周边围岩的影响降低到了最小程度,世贸段的爆破对围岩松动圈的影响基本控制在1.5m以内,其余部位基本控制在2.0m以内,从而保证了围岩稳定和工程的安全性。

监测数据表明:世贸中心段的爆破震速基本控制在1.5cm/s以内,其余地段在2.0cm/s以内,最大不超过3.0cm/s。

由于车站隧道各部位在交叉施工,爆破飞石的控制对车站隧道的影响是巨大的,也是开挖中要控制的关键指标之一。拱部4步开挖有3个临空面,自由下落高度为15m左右,选择爆破方法着重是选择抵抗线方向,使之对其他工作面的影响减小到最低程度。方案制定时选择最小抵抗线方向:先是沿车站轴线方向起爆,再选择朝仰拱方向,有效地避免了爆破飞石对已衬砌段及其他工作面的影响,取得了较大的成功。2、3步开挖时上部有临时钢支撑,选择爆破方法时主要是控制起爆顺序,以减小爆破飞石对上部临时钢支撑的影响。实际爆破作业时通过采

取弱爆破、选择合理的起爆顺序,有效地避免了爆破飞石对钢支撑的损伤,整个车站临时钢支撑受爆破作业的损伤不到5%,证明了选择合理的爆破顺序是2、3步爆破方案的关键。

炮眼利用率的高低与爆破设计、施工均有直接关系。在爆破设计中,由于掏槽眼增加了减震孔、周边眼增加了导向孔,采取隔孔装药方式,同时施工中严格控制炮眼深度、炮眼角度,

提高炮眼堵塞质量,从而对提高炮眼利用率起到了良好的作用。掏槽眼的炮眼利用率达95%以上;由于扩槽眼、掘进眼的间距、抵抗线设计合理,钻眼偏差小,炮眼利用率均在92%以上。本工程实际施工中,由于要控制爆破震速,炸药的单耗较低,个别石碴块度较大,但由于出碴装运是通过50B装载机及载重15t的铁马车来完成的,除了极个别块度较大需改炮外,绝大部分石碴能满足设备装运要求。

本工程因工期较紧,未采用大直径空眼减震,如有条件,可在1步开挖的周边眼和开挖面增打Φ130mm或更大直径的减震孔,这样能收到更好的减震效果。

参考文献

[1]冯叔瑜等.城市控制爆破(第二版)[M].北京:中国铁道出版社,1996

孟吉复等.爆破测试技术[M].北京:中国铁道出版社,1992

娄德兰.导爆管起爆技术[M].中国铁道出版社,1995

中国力学爆破专业委员会编.爆破工程[M].北京:冶金工业出版社,1992

暗挖矿山法隧道减震爆破技术实用版

YF-ED-J4290 可按资料类型定义编号 暗挖矿山法隧道减震爆破 技术实用版 Management Of Personal, Equipment And Product Safety In Daily Work, So The Labor Process Can Be Carried Out Under Material Conditions And Work Order That Meet Safety Requirements. (示范文稿) 二零XX年XX月XX日

暗挖矿山法隧道减震爆破技术实 用版 提示:该安全管理文档适合使用于日常工作中人身安全、设备和产品安全,以及交通运输安全等方面的管理,使劳动过程在符合安全要求的物质条件和工作秩序下进行,防止伤亡事故、设备事故及各种灾害的发生。下载后可以对文件进行定制修改,请根据实际需要调整使用。 1 工程概况 广州市轨道交通三号线【广州东站~林和 西站】暗挖区间分为左右两线隧道,折合单线 长度1676. 99延米,隧道埋深9.2~27m,局部 埋深5.0m。隧道穿越处围岩以红层全风化至红 层微风化粉砂岩为主,拱部多处于土、石交界 地层,施工中围岩变化频繁。 该段地形平坦,地表为林和西路,交通繁 忙。线路两侧基本为多层和高层建筑物,起始 端35m位于东站站厅层下方,终点左线45m紧

邻中信大厦,东侧中间地段均为公共绿地;西侧建筑较多,主要建筑有广州东站建筑群、景星酒店、中水广场、电力设计院、中信广场等。 2 减震开挖方案 2.1 钻爆技术要点 本区间隧道洞身穿越处主要为中、微风化岩层,需要爆破开挖。但钻爆开挖必须考虑以下技术要点: 2.1.1 钻爆开挖时,要防止爆破震动引起上方软弱地层的坍塌,危及施工安全和地面安全。 2.1.2 由于本主体暗挖隧道左、右线间距较小,隧道之间岩墙体厚度最小间距为7.0m,因此,先行开挖的隧道易受后开挖隧道爆破震动

隧道爆破设计方法

隧道爆破设计方案 (台阶法) 一、工程概述 本合同段有四座隧道。隧道区域处于构造剥蚀丘陵—低山地貌区,主要出第四系全新统残坡积碎石土、中元古武当山群片岩和上元古界震旦系上统灯组片岩。本段内短隧道为Ⅳ、Ⅴ级围岩,中长隧道为Ⅲ、Ⅳ、Ⅴ级围岩,其中Ⅳ级围岩采用台阶法爆破开挖(Ⅴ级围岩主要采取人工配合机械开挖,不需要爆破)、锚、喷、格栅、网、初期支护,全断面复合式衬砌。爆破方法采用光面爆破。 二、光面爆破的特点 光面爆破施工,可以减少对围岩的扰动,增强围岩的自承能力,特别是在不良地质条件下效果更为显著,不仅可以减少危石和支护的工程量,而且保证了施工的安全;由于光面爆破使开挖面平整,岩石无破碎,减少了裂隙,这样可以大大减少超欠挖量。据有关资料统计,光面爆破与普通爆破相比,超挖量由原来的15%~20%降低到4%~7%,不但减少出碴量,而且还很大程度的减少了支护的工作量,从而降低的成本,加快了施工进度。根据公路隧道“新奥法”施工的需要和工程地质条件,结合施工现场实际情况,我标段的四座隧道中的Ⅲ、Ⅳ级围岩决定采用光面爆破施 工。 三、光面爆破方案的确定 目前,大断面隧道光面爆破施工有2种方法:一是预留光爆层法;二是全断面一次性开挖法。 根据施工现场的实际条件及围岩情况,本段隧道采用全断面一次性开挖法。 四、台阶法(Ⅳ级围岩)光面爆破设计方案(结合前文内容) 1.光面爆破不偶合系数、装药直径 公式: /k i D d d == 式中 D 一不偶合系数; dk —炮眼直径,mm; di —炸药直径,mm; a —爆生气体分子余容系数; P —爆生气体初始压力;

—岩石的三轴抗压强度; c r—绝热指数,; 在实际操作过程中,对于周边眼的药卷,我们采取将标准φ32mm的2号岩石乳化炸药沿轴线 对半切(相当于φ20mm)。这个数值与理论计算值相近,则实际周边眼不偶合系数 D=dk/di =42/20=,符合规范中软岩装药不耦合系数D=的要求。 式中: dk炸药—炸药直径; di炮眼—炮眼直径。 2.确定周边眼间距(E)、最小抵抗线(W)和相对距系数(K)最小抵抗线与开挖的隧道断面大小有关。在断面跨度大,光爆眼所受到的夹制作用小,岩石 比较容易崩落,最小抵抗线可以大些,断面小,光爆眼所受到的夹制作用大,最小抵抗线可以小 些,最小抵抗线与岩石的性质和地质构造也有关,坚硬岩石最小抵抗线可小些,松软破碎的岩石 最小抵抗线可大些。我标段四座隧道岩质主要为软岩,故确定最小抵抗线(V)为~。 相对距系数是周边眼间距(E)与最小抵抗线(V)的比值,是影响爆破效果的重要因素。 K= E/V 式中, E为周边炮眼间距,cm;V为最小抵抗线,cm; K值总是小于1,当d=38~46mm,E=30~50cm, V=40~60cm时,K=~。 考虑到权爆区岩石节理较发育,并参照规范周边眼间距取值范围30cm-50cm, 对周边眼间距 取45cm,最小抵抗线值取60cm,K=E/V=。 3、炮眼装药系数 周边眼的装药集中度采用规范取值范围~0.15kg.m-1,取0.14kg/m,其它炮眼的填充系数选 用见下表: 4、循环Array进尺 综合考虑 各项因 素,取L=1.5m

隧道光面爆破施工工法

隧道光面爆破施工工法

一、工艺原理 光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。 二、光面爆破技术要点 隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。施工中应根据爆破效果不断调整爆破参数。 2.1爆破参数选定 2.1.1周边眼间距E 周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E=(12~15)d,其中炮眼直径d=35~45cm,对于节理发育,层理明显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间 2.1.2最小抵抗线W(光面层厚度) 最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。 2.2周边眼装药结构 2.2.1软岩周边眼装药结构 一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示: 2.2.2硬岩周边眼装药结构 硬岩一般采用导爆索间隔装药,装药结构如下图: 炮泥导爆索 药卷 周边眼间隔装药结构 (单位:cm) 除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均为连续装药,只是装药长度不同 2.2本隧道钻爆参数 ①循环进尺的确定:根据实际情况,为减少对围岩的扰动,IV、V级围岩根据钢架支护间距确定,本隧道IV级围岩2.0m,V级围岩 1.0m,II、III级围岩不大于3.5m。 ②钻孔直径选择:采用Φ42mm钻眼直径,炸药选择2号岩石乳化炸药。 ③隧道开挖断面的大小:由岩石和开挖方法确定。, 总药量Q=q单×S×L,式中q单是单耗,本隧道初步确定q单=0.9Kg/m3

隧道常用爆破参数及爆破设计

一、单位耗药量 单位耗药量(一) 按岩石坚固系数选定单位耗药量 岩石名称岩体特征坚固系 数f K值(kg/m3) 抛掷松动 各种土较松软 坚实的 <1 1~2 1~1.1 1.1~1.2 0.3~0.4 0.4~0.5 土夹石密实的1~4 1.2~1.4 0.4~0.6 页岩、千枚岩风化、破碎 完整的 2~6 4~6 1~1.2 1.2~1.4 0.4~0.5 0.5~0.6 板岩、泥灰岩较破碎面层、面层张开、泥质、薄层 较完整、层面闭合 3~5 5~8 1.1~1.3 1.2~1.4 0.4~0.6 0.5~0.7 砂岩 泥质胶结、中薄层、风化、破碎 钙质胶结、中厚层、中细粒结构、缝隙不甚发育 硅质胶结、石英质砂岩、厚层、缝隙不发育 4~6 7~8 9~14 1.1~1.2 1.3~1.4 1.4~1.7 0.4~0.5 0.5~0.6 0.6~0.7 砾岩 胶结较差、以砂为主 胶结较好、以砾石为主 5~8 9~12 1.2~1.4 1.4~1.6 0.5~0.6 0.6~0.7 白云岩、大理岩较破碎、裂隙频率>4条/ m 完整、原岩 5~8 9~12 1.2~1.4 1.4~1.6 0.5~0.6 0.6~0.7 石灰岩中薄层、含泥质、裂隙较发育厚层 完整、含硅质、致密状 6~8 9~15 1.2~1.4 1.4~1.6 0.5~0.6 0.6~0.7 花岗岩风化严重、节理裂隙很发育多组交割、裂隙频率>5条/ m 风化较轻、节理不甚发育、伟晶结构 未风化、完整、细粒结构、致密岩体 4~6 7~12 12~20 1.1~1.3 1.3~1.6 1.6~1.8 0.4~0.6 0.6~0.7 0.7~0.8 流纹岩、粗面岩、蛇纹岩较破碎的 完整的 6~8 9~12 1.2~1.4 1.5~1.7 0.5~0.7 0.7~0.8 片麻岩片理或节理裂隙结构发育的 完整、坚硬、密致 5~8 9~14 1.2~1.4 1.4~1.7 0.5~0.7 0.7~0.8 正长岩、闪长岩 较风化、整体性较差的 未风化、完整致密的 风化、裂隙频率>5条/ m 8~12 12~18 5~7 1.3~1.5 1.5~1.8 1.1~1.3 0.5~0.7 0.7~0.8 0.5~0.6 石英岩石风化破碎、裂隙频率>5条/ m 中等坚硬、较完整的 很坚硬、完整致密的 5~7 8~14 5~7 1.1~1.3 1.4~1.6 1.7~ 2.0 0.5~0.6 0.6~0.7 0.7~0.8 安山岩、玄武岩裂隙、节理较发育 完整、致密的 7~12 12~20 1.3~1.5 1.6~ 2.0 0.6~0.7 0.7~0.8

隧道光面爆破施工方案

隧道光面爆破施工方案 一、工程概况 隧道施工开挖总体上要求拱部采用光面爆破,边墙部采用预裂爆破,以最大限度地保护周边岩体的完整性,同时减少超挖量,提高初期支护的承载能力。在v级围岩地段要求采用短台阶法施工,台阶长度在控制在5?10m保证初 期支护及时落地封闭,以确保初期支护的承载能力。由于二次衬砌是按要求的承载结构设计,因此在二次衬砌应紧跟开挖面:子初期支护落地后应及时施作二次衬砌仰拱和仰拱回填层,然后施作二次衬砌。在w级围岩地段要求采用短台阶法施工,台阶长度控制在io?15m注意上半断面及基础锁脚锚杆的施工质量。由于二次衬砌是按承受少量荷载进行设计,因此二次衬砌的施作可滞后开挖面20?30m在初期支护基本稳定后施作,但是二次衬砌仰拱和仰拱回填层应紧跟衬砌支护。在川级围岩地段推荐采用台阶法施工,当机械化程度较高,各隧道施工工序能及时完成时,也可以采用全断面法施工。 二、施工准备 1 、施工测量施工测量按照《公路测量技术规则》的有关规定进行,主要测量仪器为GPS全站仪、和水准仪。 ⑴导线、水准控制测量施工前会同勘测设计部门与其他相邻标段现场交接导线控制桩和设计水准点,测量组和其他相邻标段施工单位进行施工复测后,对控制桩加以保护,设护桩,如有遗失和损坏,及时恢复和校正。 ⑵洞口联系测量 为保证地面控制测量精度很好传递到洞内控制点,拟定采用如下洞口控制测量方案: ①洞口施工至设计标高后,在洞口埋设三个稳固导线控制点。 ②为保证方向传递精度,洞口控制点与地表控制点组成大地四边形边角网进行联测。 ⑶洞内控制测量 ①洞内控制测量根据隧道施工进度及时进行引伸测量工作。 ②洞内导线的布设按主附导线的形式进行敷设,并在适当地段进行闭合检查。 ③洞内精密导线采用测角精度<2”、测边精度高于2+2pp m的全站仪进行测量。 ⑷洞内施工测量

隧道光面爆破总结

光面爆破总结 通过最近二衬混凝土浇筑方量的超方情况,前期的隧道爆破效果不是很理想; 为了提高工程质量,保证施工安全,控制隧道超欠挖,节约工程成本,经项目部领导和工程部技术人员共同研究,决定制定以下光爆质量控制及奖罚措施: 一、成立隧道光面爆破质量控制领导小组 组长: 副组长: 组员: 二、技术控制 1、钻爆设计应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破材料和出碴能力等因素综合考虑。 2、爆破开挖一次进尺根据围岩条件确定,开挖软弱围岩时应控制在1~2m 之内,开挖坚硬完整的围岩时根据周边眼的外插角及允许超挖量确定。硬岩隧道全断面开挖,眼深为3~3.5 m的深眼爆破时,单位体积岩石的耗药量可取0.9~2.0kg/m3;采用半断面或台阶法开挖,眼深为1.0~3.0m的浅眼爆破时,单位耗药量可取0.4~0.8kg/m3. 3、周边眼参数的选用应遵守下列原则: 1)当断面较小或围岩软弱、破碎或在曲线、折线处开挖成形要求高时,周边眼间距E应取较小值; 2)抵抗线W应大于周边眼间距.软岩在取较小的周边眼间距的同时,抵抗线应适当增大; 3)根据围岩特点合理选择周边眼间距及周边眼最小抵抗线。围岩软弱、破碎,周边眼间距取小值,E/W取小值。 4、严格控制周边眼装药量,并使药量沿炮孔长度合理分布。周边眼宜用小直径药卷和低爆速炸药,可借助传爆线实现空气间隔装药。开挖断面一次起爆时,如毫秒雷管的间隔时间小,周边眼雷管应与内圈眼雷管跳段使用,二段炮眼之间起爆时差可取50~100ms。 5、炮眼的深度、角度间距应按设计要求确定,并应符合下列精度要求: 1)掏眼槽眼口间距误差和眼底间距误差不得大于5㎝.

隧道爆破施工安全技术交底(标准版)

Companies want to improve production, safety is the top priority. The occurrence of unsafe accidents must be stifled in the cradle. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 隧道爆破施工安全技术交底(标 准版)

隧道爆破施工安全技术交底(标准版)导语:企业想要提高生产,安全问题就是重中之重。如果不具备安全管理条件,企业生产就不能顺利进行。想要企业顺利生产,就要不断更新安全技术,把不安全事故的发生扼杀在摇篮中。 安全技术交底内容: 一般性技术交底: 1、进入施工现场,必须正确佩戴安全帽,登高作业必须系安全带;进入隧道内施工作业必须穿反光衣;进入施工现场首先检查作业环境是否安全; 2、作业人员必须服从现场管理人员的统一安排和指挥,各施工班组长在施工作业前应对作业人员进行安全技术交底及坚持班前安全讲话制度。 3、严禁打膊赤裸、穿拖鞋上班,作业时根据本工种作业要求正确佩戴安全防护用品。 4、施工作业必须按本工种施工工序进行施工作业,发现隐患应及时上报班组长及现场管理人员。 5、施工所用的各种机具设备和劳保用品应定期进行检查和必要的验收,保证其处于良好状态,不合格的机具设备和劳保用品应及时更

换,禁止使用。 6、配合现场安全管理人员的安全检查工作,对施工现场施工状况应密切关注,如有异常应在安全管理人员及技术员的统一组织指挥下撤离。 针对性技术交底: 1、洞内爆破作业必须统一指挥。并有经过专业培训持有爆破操作合格证的专职爆破工担任,进行爆破时,所有人应撤到不受气体、震动和飞石损伤的地点,安全距离为:①独头巷道不少于200m;②相邻的上下坑道内不少于100m;③全断面开挖进行深孔爆破(孔深3~5m)时,不少于500m。 2、在两个开挖面相距200m内时,爆破必须提前一个小时通报,以变另一头作业人员撤离险区。 3、爆破炸材临时存放室,应设在洞口50m以外的安全地点,并由专职爆破员负责看守;严禁非爆破人员领用或盗取炸材。 4、洞内每天爆破次数应有明确的规定,装药离爆破时间不得过久。装药与钻孔不宜平行作业,爆破作业期间(包括领取、临时看守)严禁穿戴纤化衣物及容易摩擦带电衣物。 5、装药前应检查爆破工作面附近的支护是否牢固;炮眼内的泥浆,

隧道光面爆破施工控制要点

隧道光面爆破施工控制要点 光面爆破效果的好坏,直接影响到隧道开挖及后续工序的质量,硬岩炮眼残留率不低于80%.中硬岩不低于70%,软岩不低于50%,而石灰岩硬而脆,力争达到90%-95%. 1 钻爆设计应根据工程地质条件、开挖断面、开挖方法、掘进循环进尺、钻眼机具、爆破材料和出渣能力等因素综合考虑. 钻爆设计的内容应包括:炮眼(掏槽眼、辅助眼、周边眼)的布置、数目、深度和角度、装药量和装药结构、起爆方法和爆破顺序等.设计图应包括:炮眼布置图、周边眼装药结构图、钻爆参数表主要技术经济指标及必要的说明. 2 硬岩宜采用光面爆破,软岩宜采用预裂爆破,分部开挖可采用预留光面层光面爆破. 3 采用光面爆破时,应满足以下技术要求: (1)根据围岩特点合理选择周边眼间距及周边眼的最小抗抵线; (2)严格控制周边眼的装药量,并使药量沿炮眼全长合理分布; (3)周边眼宜采用小直径药卷和低爆速炸药.可借助传爆线以实现空气间隔装药; (4)采用毫秒雷管微差顺序起爆,应使周边爆破时产生临空面.周边眼同段的雷管起爆时差应尽可能小; (5)各光面爆破参数如周边眼间距(E)、最小抵抗线(V)、相对距(E/V)和装药集中度(q)等,应采用工程类比或根据爆破漏斗及成缝试验确定.

在无条件试验时可按下表选用. 光面爆破诸参数 4 周边眼参数的选用应遵守下列原则: (1)当断面较小或围岩软弱、破碎或在曲线、折线处开挖成形要求高时,周边眼间距E应取较小值; (2)抵抗线V应大于周边眼间距.软岩在取较小的周边眼间距的同时,抵抗线应适当增大; (3)对于软岩或破碎性围岩,周边眼的相对距E/V应取较小值. 5 爆破开挖一次进尺应根据围岩条件确定.开挖软弱围岩时,应控制在1~2m之内;开挖坚硬完整的围岩时,应根据周边炮眼的外插角及允许超挖量确定. 硬岩隧道全断面开挖,眼深为3~3.5 m的深眼爆破时,单位体积岩石的耗药量可取0.9~2.0kg/m3;采用半断面或台阶法开挖,眼深为1.0~3.0m的浅眼爆破时,单位耗药量可取0.4~0.8kg/m3. 6 炮眼布置应符合下列要求:

隧道爆破方法

隧道爆破方法 隧道爆破通常采用掏槽爆破,即将开挖断面上的炮眼分区布置和分区顺序起爆,逐步扩大完成一次开挖,分区是按照炮眼的位置、作用的不同有三种炮眼:即掏槽眼、辅助眼、周边眼。这三种炮眼除共同完成一个循环进尺的爆破掘进外,分别各有其作用,因此各有不同的位置、长度、方向、间距的要求。 (1)掏槽眼 ①掏槽眼的布置,合理布置掏槽眼应掌握好炮眼的三度:深度、密度和斜度,并通过计算确定用药量及放炮顺序等 ②掏槽炮的作用,是将开挖面上适当部位先掏出一个小型槽口,以形成新的临空面,为后爆的辅助炮开创更有利的临空面,达到提高爆破效率的作用 ③掏槽眼本身只有一个临空面,且受周围岩石的挤压作用,故常需要采用较大的爆药单位消耗K值和较大的装药系数A值,以增大爆破粉碎区,并利用爆炸冲击波及爆炸产物作功,将岩石抛掷出槽口。为保证掏槽炮能有效地将石渣抛出槽口常将掏槽眼比设计掘进进尺加深10—20cm,并采用反向边疆装药和用双雷起爆; ④槽口尺寸常在1.0~2.5m2之间,要与循环进尺,断面大小和掏槽眼方式相协调。要求掏槽眼口间距误差和眼底间距误差不得大于5m; ⑤掏槽方式一般可分为斜眼掏槽和直眼掏槽两大类,斜眼掏槽的优点:可按岩层实际情况选择掏槽方式和掏槽角度,容易把石渣抛出槽口,

且掏槽眼数目较小。其缺点是眼浓度受坑道断面尺寸的限制,不便于多台钻机同时钻眼,钻眼方向难掌握准确。 ⑥直眼掏槽的优点:便于多机同时钻眼和不受断面尺寸对爆破进尺的限制,适用于深孔爆破,从而为加快掘进速度提拱了有利条件,且掏槽石渣抛掷距离较短。目前现场多采用直眼掏槽。但缺点是其炮眼数目较多,炸药单耗量K值也要加大,炮眼位置和垂直方向要求具有较高的精度,才能保证良好的爆破效果。因地质多变,几种掏槽方式可混合使用。

隧道光面爆破施工工法

隧道光面爆破施工工法 一、工艺原理 光面爆破是控制开挖轮廓的一种爆破技术,它沿开挖轮廓周边布孔,利用主炮孔爆破后形成的良好临空面,在光爆层中起爆,借以减少光爆孔爆破的夹制作用,降低炸药单耗,减少一次起爆药量,使其获得平滑的开挖廓面,减轻围岩的破坏,减小超欠挖和避免产生冒顶和坍塌。 二、光面爆破技术要点 隧道开挖应根据工程地质条件、开挖断面、开挖方法、掘进循 环进尺、钻眼机具和爆破器材等结合爆破振动要求进行钻爆设计。 施工中应根据爆破效果不断调整爆破参数。 2.1 爆破参数选定 2.1.1 周边眼间距E 周边眼间距直接控制开挖轮廓线平整度的主要因素,一般E= (12~15) d,其中炮眼直径d=35~45cm,对于节理发育,层理明 显的围岩地段,周边眼的间距可适当减小,也可在两个炮眼之间

2.1.2最小抵抗线W(光面层厚度) 最小抵抗线W直接影响光面爆破效果和爆碴块度,周边抵抗线应大于周边眼间距E,软岩取较小的E值时,W值应适当增大。 2.2 周边眼装药结构 2.2.1 软岩周边眼装药结构 一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示: 空先间旖柱装药 小直径药卷连嬪装药 222硬岩周边眼装药结构 位位位 位cm 位 除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均 为连续装药,只是装药长度不同 2.2本隧道钻爆参数 ① 循环进尺的确定:根据实际情况,为减少对围岩的扰动, IV 、V 级围岩根据钢架支护间距确定,本隧道 IV 级围岩2.0m , V 级围岩1.0m ,II 、III 级围岩不大于3.5m 。 ② 钻孔直径选择:采用042mn 钻眼直径,炸药选择2号岩石乳 化炸药 ③ 隧道开挖断面的 大小:由岩石和开挖方法确定。 , 炮泥 药 片

隧道爆破安全专项措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 隧道爆破安全专项措施 (正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8412-91 隧道爆破安全专项措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、工程概况 本工程为XX铁路LYS-3标合同段八工区,起讫里程为DK250+500~DK258+370,线路总长7.87km,主要包括:1、同寨隧道下尕沟斜井,斜井长1320m,承担正洞DK250+500~DK253+000段施工任务;2、同寨隧道出口斜井,斜井长235m,承担正洞DK253+400~DK256+132;3、青岗隧道进口,正洞DK256+438~DK258+370;4、油房沟大桥,DK256+132~DK256+438。 本工程段的大地构造,属于青藏歹字形构造体系,褶皱断裂较发育,地质构造十分复杂,受区域地质构造作用影响,发育有断层、褶皱及侵入接触带,地层岩性主要为三叠系板岩,板岩夹砂岩及喷出岩安山玢岩,处于基岩风化层中,沟谷、斜坡及坡顶覆盖为第

隧道光面爆破

隧道光面爆破目前,全局在建隧道80.5座,总长度185.53km,绝大部分隧道是需要爆破作业的石质隧道。做好隧道的光面爆破,对隧道施工的安全、质量、工期及经济效益都具有重大的意义。为了节省时间,本课不多讲爆破的理论,也不面面俱到,仅针对隧道的光面爆破技术重点谈一点意见。要谈光面爆破,必须首先要了解爆破的一些基础知识。 一、爆破器材 (一)炸药。工业炸药共分三类:煤矿许用炸药、岩石炸药、露天炸药(见下表)。 隧道工程常用的炸药、性能及适用范围

(二)起爆材料: 1、火雷管 ` 火雷管是最简单的一种雷管, 不受散电流影响,使用广泛,但受撞击、磨擦和火花能引起爆炸,火雷管全是即发雷管。 我们目前常用的毫秒导爆雷管共分三个系列:第一系列20段,分别相距25-300ms;第二系列分21段;第三系列分

30段。每段里面段数越大,相隔爆破的时间就越长;雷管按起爆能量大小分为10个等级(号数),号数愈大,起爆能力也愈强,常用的是6号和8号雷管。 2、电雷管 毫秒延期电雷管的延期材料为缓燃剂,延期时间较长, 射不强,安全性不高,属于隧道限制使用产品,多用于有瓦斯与煤尘爆炸危险的环境中,它是目前能采用的唯一起爆方法。 3、导火索 用来传递火焰给火雷管,配合火花起爆法使用。导火索的燃速一般在110-130m/s范围内;缓燃导火索则为180-210m/s 或200-350m/s,具有一定的防潮耐水性能。普通导火索不能在有瓦斯或有矿山类爆炸危险的场所使用。目前,隧道施工中已基本不再使用导火索加火雷管的起爆系统,而使用非电起爆系统。 4、导爆管 塑料导爆管是用来传递微弱爆轰力,给非电雷管使之爆炸的传爆器材。塑料制成外径3.0mm,内径1.5mm的半透明管,内壁涂有高性能炸药。其传爆速度可达1900-2000m/s,其本

隧道光面爆破课程设计

隧道光面爆破课程设计 随着爆破技术在水利、交通、采矿等领域都己经得到了广泛应用,为了获得最佳的爆破效果,对爆破参数进行优化,并控制达到所要求的爆破质量不仅是技术上的要求,而且对于提高经济效益也是至关重要的。针对不同的煤层条件和环境做出最优爆破设计及其有效实施是决定爆破质量得关键。在达到预期的爆破效果的前提下,通过改进爆破方法、调整爆破参数、以达到降低成本的目的是爆破优化的重要目标。爆破设计一般情况下是靠经验多次调整得到的,这种过程使得在类似的工程中的爆破参数和方法长期以来难以改变,制约了技术进步,也无法了解和研究成本优化的可能性。大量的理论研究和长期的爆破实践表明,尽管实际工程中因条件、环境等的差异而产生不同的爆破效果,但这些效果相应的爆破参数有着内在的联系,在客观上存在一定程度的规律性,虽然这种客观规律在现在的条件下还不能被明确的表达出来,但人们仍然可以通过爆破参数间的联系了解这种规律,并利用这种隐含的规律来指导实践。随着经验的积累,这种客观规律的透明度也将不断提高,最终为人们所掌握,这一过程就是爆破参数的调整、爆破方法改进、爆破优化进步的过程。通过对客观现象的理论分析并结合实践的反复验证从而了解、描述这种隐含的规律,并完成爆破经验的积累和升华就是爆破优化所面对的重要目标。 要求:本次爆破设计要在结合工程条件的基础上,优化爆破参数,考虑爆破振动效应,制定合理的爆破方案。

目录 一、工程概述 (04) 1、设计依据 (04) 2、设计要求 (04) 3、工程地质条件 (04) 4、爆破规模及爆破区周边环境 (04) 二、设备选型 (04) 1、炸药的选择 (04) 2、钻孔设备的选择 (04) 3、供风设备的选择 (04) 三、穿孔爆破参数 (05) 1、掏槽方式的选择 (05) 2、爆孔参数的确定 (05) 3、炮眼的布置 (07) 4、炮眼分布 (08) 四、确定装药结构 (08) 1、装药结构的选择 (08) 五、网络敷设 (09) 1、起爆方式的种类 (10) 2、起爆网路的选择 (10) 3、雷管段别的选择 (10) 4、爆破网路敷设图 (10) 六、计算爆破工程量 (10) 1、爆破体积 (10) 2、炸药量 (10) 七、最大炸药量的计算 (10) 1、爆破地震安全距离 (10) 2、爆破地震强度计算 (10) 3、冲击波安全距离计算 (11) 八、预测爆破效果及安全距离 (11) 九、警戒距离、施工及安全组织 (11) 1、爆破警戒 (11) 2、安全组织与施工 (12) 十、爆破设计感想 (12) 十一、参考文献 (13) 十二、附图

隧道爆破安全操作规程

隧道爆破安全操作规程 根据《中华人民共和国民用爆破物品管理条例》,希项目部和劳务协作队认真遵照执行。 一、爆破作业组织 1、按照“谁主管、谁负责”的原则,组成隧道施工爆破小组,项目部经理任组长,安全员和劳务协作队负责人任副组长。 2、爆破组成员应各负其责,严格爆破作业规程,不得违章。 3、认真做好当班爆破作业各个环节记录,并向下班交接清楚。 4、发现重大隐患,立即向上级报告。 二、尽职尽责按序作业 1、严格施工安全技术规范,不得违章蛮干。①打炮眼;②通风降温;③检查炮孔; ④设定警戒;⑤装药;⑥清查炮数,检查起爆管路连接;⑦指令起爆;⑧炮后检查,处理危石。 2、项目部技术主管根据掘进爆破使用量,给工地值班领工员下达“火工品”领取通知单,由领工员带专职爆破员到炸药库领取“火工品”,经核对签认领回。 3、必须使用符合国家标准或部颁标准的爆破器材,由物设部门统一供给,不得自购、转借。 4、装炮作业前,安全员、领工员和爆破员应对每个炮孔清理检查和验收,不合格的炮孔要重打。 5、清理爆破作业现场面,禁止烟火、电焊,禁止用高压电和明火照明作业,严禁边打眼,边装药。 6、除爆破组成员外,其它无关人员应撤离装药作业现场,并设警戒线,无关人员禁止入内。 三、实施施工爆破 1、经爆破组成员检查,确认可以装药时,由持证上岗的专职爆破员实施操作,严禁非爆破人员作业。 2、各种火工品禁止混放在一起,应分距离按序排放。 3、加工起爆药品时,应用木质或竹质锥子,在炸药卷中心扎一个同雷管大小相同的小孔,其深度将雷管全部插入又不露出炸药为,禁止将雷管露在炸药卷外面。然后将雷管用细绳固紧,不得使用铁丝。 4、加工好的起爆药体,应及时装入炮孔,不准将起爆药体全部加工好再开始装,应加工一个,装一个。 5、装炮由爆破员操作,技术人员指导,安全员和领工员监督,按施工设计和岩石变化,严格控制药量。 6、爆破员在装炮过程中,应用木质专用炮棍将加工好的炮体轻轻地推进炮孔,不得

隧道矿山法施工的减震爆破技术_secret

隧道矿山法施工的减震爆破技术 1工程概况 南京地铁XXX号线一期工程是一条连接主城中心和城市副中心的东西向骨干线,西起河西新城汪家村站,东止紫金山麓马群站,线路全长25.145公里。其中的孝陵卫站位于中山门外,暗挖区间分为左右两线隧道。隧道穿越处围岩以红层全风化至红层微风化粉砂岩为主,拱部多处于土、石交界地层,施工中围岩变化频繁。该段地形起伏较大,地表面交通繁忙。线路两侧基本为多层和高层建筑物,并有高校紧邻。 2减震开挖方案 2.1钻爆技术要点 本区间隧道洞身穿越处主要为中、微风化岩层,需要爆破开挖。但钻爆开挖必须考虑以下几方面的技术要点: (1)钻爆开挖时,要防止爆破震动引起上方软弱土层的坍塌,危及施工安全和地面安全。 (2)由于本主体暗挖隧道左、右线间距较小,因此在开挖过程中先行开挖的隧道易受后开挖隧道爆破震动的影响,甚至破坏。 (3)隧道埋深浅,距离建筑物过近,钻爆施工易对地面建筑物及地下建、构筑物产生震动影响,甚至破坏。 为避免震动对地面建筑物的危害,采用减震、光面爆破。爆破作业遵循浅孔密布的原则,少装药,短进尺,多循环、分台阶开挖。左右线隧道同时施工时,严格控制光爆层的厚度、炮眼间距和装药量,

尽可能的减少对地表建筑和周边地层的扰动,。并先进行一条隧道,后行隧道爆破开挖时,尽可能的减少对先行隧道已成结构的扰动。 2.2 减震开挖方案 (1)台阶法开挖爆破: ①当围岩结构为上断面松软下断面坚硬时,上断面采用人工开挖,开挖出上台阶临空面,下断面采用松动爆破开挖。 ②每次爆破进尺不超过1m,台阶法施工每次爆破进尺在0.75m 左右。掏槽区炮眼深度控制在0.7~1.2m左右,每炮循环进尺控制在0.5~1.0m左右。控制单段药量,控制爆破规模以达到控制质点振速的目的。在围岩较好的地段,在地面安全有保障的前提下,可以将隧道下断面每炮循环进尺稍微加大,基本控制在1~1.5m,以确保施工工期。 (2)预留光面层的光面爆破: 在对爆破振速有严格要求的地段,为了控制振速并且保证成型质量的前提下,均要采用预留光爆层实现光面爆破技术。 2.3爆破技术措施 爆破震动强度主要与爆破器材、岩石波阻抗、地形地貌条件、爆破方式及爆心与震动测点的间距等因素有关,因此,降低爆破震动将从以下几个方面入手: (1)选择合理的炸药品种。 炸药品种与炸药的爆破震动速度有直接影响,根据工程地质和水文地质条件,本工程施工中采用:在掏槽眼和辅助眼部位选用防水效

隧道爆破安全技术与防护措施

隧道爆破安全技术与防护措施 隧道爆破安全技术与防护措施 隧道爆破安全技术与防护措施(1)工程现场100m范围内进行实地调查,记录可能影响的构筑物或其它结构状态,记录资料应包括文字和图片资料,现场可作观测标志。(2)必要时可进行地表震动观测,以优化爆破设计。(3)爆堆检查时间:爆堆检查时间应在爆后30min且炮烟排出后,由熟练爆破员进行检查。(4)盲炮处理:由于采用炸药均为乳化炸药,因此发生盲炮后,必须由专职爆破员进行处理。处理方法为:①能够重新引爆的,加大警戒范围,重新加入起爆体引爆; ②不能重新引爆的炮孔,采用高压风吹出堵塞炮渣,取出起爆雷管,并将炸药取出;③严禁采用木棍硬捣起爆药卷。(5)严禁利用残眼穿孔,以免钻爆残眼中残留炸药。(6)爆破警戒:装药警戒范围由爆破负责人确定,装药时应在警戒边界设置明显标志并派出岗哨;执行警戒任务的人员,应按指令到达指定地点并坚守工作岗位。(7)信号:预警信号:该信号发出后爆破警戒范围内开始清场工作;起爆信号:起爆信号应在确认人员、设备等全部撤离爆破警戒区,所有警戒人员到位,具备安全起爆条件时发出。起爆信号发出后,准许负责起爆的人员起爆;解除信号:安全等待时间过后,检查人员进入爆破警戒范围内检查、确认安全后,方可发出解除爆破警戒信号。在此之前,岗哨不得撤离,不允许非检查人员进入爆破警戒范围;各类信号均应使爆破警戒区域及附近人员能清楚地听到或看到。(8)火工品管理必须

有火工品管理人员进行管理,现场火工品使用由爆破员使用,安全员现场监督。爆破完成后,剩余火工品必须全部退库,做到帐账相符,账物相符。(9)洞外路基需爆破施工时,起爆前30分钟在两侧300m 外设立警戒线,禁止行人进入爆破作业区,爆破完成至少15分钟进爆区检查并确认无瞎炮的情况下再全解除警戒。

隧道爆破震动测试报告

C4合同段XXX隧道爆破振动 测 试 报 告 XX交大工程检测咨询有限公司 二〇一五年十二月

C4合同段XXX隧道爆破振动 编制: 审核: XX交大工程检测咨询有限公司 二〇一五年十二月

目录 1、工程概况 (1) 1.1 线路概况 (1) 1.2 隧道概况 (1) 2、监测目的 (1) 3、仪器简介 (1) 4、测点布置 (2) 5、测试结果 (3) 6、结论及建议 (6) 6.1 爆破振动结论 (6) 6.2 建议 (7)

1、工程概况 1.1 线路概况 XX高速公路连接XX与XX、沟通内地与藏区,是国家高速公路网XX至叶城(新疆喀什)国家高速公路的重要组成部分,是成都平原经济区、川南经济区和攀西经济区连接甘孜藏区进而通往西藏的重要通道。 XX高速公路起于XX市雨城区草坝镇,东接乐雅高速公路,西经天全县、泸定县,止于XX城东,路线全长约135公里,设计时速80公里/小时。全线桥梁、隧道众多,桥隧比高达82%,是目前全省桥隧比最高的高速公路。其中,桥梁129座36.176公里,隧道44座73.182公里。届时,从成都前往XX将由目前的6个小时缩短为3小时以内。 1.2 隧道概况 XXX隧道本标段左线长2245m,右线长2329m。隧道平面为双洞分离式隧道,左右洞间距15~40米。进出口左右线均位于曲线上,纵断面设计为单向坡,左线坡率为ZK7+500~ZK8+310段1.2%,ZK8+310~ZK9+745段-0.5%,右线坡率为K7+500~K8+310段1.2%,K9+310~K9+830段-0.5%(XX至XX方向上坡为正)。在K9+200右侧设置支洞,长324m,纵坡-4.05%,开挖宽度6.1m,开挖高度7.32m,每100m设置会车道,长20m。与主洞K9+040相交。 隧道路面按双向四车道设置,设计行车速度为80km/h,隧道建筑限界主洞净宽10.25m,隧道净高5.0m;防水等级:二级;二次衬砌抗渗等级不小于S8;汽车荷载等级为公路-Ⅰ级。 2、监测目的 为预防爆破产生的振动效应影响爆区周围建筑设施安全,依照《爆破安全规程》(GB6722-2014)的有关规定,受中国中铁二局第四工程有限公司委托,对XXX隧道爆破作业进行振动监测,采集爆破振动数据,为爆破作业现场提供科学数据,对有可能发生由爆破振动引起的纠纷提供可靠的依据。 3、仪器简介 TC-4850振动分析仪主要用于对地震波、机械振动或各种冲击进行信号记录

隧道光面爆破和预裂爆破的原理

隧道光面爆破和预裂爆破的原理 一、爆破原理 1、光面爆破作用原理:光面爆破的破岩机理十分复杂,目前仍在探索中。尽管在理论上还很成熟,但在定性分析方面已有共识。一般认为炸药起爆时,对岩体产生两种效应,主要是爆炸气体膨胀做功所起的作用。光面爆破是周边眼同时起爆,各炮眼的冲击波向四周作径向传播,相邻炮眼的冲击相遇,产生应力波德叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线的中点,当岩体的极限抗拉强度小于此拉力时,岩体便被拉裂,在炮眼中心连线上形成裂缝,随后,爆炸气的膨胀令裂缝进一步扩展,形成平整的爆裂面。 2、预裂爆破作原理:主要指预裂爆破成缝机理。为了保证预裂爆破成功,首要的条件是不压坏预裂孔壁,其次是沿预孔连线方向成缝。当炸药爆炸后,产生的冲击压力和高压气体的作用,将会使孔壁产生剧烈破坏。要想不压坏孔壁必须采用不偶令装药法,即药包直径小于钻孔直径。试验发现,当药包与孔壁之间存在空气间隙时,由于空气的缓冲作用,使孔壁所受压力大大降低。试验得出,当不偶令系数M=2.5时,作用在炮孔内壁的最大切向应力只相当于不偶令系数为1时的大约1/16。因此,完全有可能利用现有的常用炸药,用不偶令装药来降低孔壁压力,把几万个大气压降到每平方厘米只有几千或几百会斤的压力值。当降低的压力值小于或极接近于岩石的极限抗压强度时,便可使孔壁不受爆破压缩破坏或者只受少量的振动。在利用不偶令装药保证孔壁不受破坏的前提下,第二个条件就是怎样保证在预定的方向成缝。实践经验证明,只需要调整相邻炮孔的距离或孔内装药量便可达到成缝的目的。 二、技术措施 1、光面爆破的主要技术措施如下: (1)根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。 (2)严格控制周边眼的装药量,尽可能将药量沿眼大均匀分布。 (3)周边眼宜使用小直径药卷和低猛度、低爆速的炸药。为满足装药结构要求,可借助导爆索(传爆线)来实现客气间隔装药。 (4)采用毫秒微差有序起爆。要安排好开挖程序,使光面爆破具有良好的临空面。 (5)边孔直径小于等于50mm。 2、预裂爆破主要措施如下: (1)炮孔直径一般为50-200mm,对深孔宜采用较大的直径。

隧道爆破安全距离

隧道爆破安全距离 隧道爆破通常采用掏槽爆破,即将开挖断面上的炮眼分区布置和分区顺序起爆,逐步扩大完成一次开挖,分区是按照炮眼的位置、作用的不同有三种炮眼:即掏槽眼、辅助眼、周边眼。这三种炮眼除共同完成一个循环进尺的爆破掘进外,分别各有其作用,因此各有不同的位置、长度、方向、间距的要求。 隧道爆破安全距离相关规定: (1)独头巷道不少于200m; (2)相邻的上下坑道内不少于100m; (3)相邻的平行坑道,横通道及横洞间不少于50m; (4)全断面开挖进行深孔爆破(孔深3-5m)时,不少于500m. 隧道爆破技术规定要求: ①爆破作业必须按现行国家标准《爆破安全规程》要求,编制爆破设计方案,制订并严格执行相应的安全技术措施。 ②洞内爆破作业必须有专人统一指挥,并由经过专业培训且持有爆破作业合格证的专职爆破工担任。严禁作业人员穿着化纤衣服进行爆作业。 ③洞内爆破时,所有人员必须撤离至规定的安全距离以外: A独头巷道内不小于200m; B相邻上下坑道内不小于100 m; ④如采用相向开挖掘进的隧道两个掌子面间距离小于200m时,爆破

时必须提前一个小时通报,以便另一个工作面作业人员撤离。 ⑤下列情况下,严禁装药爆破: A照明不足; B开挖面围岩破碎尚未支护; C出现流沙现象未经处理; D存在大量溶洞水及高压地下水涌出,尚未治理; E未做好安全警戒时。 ⑥爆破后必须通风排烟15min后检查人员方可进入开挖面检查。检查内容包括: A有无瞎炮; B有无残余炸药或雷管; C顶板及两帮有无松动的围岩; D支撑有无损坏或变形,是否需采取加强措施。 ⑦钻眼与装药作业不宜平行作业。如须平行作业,则钻孔与装药顺序应自上而下进行,钻孔与装药孔至少隔开一排,其距离不小于2.5m,作业人员应分区操作。 ⑧两个相向贯通开挖的开挖面之间距离只剩下15m时始,只允许从一个开挖面掘进贯通,另一端应停止作业,并设置安全警示标志。并在放炮作业前提前通知,由对方施工现场负责人负责检查确认人员和设备已撤出后,方可通知放炮作业面实施放炮作业。 ⑨炸药、雷管等爆破器材必须执行爆破器材的采购、搬运、贮存、领

隧道爆破安全专项方案

石金山隧道出口(左幅)段爆破专项施工安全方案 一、工程概况 大丽高速公路是国家高速公路网的重要组成部分,也是国道214线在滇境内的重要路段,是滇西北与滇南间的重要运输通道,是云南通边、进藏的重要通道。本工程位于云南西北部的大理白族自治州和丽江市境内,主线起于大理州大理市凤仪镇,止于丽江黄山垭口西,主线全长191.770Km,同步建设深长村连接线、丽江连接线、松园桥连接线。 本标段为位于丽江市玉龙县拉市乡,起讫里程桩号K174+410~K178+281.12,里程长度为3.87112km,按高速公路标准建设,设计速度为80km/h,汽车荷载等级为公路-Ⅰ级。石金山特长隧道3865米(其中我部施工左幅出口段1940米), 隧道主体结构采用仰拱复合式衬砌,隧道衬砌采用钢筋混凝土结构。隧道初期支护由挂钢筋网、喷射C25混凝土和锚杆组成,Ⅳ级以上围岩段增加格栅及型钢钢架加强支护,边墙采用砂浆锚杆。二次衬砌采用C25级钢筋砼。出口洞口设长管棚,洞内超前支护采用注浆小导管和注浆锚杆。 二、工程地质情况 1、地形地貌 本隧道地处金沙江水系二级分水岭,为裸露型碳酸盐岩溶山地地形地貌,地表见溶蚀洼地、谷槽,植被不发育。表层上覆褐黄、褐灰、褐红色亚粘土,呈硬塑状,下部局部地段为碎石土,厚度随地形起伏变化,一般0.0~15.0m,凹地及冲沟部位厚度较大,局部大于20m,容许承载力亚粘土200Kpa、碎石土350 Kpa;下伏基岩前段以三迭系

灰岩、白云质灰岩,多呈弱风化碎块~大块状,局部上部呈强风化碎块状,岩质硬,节理裂隙较发育,岩体较完整,溶蚀较发育。 2、水文、地质 本项目属金沙江水系,其中以金沙江水系为主,水系较发育,多呈树枝状,隧道穿越玉龙雪山隆起区,灰岩出露广泛。水文地质结构类型为岩溶化山地深循环单向排泄型,其特征为:地处强烈上升区,岩溶水的垂直渗流带特别发育,深达300多米,地下水主要由南东流向北西,以金沙江为排泄基准。 3、工程不良地质 隧道出口段为岩溶洼地,上覆第四系残坡积粉质粘土夹碎石土,硬塑状,厚度10至40米,洞口段施工时极易坍塌,甚至沉陷至地表,因此,应及时砌护;隧道中部围岩为弱风化灰岩、白云质灰岩,呈碎块、块石状镶嵌结构,局部呈碎石状压碎结构,局部地段岩溶相对发育,发育程度中等,拱部无支护可产生较大坍塌,侧壁有时失去稳定,施工时,及时喷锚支护,并严格按设计和规范要求施工。 三、爆破开挖方案 1、拟定在进洞后即V~IV级围岩区域,采取分台阶式爆破掘进,当隧道穿越软弱围岩或断层时采用微台阶施工工法,并加强初期支护。 2、在Ⅲ级围岩区域采取看围岩结构情况而定可分全断面或上下导坑方式进行爆破掘进。 四、爆破施工 1、爆破器材的选择 根据隧道所穿越围岩的坚固系数f等,本工程选用低密度,低爆速、威力适中、匹配性好、防水性能好、易于切割分装成小卷的2#乳

相关文档
相关文档 最新文档