文档库 最新最全的文档下载
当前位置:文档库 › 2019届高中物理二轮复习热点题型专练专题5.4功能关系能量守恒定律含解析

2019届高中物理二轮复习热点题型专练专题5.4功能关系能量守恒定律含解析

2019届高中物理二轮复习热点题型专练专题5.4功能关系能量守恒定律含解析
2019届高中物理二轮复习热点题型专练专题5.4功能关系能量守恒定律含解析

专题5.4功能关系能量守恒定律

1.轻质弹簧右端固定在墙上,左端与一质量m=0.5kg的物块相连,如图甲所示。弹簧处于原长状态,物块静止且与水平面间的动摩擦因数μ=0.2。以物块所在处为原点,水平向右为正方向建立x轴。现对物块施加水平向右的外力F,F随x轴坐标变化的情况如图乙所示。物块运动至x =0.4m处时速度为零。则此时弹簧的弹性势能为(g取10m/s2) ( )

A.3.1J B.3.5J

C.1.8J D.2.0J

答案:A

2.某同学用如图所示的装置测量一个凹形木块的质量m,弹簧的左端固定,木块在水平面上紧靠弹簧(不连接)将其压缩,记下木块右端位置A点,释放后,木块右端恰能运动到B1点。在木块槽中加入一个质量m0=800g的砝码,再将木块左端紧靠弹簧,木块右端位置仍然在A点,释放后木块离开弹簧,右端恰能运动到B2点,测得AB1、AB2长分别为27.0cm和9.0cm,则木块的质量m 为 ( )

A.100g B.200g

C.300g D.400g

答案:D

解析:砝码质量m0=800g=0.8kg;

根据能量的转化与守恒有:μmg·AB1=E P

μ(m0+m)g·AB2=E P

联立得:m=0.4kg=400g

3.如图是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔

块与弹簧盒、垫板间均有摩擦,在车厢相互撞击使弹簧压缩的过程中 ( )

A.缓冲器的机械能守恒

B.摩擦力做功消耗机械能

C.垫板的动能全部转化为内能

D.弹簧的弹性势能全部转化为动能

答案:B

4.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,A由静止释放,B的初速度方向沿斜面向下,大小为v0,C的初速度方向沿斜面水平,大小也为v0。下列说法中正确的是 ( )

A.A和C将同时滑到斜面底端

B.滑到斜面底端时,B的机械能减少最多

C.滑到斜面底端时,B的动能最大

D.滑到斜面底端时,C的重力势能减少最多

答案:C

解析:将滑块C的运动沿水平方向和沿斜面向下方向正交分解,A、C两个滑块所受的滑动摩擦力大小相等,A所受滑动摩擦力沿斜面向上,C沿斜面向上的力是滑动摩擦力的分力,根据牛顿第二定律知,沿斜面方向C的加速度大于A的加速度,又沿斜面向下A、C都做初速度为零的加速运动,由运动规律知C先到达斜面底端,故A错误;三个滑块所受的滑动摩擦力大小相等,滑动摩擦力做功与路程有关,C运动的路程最大,C克服摩擦力做功最大,机械能减小量等于克服阻力做的功,故滑块C机械能减小的最多,故B错误;重力做功相同,摩擦力对A、B做功相同,C克服

摩擦力做功最多,而B有初速度,根据动能定理可知,滑到斜面底端时,B滑块的动能最大,故C 正确;三个滑块下降的高度相同,重力势能减小相同,故D错误。

5.一质量为M=1.0kg的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击中并从物块中穿过(不计子弹穿过物块的时间),如图甲所示。地面观察者记录了物块被击中后的速度随时间变化的关系如图乙所示,已知传送带的速度保持不变,g取10m/s2。在这一个过程中下列判断正确的是 ( )

A.传送带速度大小2m/s,方向向左

B.物块与传送带间的动摩擦因数为0.2

C.传送带对物块做的功为6J

D.物块与传送带之间由于摩擦而产生的内能为4J

答案:A

6.我国相继完成“神十”与“天宫”对接、“嫦娥”携“玉兔”落月两大航天工程。某航天爱好者提出“玉兔”回家的设想:如图,将携带“玉兔”的返回系统由月球表面发射到h高度的轨道上,与在该轨道绕月球做圆周运动的飞船对接,然后由飞船送“玉兔”返回地球。设“玉兔”质量为m,月球半径为R,月面的重力加速度为g月。以月面为零势能面,“玉兔”在h高度的引力势

能可表示为E P=GMmh

R R +h

,其中G为引力常量,M为月球质量。若忽略月球的自转,从开始发射到对接完成需要对“玉兔”做的功为 ( )

A .mg 月R R +h (h +2R )

B .mg 月R

R +h (h +2R ) C .

mg 月R R +h (h +2

2

R ) D .

mg 月R R +h (h +1

2

R ) 答案:D

解析:玉兔在h 处,G Mm R +h 2=m v 2R +h ,又G M R 2=g 月,可得v =g 月R 2R +h ,动能E k =12mv 2

=mg 月R 2R +h ,势能为E p =GMmh R R +h =mg 月Rh R +h ,需要对玉兔做功W =E p +E k =mg 月R R +h (h +1

2

R ),选项D 正确。

7.如图所示,轨道NO 和OM 底端对接且θ>α,小环自N 点由静止滑下再滑上OM 。已知小环在轨道NO 下滑的距离小于在轨道OM 上滑的距离,忽略小环经过O 点时的机械能损失,轨道各处的摩擦系数相同。若用F 、F f 、v 和E 分别表示小环所受的合力、摩擦力、速度和机械能,这四个物理量的大小随环运动路程的变化关系如图。其中能正确反映小环自N 点到右侧最高点运动过程的是 ( )

答案:AB

8.如图所示,表面粗糙的固定斜面顶端安装一个定滑轮,物块A 、B 用轻绳连接并跨过定滑轮

(不计滑轮的质量和摩擦)。初始时刻,手扶物块B 使物块A 、B 处于静止状态。松手后物块A 下落,物块B 沿斜面上滑,则从松手到物块A 着地前的瞬间(B 未碰到滑轮) ( )

A .物块A 减少的机械能等于物块

B 增加的机械能 B .轻绳对物块B 做的功等于物块B 的机械能增量

C .轻绳对物块A 做的功等于物块A 的机械能变化量

D .摩擦力对物块B 做的功等于系统机械能的变化量 答案:CD

9.如图所示,物体A 、B 通过细绳及轻质弹簧连接在轻滑轮两侧,物体B 的质量为2m ,放置在倾角为30°的光滑斜面上,物体A 的质量为m ,用手托着物体A 使弹簧处于原长,细绳伸直,A 与地面的距离为h ,物体B 静止在斜面上的挡板P 处。放手后物体A 下落,与地面即将接触时速度大小为v ,此时物体B 对挡板恰好无压力,则下列说法正确的是 ( )

A .弹簧的劲度系数为mg h

B .此时弹簧的弹性势能等于mgh -12

mv 2

C .此时物体A 的加速度大小为g ,方向竖直向上

D .此后物体B 可能离开挡板沿斜面向上运动 答案:AB

解析:物体B 对挡板恰好无压力时,其仍处于静止状态,其合力为零,由平衡条件可得kh -

2mg sin30°=0,h =mg h ,选项A 正确;由功能关系可得,此时弹簧的弹性势能等于mgh -12

mv 2

,选

项B 正确;此时对物体A 受力分析,其合力为零,无加速度,选项C 错误;此后物体B 仍处于静止

状态,选项D错误。

10.如图所示,足够长传送带与水平面的夹角为θ,物块a通过平行于传送带的轻绳跨过光滑轻滑轮与物块b相连。开始时,a、b及传送带均静止且m b>m a sinθ。现使传送带顺时针匀速转动,则物块在运动(物块未与滑轮相碰)过程中 ( )

A.一段时间后可能匀速运动

B.一段时间后,摩擦力对物块a可能做负功

C.开始的一段时间内,重力对a做功的功率大于重力对b做功的功率

D.摩擦力对a、b组成的系统做的功等于a、b机械能的增量

答案:ABD

11.如图所示,A、B、C三个一样的滑块从粗糙斜面上的同一高度同时开始运动,A由静止释放,B的初速度方向沿斜面向下,大小为v0,C的初速度方向沿斜面水平向左,大小也为v0.下列说法中正确的是( )

A.A和C将同时滑到斜面底端

B.滑到斜面底端时,B的机械能减少最多

C.滑到斜面底端时,B的动能最大

D.C的重力势能减少最多

解析:C 滑块A和C通过的路程不同,在沿斜面方向的加速度大小也不相同,故A错;滑块A和B滑到底端时经过的位移相等,克服摩擦力做功相等,而滑块C的路程较大,机械能减少得较多,故B错;C对;三个滑块滑到底端时重力势能减少量相同,故D错.

12.如图所示,竖立在水平面上的轻弹簧,下端固定,将二个金属球放在弹簧顶端(球与弹簧不连接),用力向下压球,使弹簧被压缩,并用细线把小球和地面拴牢(图甲).烧断细线后,发现球被弹起且脱离弹簧后还能继续向上运动(图乙).那么该球从细线被烧断到刚脱离弹簧的运动过程

中,下列说法正确的是( )

A.弹簧的弹性势能先减小后增大

B.球刚脱离弹簧时动能最大

C.球在最低点所受的弹力等于重力

D.在某一阶段内,小球的动能减小而小球的机械能增加

13.滑板是现在非常流行的一种运动,如图所示,一滑板运动员以7 m/s的初速度从曲面的A 点下滑,运动到B点速度仍为7 m/s,若他以6 m/s的初速度仍由A点下滑,则他运动到B点时的速度( )

A.大于6 m/s B.等于6 m/s

C.小于6 m/s D.条件不足,无法计算

解析:A 当初速度为7 m/s时,由功能关系,运动员克服摩擦力做的功等于减少的重力势能.而当初速度变为6 m/s时,运动员所受的摩擦力减小,故从A到B过程中克服摩擦力做的功减少,而重力势能变化量不变,故运动员在B点的动能大于他在A点的动能.

14.(多选)如图所示,D、A、B、C四点水平间距相等,DA、AB、BC竖直方向高度差之比为1∶3∶5.现分别放置三个相同的小球(视为质点),均使弹簧压缩并锁定,当解除锁定后,小球分别从A、B、C三点沿水平方向弹出,小球均落在D点,不计空气阻力,下列说法中正确的有( )

A .三个小球在空中运动的时间之比为1∶2∶3

B .三个小球弹出时的动能之比为1∶1∶1

C .三个小球在空中运动过程中重力做功之比为1∶3∶5

D .三个小球落地时的动能之比为2∶5∶10

15.(多选)如图所示,一质量为M 的斜面体静止在水平地面上,质量为m 的木块沿粗糙斜面加速下滑h 高度,速度大小由v 1增大到v 2,所用时间为t ,木块与斜面体之间的动摩擦因数为μ.在此过程中( )

A .斜面体受水平地面的静摩擦力为零

B .木块沿斜面下滑的距离为

v 1+v 2

2

t

C .如果给质量为m 的木块一个沿斜面向上的初速度v 2,它将沿斜面上升到h 高处速度变为v 1

D .木块与斜面摩擦产生的热量为mgh -12mv 22+12

mv 2

1

解析:BD 对整体分析可知,整体一定有向左的加速度,根据牛顿第二定律可知,整体在水平方向一定受外力,即水平地面与斜面体间的静摩擦力,故A 错误;由平均速度公式可知,木块沿斜面下滑的平均速度为:v =

v 1+v 2

2

,故下滑的距离为:x =v t =

v 1+v 2

2

t ,故B 正确;由于木块

在斜面上受摩擦力,故木块沿斜面向上运动时的加速度大小一定大于木块沿斜面向下运动时的加速度大小;故上升h 时的速度一定小于v 1,故C 错误;由能量守恒定律可知:mgh +12mv 21=12

mv 2

2+Q ,

故有:Q =mgh -12mv 22+12

mv 2

1,故D 正确.

16.(多选)如图所示,轻质弹簧的一端固定在竖直墙面上,另一端拴接一小物块,小物块放在动摩擦因数为μ的水平面上,当小物块位于O 点时弹簧处于自然状态.现将小物块向右移到a 点,然后由静止释放,小物块最终停在O 点左侧的b 点(图中未画出),以下说法正确的是( )

A .Ob 之间的距离小于Oa 之间的距离

B .从O 至b 的过程中,小物块的加速度逐渐减小

C .小物块在O 点时的速度最大

D .从a 到b 的过程中,弹簧弹性势能的减少量等于小物块克服摩擦力所做的功

17.(多选)如图所示,楔形木块abc 固定在水平面上,粗糙斜面ab 和光滑斜面bc 与水平面的夹角相同,顶角b 处安装一定滑轮.质量分别为M 、m (M >m )的滑块,通过不可伸长的轻绳跨过定滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动.若不计滑轮的质量和摩擦,在两滑块沿斜面运动的过程中( )

A .两滑块组成系统的机械能守恒

B .重力对M 做的功等于M 动能的增加

C .轻绳对m 做的功等于m 机械能的增加

D .两滑块组成系统的机械能损失等于M 克服摩擦力做的功

解析:CD 因为M 克服摩擦力做功,所以系统机械能不守恒,A 错误.由功能关系知,系统减少的机械能等于M 克服摩擦力做的功,D 正确.对M 除重力外还有摩擦力和轻绳拉力对其做功,由动能定理可知B 错误.对m 有拉力和重力对其做功,由功能关系知C 正确.

18.某工地上,一架起重机将放在地面上的一个箱子吊起.箱子在起重机钢绳的作用下由静止

开始竖直向上运动,运动过程中箱子的机械能E与其位移x的关系图象如图所示,其中O~x1过程的图线为曲线,x1~x2过程的图线为直线.根据图象可知( )

A.O~x1过程中箱子所受的拉力逐渐增大

B.O~x1过程中箱子的动能一直增加

C.x1~x2过程中箱子所受的拉力一直不变

D.x1~x2过程中起重机的输出功率一直增大

19.弹弓是孩子们喜爱的弹射类玩具,其构造原理如图所示,橡皮筋两端点A、B固定在把手上,橡皮筋处于ACB时恰好为原长状态,在C处(A、B连线的中垂线上)放一固体弹丸,一手执把手,另一手将弹丸拉至D点放手,弹丸就会在橡皮筋的作用下发射出去,打击目标.现将弹丸竖直向上发射,已知E是CD中点,则( )

A.从D到C过程中,弹丸的机械能守恒

B.从D到C过程中,弹丸的动能一直在增大

C.从D到C过程中,橡皮筋的弹性势能先增大后减小

D.从D到E过程橡皮筋弹力做功大于从E到C过程

解析:D 从D到C过程中,弹力对弹丸做正功,弹丸的机械能增加,选项A错误;弹丸竖直向上发射,从D到C过程中,必有一点弹丸受力平衡,在此点F弹=mg,在此点上方弹力小于重力,在此点下方弹力大于重力,则从D到C过程中,弹丸的动能先增大后减小,选项B错误;从D到C 过程中,橡皮筋的弹性势能一直减小,选项C错误;从D到E过程橡皮筋的弹力大于从E到C过程

的,故从D 到E 过程橡皮筋弹力做功大于从E 到C 过程,选项D 正确.

20.(多选)(如图是某缓冲装置示意图,劲度系数足够大的轻质弹簧与直杆相连,直杆可在固定的槽内移动,与槽间的滑动摩擦力恒为f ,直杆质量不可忽略.一质量为m 的小车以速度v 0撞击弹簧,最终以速度v 弹回.直杆足够长,且直杆与槽间的最大静摩擦力等于滑动摩擦力,不计小车与地面间的摩擦,则( )

A .小车被弹回时速度v 一定小于v 0

B .直杆在槽内移动的距离等于1f (12mv 20-12

mv 2

)

C .直杆在槽内向右运动时,小车与直杆始终保持相对静止

D .弹簧的弹力可能大于直杆与槽间的最大静摩擦力

21.如图所示,有两条滑道平行建造,左侧相同而右侧有差异,一个滑道的右侧水平,另一个的右侧是斜坡.某滑雪者保持一定姿势坐在雪撬上不动,从h 1高处的A 点由静止开始沿倾角为θ的雪道下滑,最后停在与A 点水平距离为s 的水平雪道上.接着改用另一个滑道,还从与A 点等高的位置由静止开始下滑,结果能冲上另一个倾角为α的雪道上h 2高处的E 点停下.若动摩擦因数处处相同,且不考虑雪橇在路径转折处的能量损失,则( )

A .动摩擦因数为tan θ

B .动摩擦因数为h 1

s

C .倾角α一定大于θ

D .倾角α可以大于θ

22.(多选)如图所示,光滑轨道ABCD 是大型游乐设施过山车轨道的简化模型,最低点B 处的入、出口靠近但相互错开,C 是半径为R 的圆形轨道的最高点,BD 部分水平,末端D 点与右端足够长的水平传送带无缝连接,传送带以恒定速度v 逆时针转动,现将一质量为m 的小滑块从轨道AB 上某一固定位置A 由静止释放,滑块能通过C 点后再经D 点滑上传送带,则( )

A .固定位置A 到

B 点的竖直高度可能为2R

B .滑块在传送带上向右运动的最大距离与传送带速度v 有关

C .滑块可能重新回到出发点A 处

D .传送带速度v 越大,滑块与传送带摩擦产生的热量越多

解析:CD 设AB 的高度为h ,假设物块从A 点下滑刚好通过最高点C ,则此时应该是从A 下滑

的高度的最小值,刚好通过最高点时,由重力提供向心力,则:mg =mv 2C

R

,解得v C =gR ,从A 到C

根据动能定理:mg (h -2R )=12mv 2

C -0,整理得到:h =2.5R ,故选项A 错误;从A 到最终停止,根

据动能定理得:mgh -μmgx =0,可以得到x =h

μ,可以看出滑块在传送带上向右运动的最大距离

与传送带速度v 无关,与高度h 有关,故选项B 错误;物块在传送带上先做减速运动,可能反向做加速运动,如果再次到达D 点时速度大小不变,则根据能量守恒,可以再次回到A 点,故选项C 正确;滑块与传送带之间产生的热量Q =

μmg Δx 相对,当传送带的速度越大,则在相同时间内二者相对位移越大,则产生的热量越多,故选项D 正确.

23.如图所示,一质量m =2 kg 的长木板静止在水平地面上,某时刻一质量M =1 kg 的小铁块

以水平向左v 0=9 m/s 的速度从木板的右端滑上木板.已知木板与地面间的动摩擦因数μ1=0.1,铁块与木板间的动摩擦因数μ2=0.4,取重力加速度g =10 m/s 2

,木板足够长,求:

(1)铁块相对木板滑动时木板的加速度的大小;

(2)铁块与木板摩擦所产生的热量Q 和木板在水平地面上滑行的总路程x .

(2)设铁块在木板上滑动时,铁块的加速度为a 1,由牛顿第二定律得μ2Mg =Ma 1,解得a 1=μ2g =4 m/s 2

.

设铁块与木板相对静止达共同速度时的速度为v ,所需的时间为t ,则有v =v 0-a 1t ,v =a 2t , 解得:v =1 m/s ,t =2 s. 铁块相对地面的位移

x 1=v 0t -1

2a 1t 2=9×2 m-12

×4×4 m=10 m.

木板运动的位移x 2=12a 2t 2=1

2×0.5×4 m=1 m.

铁块与木板的相对位移Δx =x 1-x 2=10 m -1 m =9 m , 则此过程中铁块与木板摩擦所产生的热量

Q =F f Δx =μ2Mg Δx =0.4×1×10×9 J=36 J.

达共同速度后的加速度为a 3,发生的位移为s ,则有:

a 3=μ1g =1 m/s 2

,s =v 2-02a 3=1

2

m =0.5 m.

木板在水平地面上滑行的总路程

x =x 2+s =1 m +0.5 m =1.5 m.

答案:(1)0.5 m/s 2

(2)1.5 m

24.如图所示,水平传送带A 、B 两轮间的距离L =40 m ,离地面的高度H =3.2 m ,传送带以恒定的速率v 0=2 m/s 向右匀速运动.两个完全一样的小滑块P 、Q 中间夹有一根轻质弹簧(弹簧与P 、

Q 不拴接),用一轻绳把两滑块拉至最近(弹簧始终处于弹性限度内),使弹簧处于最大压缩状态.现

将P 、Q 轻放在传送带的最左端,P 、Q 一起从静止开始运动,t 1=4 s 时轻绳突然断开,很短时间内弹簧伸长至本身的自然长度(不考虑弹簧的长度的影响),此时滑块P 速度反向,滑块Q 的速度大小刚好是P 的速度大小的两倍.已知小滑块的质量均为m =0.2 kg ,小滑块与传送带之间的动摩擦

因数μ=0.1,重力加速度g =10 m/s 2

.求:

(1)弹簧处于最大压缩状态时的弹性势能; (2)两滑块落地的时间差;

(3)两滑块在传送带上运动的全过程中由于摩擦产生的热量.

(2)两滑块离开传送带后做平抛运动时间相等,故两滑块落地时间差就是弹簧恢复到自然长度后,两滑块在传送带上运动的时间之差

t 1=4 s 时,滑块P 、Q 位移大小x 1=x 0+v 0(t 1-t 0)=6 m

滑块Q 与传送带相对静止时所用的时间

t 2=v Q -v 0

a

=6 s

这段时间内位移大小

x 2=v Q t 2-1

2

at 22=30 m

故滑块Q 先减速后匀速,匀速运动时间

t 3=L -x 1-x 2

v 0

=2 s

滑块P 速度减小到0时运动位移大小

x 3=v 2P

2a

=8 m>x 1=6 m

滑块P 滑到左端时的速度v P ′=v 2

P -2ax 1=2 m/s 运动时间t 4=

v P -v P ′

a

=2 s

两滑块落地时间差Δt =t 2+t 3-t 4=6 s

答案:(1)7.2 J (2)6 s (3)6.4 J

25.某汽车研发机构在汽车的车轮上安装了小型发电机,将减速时的部分动能转化并储存在蓄电池中,以达到节能的目的。某次测试中,汽车以额定功率行驶700m 后关闭发动机,测出了汽车动能E k 与位移x 的关系图象如图所示,其中①是关闭储能装置时的关系图线,②是开启储能装置时的关系图线。已知汽车的质量为1 000kg ,设汽车运动过程中所受地面阻力恒定,空气阻力不计,求

(1)汽车的额定功率P ;

(2)汽车加速运动500m 所用的时间t ; (3)汽车开启储能装置后向蓄电池提供的电能E? 答案:(1)8×104

W (2)16.25s (3)5×105

J

解析:(1)关闭发动机且关闭储能装置后,汽车在地面阻力f 的作用下减速至静止,由动能定理-fx =0-E k

解得f =2×103N

汽车匀速运动的动能E k =12mv 2=8×105

J

解得v =40m/s

汽车匀速运动时牵引力大小等于阻力,故汽车的额定功率P =Fv =fv 解得P =8×104W 。

(2)汽车加速运动过程中,由动能定理得

Pt -fx 1=1

2mv 2-12

mv 20

解得t =16.25s 。

(3)由功能关系,汽车开启储能装置后向蓄电池提供的电能为E =E k =fx ′

解得E=5×105J。

26.如图所示,一质量为m=1kg的可视为质点的滑块,放在光滑的水平平台上,平台的左端与水平传送带相接,传送带以v=2m/s的速度沿顺时针方向匀速转动(传送带不打滑),现将滑块缓慢向右压缩轻弹簧,轻弹簧的原长小于平台的长度,滑块静止时弹簧的弹性势能为E p=4.5J,若突然释放滑块,滑块向左滑上传送带。已知滑块与传送带的动摩擦因数为μ=0.2,传送带足够长,g=10m/s2。求:

(1)滑块第一次滑上传送带到离开传送带所经历的时间;

(2)滑块第一次滑上传送带到离开传送带由于摩擦产生的热量。

答案:(1)3.125s (2)12.5J

(2)滑块向左运动x1的位移时,传送带向右的位移为

x1′=vt1=3m

则Δx1=x1′+x1=5.25m

大学物理物理知识点总结

y 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r r 称为位矢 位矢r xi yj =+r v v ,大小 r r ==v 运动方程 ()r r t =r r 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?r r r r r △,r =r △路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?r 、r ?、s ?的含义(?≠?≠?r r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t u u u D D = =+=+D D r r r r r V V r 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?r r r (速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x ??????+=+==,2222y x v v dt dy dt dx dt r d v +=?? ? ??+??? ??==?? ds dr dt dt =r 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=?r r 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?r r r r △ a r 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x ????ρ ?2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ??+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x ? 二.抛体运动 运动方程矢量式为 2 012 r v t gt =+ r r r

2019高考物理一轮复习-物理学史

物理学史 一、力学: 伽利略(意大利物理学家) ①1638年,伽利略用观察——假设——数学推理的方法研究了抛体运动,论证重物体和轻物体下落一样快,并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即质量大的小球下落快是错误的)。 ②伽利略的理想斜面实验:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去。得出结论(力是改变物体运动的原因),推翻了亚里士多德的观点(力是维持物体运动的原因)。 评价:将实验与逻辑推理相结合,标志着物理学的开端。 (在伽利略研究力与运动的关系时,是在斜面实验的基础上,成功地设计了理想斜面实验,理想实验是实际实验的延伸,而不是实际的实验,是建立在实际事实基础上的合乎逻辑的科学推断。) 奥托··格里克(德国马德堡市长) ①马德堡半球实验:证明大气压的存在。 胡克(英国物理学家) ①提出胡克定律:只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比。 笛卡儿(法国物理学家)①根据伽利略的理想斜面实验,提出:如果没有其它原因,运动物体将继续以同一速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 牛顿(英国物理学家) ①将伽利略的理想斜面实验的结论归纳为牛顿第一定律(即惯性定律)。 卡文迪许(英国物理学家) ①利用扭秤实验装置比较准确地测出了引力常量。(微小形变放大思想) 万有引力定律的应用 ①1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈(勒维耶)应用万有引力定律,计算并观测到海王星。1930年,美国天文学家汤博用同样的计算方法发现冥王星。 经典力学的局限性 ①20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 二、电磁学:

高三物理《能量守恒定律》公式总结

高三物理《能量守恒定律》公式总结 1.阿伏加德罗常数NA=6.02×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s{V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律w+Q=ΔU{,w:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出〔见第二册P40〕} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出〔见第二册P44〕} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温

度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功w<0;温度升高,内能增大ΔU>0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律〔见第二册P41〕/能源的开发与利用、环保〔见第二册P47〕/物体的内能、分子的动能、分子势能〔见第二册P47〕。

(完整word版)高中物理能量守恒定律【高中物理能量守恒定律公式

高中物理能量守恒定律【高中物理能量守恒定律公式 在高中物理学习过程中,能量守恒属于一项极为重要的知识点,熟练掌握这一内容对于提高学生的物理知识分析能力有很大帮助,下面是小编给大家带来的高中物理能量守恒定律公式,希望对你有帮助。高中物理能量守恒定律公式 1.阿伏加德罗常数NA=×1023/mol;分子直径数量级10-10米 2.油膜法测分子直径d=V/s {V:单分子油膜的体积,S:油膜表面积2} 3.分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4.分子间的引力和斥力r10r0,f引=f斥≈0,F分子力≈0,E分子势能≈0 5.热力学第一定律W+Q=ΔU{,W:外界对物体做的正功,Q:物体吸收的热量,ΔU:增加的内能,涉及到第一类永动机不可造出} 6.热力学第二定律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化; 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化{涉及到第二类永动机不可造出} 7.热力学第三定律:热力学零度不可达到{宇宙温度下限:-摄氏度} 注: 布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; 温度是分子平均动能的标志; 分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; 分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小; 气体膨胀,外界对气体做负功W0;吸收热量,Q>0 物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; r0为分子处于平衡状态时,分子间的距离; 其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。高中物理能量守恒知识点 功是一个过程量,与力在空间的作用过程相关。恒力功的计算公式与物体运动过程无关;重力功、弹力功与路径无关。功是一个标量,但有正负之分。 功率P:功率是表征力做功快慢的物理量、是标量:P=W/t 。若做功快慢程度不同,上式为平均功率。注意恒力的功率不一定恒定,如初速为零的匀加速运动,第一秒、第二秒、第三秒……内合力的平均功率之比为1:3:5……。已知功率可以求力在一段时间内所做的功W=Pt,这时可能是变力再做功。上式常常用于分析解决机车牵引功率问题,常设有以下两种约束条件:1)发动机功率一定:牵引力与速度成反比,只要速度改变,牵引力F=P/v 将改变,这时的运动一定是变加速运动。2)机车以恒力启动:牵引力F恒定,由P=Fv可知,若车做匀加速运动,则功率P将增加,这种过程直到P达到机车的额定功率为止。 能:自然界有多种运动形式,与不同运动形式相应的存在不同形式的能量:机械运动--机械能;热运动--内能;电磁运动--电磁能;化学运动--化学能;生物运动--生物能;原子及原子核运动--原子能、核能……。动能:物体由于有机械运动速度而具有的能量Ek=mv2/2 能,包括动能和势能,都是标量。都是状态量,如动能由速度决定,重力势能由高度决定,弹性势能由形变状态决定。都具有相对性,物体速度相对于不同的参照物有不同的结果,相应的动能相对于不同的参照物有不同的动能。势能相对于不同的零势能参考面有不同的结果,势能有可能取负值,它意味着此时物体的势能比零势能低。

大学物理习题第4单元 能量守恒定律

第四章 能量守恒定律 序号 学号 姓名 专业、班级 一 选择题 [ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是 (A) p E = k mg F 2)(2 μ- (B) p E =k mg F 2)(2 μ+ (C) K F E p 22 = (D) k mg F 2)(2μ-≤p E ≤ k mg F 2)(2 μ+ [ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r +-=? 其中一个力为恒力)SI (953k j i F +--=,则此力在该位移过程中所作的功为 (A )-67 J (B )91 J (C )17 J (D )67 J [ C ]3.一个作直线运动的物体,其速度 v 与时间 t 的关系曲线如图所示。设时刻1t 至2t 间 外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则 (A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W [ C ]4.对功的概念有以下几种说法: (1) 保守力作正功时,系统内相应的势能增加。 (2) 质点运动经一闭合路径,保守力对质点作的功为零。 (3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。 在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的 (D )只有(3)是正确的。 [ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。 二 填空题 1.质量为m 的物体,置于电梯内,电梯以 2 1 g 的加速度匀加速下降h ,在此过程中,电梯对物体的作用力所做的功为 mgh 2 1 - 。 2.已知地球质量为M ,半径为R ,一质量为m 的火箭从地面上升到距地面高度为2R 处,在此过程中,地球引力对火箭作的功为)1 31(R R GMm -。 3.二质点的质量各为1m 、2m ,当它们之间的距离由a 缩短到b 时,万有引力所做的功为 )1 1(21b a m Gm --。 4.保守力的特点是 ________略__________________________________;保守力的功与势能的关系式为______________________________略_____________________. 5.一弹簧原长m 1.00=l ,倔强系数N/m 50=k ,其一端固定在半径 为R =0.1m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连,在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为 -0.207 J 。 6.有一倔强系数为k 的轻弹簧,竖直放置,下端悬一质量为m 的小球。先使弹簧为原长,而小球恰好与地接触。再将弹簧上端缓慢地提起,直到小球刚能脱离地面为止。在此过程中外力所作的功 A B C R v O 1 t 2t 3 t 4 t

2019年高考物理一轮复习试题

.精品文档. 2019年高考物理一轮复习试题 测量速度和加速度的方法 【纲要导引】 此专题作为力学实验的重要基础,高考中有时可以单独出题,16年和17年连续两年新课标1卷均考察打点计时器算速度和加速度问题;有时算出速度和加速度验证牛二或动能定理等。此专题是力学实验的核心基础,需要同学们熟练掌握。 【点拨练习】 考点一打点计时器 利用打点计时器测加速度时常考两种方法: (1)逐差法 纸带上存在污点导致点间距不全已知:(10年重庆) 点的间距全部已知直接用公式:,减少偶然误差的影响(奇数段时舍去距离最小偶然误差最大的间隔) (2)平均速度法 ,两边同时除以t,,做图,斜率二倍是加速度,纵轴截距是 开始计时点0的初速。

1. 【10年重庆】某同学用打点计时器测量做匀加速直线运动的物体的加速度,电频率f=50Hz在线带上打出的点中,选 出零点,每隔4个点取1个计数点,因保存不当,纸带被污染,如是22图1所示,A B、、D是依次排列的4个计数点,仅能读出其中3个计数点到零点的距离: =16.6=126.5=624.5 若无法再做实验,可由以上信息推知: ①相信两计数点的时间间隔为___________ S ②打点时物体的速度大小为_____________ /s(取2位有效数字) ③物体的加速度大小为__________ (用、、和f表示) 【答案】①0.1s②2.5③ 【解析】①打点计时器打出的纸带每隔4个点选择一个计数点,则相邻两计数点的时间间隔为T=0.1s . ②根据间的平均速度等于点的速度得v==2.5/s . ③利用逐差法:,两式相加得,由于,,所以就有了,化简即得答案。 2. 【15年江苏】(10分)某同学探究小磁铁在铜管中下落时受电磁阻尼作用的运

高一物理能量守恒定律测试题

2.3 能量守恒定律第一课时 【素能综合检测】 1.(5分)在利用重物做自由落体运动探索动能与重力势能的转化和守恒的实验中,下列说法中正确的是() A.选重锤时稍重一些的比轻的好 B.选重锤时体积大一些的比小的好 C.实验时要用秒表计时,以便计算速度 D.打点计时器选用电磁打点计时器比电火花计时器要好 【解析】选A.选用的重锤宜重一些,可以使重力远远大于阻力,阻力可忽略不计,从而减小实验误差,故A正确;重锤的体积越大,下落时受空气阻力越大,实验误差就越大,故B 错误;不需用秒表计时,打点计时器就是计时仪器,比秒表计时更为精准,故C错误;电磁打点计时器的振针与纸带间有摩擦,电火花计时器对纸带的阻力较小,故应选电火花计时器,D错误. 3.(5分)如图1是用自由落体法验证机械能守恒定律时得到的一条纸带.有关尺寸在图中已注明.我们选中n点来验证机械能守恒定律.下面举一些计算n点速度的方法,其中正确的是()

4.(4分)在“验证机械能守恒定律”的实验中 (1)将下列主要的实验步骤,按照实验的合理顺序把步骤前的序号填在题后横线上: A.用手提着纸带使重物静止在靠近打点计时器处; B.将纸带固定在重物上,让纸带穿过打点计时器的限位孔; C.取下纸带,在纸带上任选几点,测出它们与第一个点的距离,并算出重物在打下这几个点时的瞬时速度; D.接通电源,松开纸带,让重物自由下落; E.查出当地的重力加速度g的值,算出打下各计数点时的动能和相应的减少的重力势能,比较它们是否相等; F.把测量和计算得到的数据填入自己设计的表格里. 答:_____________. (2)动能值和相应重力势能的减少值相比,实际上哪个值应偏小些? 答:____________. 【解析】(1)实验的合理顺序应该是:BADCFE (2)由于重物和纸带都受阻力作用,即都要克服阻力做功,所以有机械能损失,即重物的动能值要小于相应重力势能的减少值. 答案:(1)BADCFE(2)动能值

高中物理分子动理论、能量守恒定律公式总结

高中物理分子动理论、能量守恒定律公式总结 1、阿伏加德罗常数A N =6.02×1023/mol ;分子直径数量级10-10 米 2、油膜法测分子直径S V d = {V :单分子油膜的体积(m 3),S :油膜表面积(m 2)} 3、分子动理论内容:物质是由大量分子组成的;大量分子做无规则的热运动;分子间存在相互作用力。 4、分子间的引力和斥力(1)0r r <,斥引f f <,分子力F 表现为斥力;(2) 0r r >,斥引f f >, 分子力F 表现为引力;(3) 0r r =,斥引f f =; (4) 010r r >,0≈=斥引f f ,0≈分子力F ,0≈分子势能E 5、热力学第一定律U Q W ?=+{(做功和热传递,这两种改变物体内能的方式,在效果上是等效的),W:外界对物体做的正功(J),Q :物体吸收的热量(J),U ?:增加的内能(J),涉及到第一类永动机不可造出 6、热力学第二定 律 克氏表述:不可能使热量由低温物体传递到高温物体,而不引起其它变化(热传导的方向性); 开氏表述:不可能从单一热源吸收热量并把它全部用来做功,而不引起其它变化(机械能与内能转化的方向性){涉及到第二类永动机不可造出} 7、热力学第三定律:热力学零度不可达到{宇宙温度下限:-273.15摄氏度(热力学零度)} 注: (1)、布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈; (2)、温度是分子平均动能的标志; (3)、分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快; (4)、分子力做正功,分子势能减小,在0r 处斥引f f =且分子势能最小; (5)、气体膨胀,外界对气体做负功W<0;温度升高,内能增大0>?U ;吸收热量,0>Q (6)、物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零; (7)、0r 为分子处于平衡状态时,分子间的距离; (8)、其它相关内容:能的转化和定恒定律/能源的开发与利用、环保/物体的内能、分子的动能、分子势能。

新人教版2019届高考物理一轮复习课时跟踪检测:(十四) 圆周运动(重点高中)

课时跟踪检测(十四)圆周运动 [A级——保分题目巧做快做] ★1.如图为某中国运动员在短道速滑比赛中勇夺金牌的精彩瞬间。假定此时他正沿圆弧 形弯道匀速率滑行,则他() A.所受的合力为零,做匀速运动 B.所受的合力恒定,做匀加速运动 C.所受的合力恒定,做变加速运动 D.所受的合力变化,做变加速运动 解析:选D运动员做匀速圆周运动,所受合力时刻变化,加速度时刻变化,D正确。 2.[多选](2018·湖南六校联考)如图所示为用绞车拖物块的示意图。拴接物块的细线被 缠绕在轮轴上,轮轴逆时针转动从而拖动物块。已知轮轴的半径R =0.5 m,细线始终保持水平;被拖动物块质量m=1 kg,与地面间 的动摩擦因数μ=0.5;轮轴的角速度随时间变化的关系是ω=kt,k=2 rad/s2,g取10 m/s2,以下判断正确的是() A.物块做匀速运动 B.细线对物块的拉力是5 N C.细线对物块的拉力是6 N D.物块做匀加速直线运动,加速度大小是1 m/s2 解析:选CD由题意知,物块的速度为:v=ωR=2t×0.5=1t 又v=at,故可得:a=1 m/s2, 所以物块做匀加速直线运动,加速度大小是1 m/s2。故A错误,D正确。 由牛顿第二定律可得:物块所受合外力为: F=ma=1 N,F=T-f, 地面摩擦阻力为:f=μmg=0.5×1×10 N=5 N 故可得物块受细线拉力为:T=f+F=5 N+1 N=6 N,故B错误,C正确。 ★3.(2017·浙江11月选考)如图所示,照片中的汽车在水平路面上 做匀速圆周运动,已知图中双向四车道的总宽度约为15 m,假设汽 车受到的最大静摩擦力等于车重的0.7倍,则运动的汽车() A.所受的合力可能为零 B.只受重力和地面支持力作用 C.最大速度不能超过25 m/s

大学物理物理知识点总结!!!!!!

B r ? A r B r y r ? 第一章质点运动学主要内容 一. 描述运动的物理量 1. 位矢、位移和路程 由坐标原点到质点所在位置的矢量r 称为位矢 位矢r xi yj =+,大小 2r r x y ==+运动方程 ()r r t = 运动方程的分量形式() ()x x t y y t =???=?? 位移是描述质点的位置变化的物理量 △t 时间内由起点指向终点的矢量B A r r r xi yj =-=?+?△,2r x =?+△路程是△t 时间内质点运动轨迹长度s ?是标量。 明确r ?、r ?、s ?的含义(?≠?≠?r r s ) 2. 速度(描述物体运动快慢和方向的物理量) 平均速度 x y r x y i j i j t t t 瞬时速度(速度) t 0r dr v lim t dt ?→?== ?(速度方向是曲线切线方向) j v i v j dt dy i dt dx dt r d v y x +=+==,2222y x v v dt dy dt dx dt r d v +=??? ??+??? ??== ds dr dt dt = 速度的大小称速率。 3. 加速度(是描述速度变化快慢的物理量) 平均加速度v a t ?=? 瞬时加速度(加速度) 220lim t d d r a t dt dt υυ→?===?△ a 方向指向曲线凹向j dt y d i dt x d j dt dv i dt dv dt v d a y x 2222+=+== 2 2222222 2 2???? ??+???? ??=? ?? ? ? ?+??? ??=+=dt y d dt x d dt dv dt dv a a a y x y x 二.抛体运动

2019届高考物理(课标通用)一轮复习阶段综合检测(三) 第七~九章验收(重点高中)

阶段综合检测(三) 第七~九章验收 (时间:90分钟 满分:110分) 一、选择题(本题共12小题,每小题4分,共48分。在每小题给出的四个选项中,第1~7题只有一项符合题目要求,第8~12题有多项符合题目要求。全部选对的得4分,选对但不全的得2分,有选错的得0分) 1.(2018·苏州模拟)如图为金属球放入匀强电场后电场线的分布情况。 设该电场中A 、B 两点的电场强度大小分别为E A 、E B ,则A 、B 两点( ) A .E A =E B ,电场方向相同 B .E A E B ,电场方向不同 D . E A

高三物理能量守恒定律详尽讲义

高三物理能量守恒定律详尽讲义 考纲解读1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系.2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 1.[功能关系的理解]用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是() A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 答案 C 2.[能的转化与守恒定律的理解]如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中() 图1 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 答案AD 解析在X-37B由较低轨道飞到较高轨道的过程中,必须启动助推器,对X-37B做正功,X-37B的机械能增大,A对,B错.根据能量守恒定律,

C错.X-37B在确定轨道上绕地球做圆周运动,其动能和重力势能都不会发生变化,所以机械能不变,D对. 3.[能量守恒定律的应用]如图2所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆内侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆内来回滑动,最后停 下来,则停下的位置到B的距离为() 图2 A.0.5 m B.0.25 m C.0.1 m D.0 答案 D 解析由mgh=μmgx,得x=3 m,而x d= 3 m 0.5 m=6,即3个来回后,小物块 恰停在B点,选项D正确. 一、几种常见的功能关系 1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增.

大学物理练习题3((角)动量与能量守恒定律)

大学物理练习题3:“力学—(角)动量与能量守恒定律” 一、填空题 1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经0.1s 停下来,则在这一过程中物体对砂地的平均作用力大小为 。 2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-?=s m v ,方向与x F 相同,则当力x F 的冲量s N I ?=300时,物体的速度大小为: 。 3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。现以100N 的力打击它的下端点,打击时间为0.02s 时。若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。 4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-??s m kg ,同时间内该力作功4.00J ,则该质点的质量是 ,力撤走后其速率为 。 5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。 6、一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。已知在此力作用下质点的运动 学方程为3 243t t t x +-= (SI)。则在0到4 s 的时间间隔内,力F 的冲量大小I = ,力F 对质点所作的功W = 。 7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。 8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。 9、一质量为10kg 的物体,在t=0时,物体静止于原点,在作用力i x F )43(+=作用下,无摩

2019届高三物理一轮复习计划

高三物理第一轮复习计划 为做好2019届高考物理教育教学工作,就目前高考物理的命题,结合物理学科特点和我校学生实际,经2019届高三物理教师讨论,制定2019届高三物理一轮复习计划如下: 一、复习指导思想:立足学科、抓纲靠本、夯实基础、联系实际、关注综合 二、复习目标 1、通过一轮复习帮助学生深化概念、原理、定理、定律的认识及理解和应用,促成学科科学思维,培养物理学科解题方法。 2、结合各知识点复习,加强习题训练,提高分析解决实际问题的能力,训练解题规范和答题速度; 3、通过一轮复习,基本实现章节知识网络化,帮助学生理解记忆。 4、提高学科内知识综合运用的能力与技巧,能灵活运用所学知识解释、处理现实问题。 三、复习的具体措施 1、首先是要求教师提高自己对高考的认知,课前备好课。 教师要熟悉两纲,即熟悉教学大纲和高考考纲;熟悉近年的必考点和常考点,并在双向细目表的指引下复习。这样在一轮复习中才能分清主次和轻重,只有老师知道考什么和什么考,才能有效的指导和引导学生进行复习;而且每一节课必须备好课,你才知道本节课要做什么,完成什么教学任务,达到什么目的,然后根据教学的环节设计好课堂教学和课后的巩固、反馈。 2、第一轮复习中,要求学生带齐高中课本,以课本为主线,加强基本概念、原理的复习,指导学生梳理知识点知识结构。

我们学校的学生基础较差,原来上过的内容基本已经忘记,现在的复习就好比是上新课一样,但是如何真的“上新课”又没有那么多的时间,所以我们的做法是每一节课设计好教学的目标,然后列提纲,以提问的形式帮助学生进行知识重现、梳理知识点和知识结构,帮助学生记忆和理解基本的概念、定律、定理、公示等等,而且每节课都必须要进行知识点的网络化小结。 3、提高课堂训练的质量和效率,训练题要做到精心设计,每一题要体现它的功能,有针对性地做好讲评. 在基本知识重现的基础上,针对本节课的知识选好课堂练习(以全品小练习的习题为主),然后学生进行训练(学生可以互相讨论)并展示思路和方法,教师点评,如有需要教师进行讲解。 4、注重方法、步骤及一般的解题思维训练,精讲多练,提高学生分析具体情景,建立物理图景,寻找具体适用规律的能力。 教师在对课堂的习题、或课后作业、测试卷等讲解时要重视对学生解题思维的训练,我们的学生有很多都只是对物理概念或公式进行死记硬背,不会应用,这主要原因是没有解题的思维,而为了帮助学生构建这种思维,最好的办法就是建立物理图形或情景,最终让学生养成良好的思维习惯,帮助学生找好最适用的解题办法,提高解题能力和速度。 5、提高课堂教学的质量,每周至少集体备课1次,平时多交流,多听课,多研究课堂教学。 要充分的发挥集体备课的功效,因为对于高三教学,本届高三物理教师的教学经验和能力都比较有限,为了克服这个缺陷,我们要充分的利用好集体备课,发挥好团队协作互助的精神,要毫无保留的相互帮助,在复习每一章前,共同讨

高中物理《能量守恒定律》教案

能量守恒定律 本节课的设计,教材继续沿用了前几节的课程模式,先由生活中的实例引出研究问题,然后用实验加以证实,让学生接受这个物理事实.接着再从理论上推导、证明,从而得出结论. 这节课教材是从生活中骑自行车上坡的实例入手,引出动能和重力势能在此过程中是在相互转化的.接着通过实验来证实这个转化过程中的守恒结论.最后提出了自然界中最普遍、最基本的规律之一能量转化和守恒定律. 机械能守恒定律是能量守恒定律的一个特例,要使学生对定律的得出、含义、适用条件有一个明确的认识,这是能够用该定律解决力学问题的基础. 各种不同形式的能相互转化和守恒的规律,贯穿在整个物理学中,是物理学的基本规律之一.能量守恒定律是学习各种不同形式的能量转化规律的起点,也是运动学和动力学知识的进一步综合和展开的重要基础.所以这一节知识是本章重要的一节. 机械能守恒定律是本章教学的重点内容,本节教学的重点是使学生掌握物体系统机械能守恒的条件;能够正确分析物体系统所具有的机械能. 分析物体系统所具有的机械能,尤其是分析、判断物体所具有的重力势能,是本节学习的难点之一.在教学中应让学生认识到,物体重力势能大小与所选取的参考平面(零势面)有关;而重力势能的变化量是与所选取的参考平面无关的.在讨论物体系统的机械能时,应先确定参考平面. 教学重点1.理解机械能守恒定律的内容; 2.在具体的问题中能判定机械能是否守恒,并能列出定律的数学表达式; 3.理解能量转化和守恒定律. 教学难点1.从能的转化和功能关系出发理解机械能守恒的条件; 2.能正确判断研究对象在所经历的过程中机械能是否守恒. 教具准备自制投影片、CAI课件、重物、电磁打点计时器以及纸带、复写纸片、低压电源及两根导线、铁架台和铁夹、刻度尺、小夹子. 课时安排1课时 三维目标 一、知识与技能 1.知道什么是机械能,知道物体的动能和势能可以相互转化; 2.理解机械能守恒定律的内容; 3.在具体问题中,能判定机械能是否守恒,并能列出机械能守恒的方程式; 4.理解能量守恒定律,能列举、分析生活中能量转化和守恒的例子. 二、过程与方法 1.初步学会从能量转化和守恒的观点解释现象、分析问题; 2.通过用纸带与打点计时器来验证机械能守恒定律,体验验证过程和物理学的研究方法. 三、情感态度与价值观 1.通过能量守恒的教学,使学生树立科学观点,理解和运用自然规律,并用来解决实际问题; 2.通过实验验证,体会学习的快乐,激发学习的兴趣;通过亲身实践,树立“实践是检验真理的唯一标准”的科学观.培养学生的观察和实践能力,培养学生实事求是的科学态度. 教学过程 导入新课 [实验演示] 动能与势能的相互转化 教师活动:演示实验1:如下图,用细线、小球、带有标尺的铁架台等做实验.

推荐2019年高考物理一轮复习 选练习题(7)(含解析)新人教版

2019年高考物理(人教版)一轮选练习题(7) 李仕才 1、(2018·四川成都调研)如图1所示,一小球在光滑的V 形槽中由A 点释放,经B 点(与 B 点碰撞所用时间不计)到达与A 点等高的 C 点,设A 点的高度为1 m ,则全过程中小球通过 的路程和位移大小分别为( ) 图1 A.23 3 m ,2 3 3 m B.23 3 m ,4 3 3 m C. 43 3 m ,2 3 3 m D. 4 3 3 m ,1 m 【答案】C 2、一辆公共汽车进站后开始刹车,做匀减速直线运动.开始刹车后的第1 s 内和第2 s 内位移大小依次为9 m 和7 m.则刹车后6 s 内的位移是( ) A.20 m B.24 m C.25 m D.75 m 【答案】C 【解析】由Δx =9 m -7 m =2 m 可知,汽车在第3 s 、第4 s 、第5 s 内的位移分别为5 m 、3 m 、1 m ,汽车在第5 s 末的速度为零,故刹车后6 s 内的位移等于前5 s 内的位移,大小为9 m +7 m +5 m +3 m +1 m =25 m ,故C 正确. 3.(2018·河南信阳调研)在一平直路段检测某品牌汽车的运动性能时,以路段的起点作为x 轴的原点,通过传感器发现汽车刹车后的坐标x 与时间t 的关系满足x =30t -5t 2 (m),下列说法正确的是( ) A.汽车刹车过程的初速度大小为30 m/s ,加速度大小为10 m/s 2 B.汽车刹车过程的初速度大小为30 m/s ,加速度大小为5 m/s 2 C.汽车刹车过程的初速度大小为60 m/s ,加速度大小为5 m/s 2 D.汽车刹车过程的初速度大小为60 m/s ,加速度大小为2.5 m/s 2 【答案】A

高中物理考试热力学定律与能量守恒定律

选修3-3 第3讲 一、选择题 1.有关“温度”的概念,下列说法中正确的是( ) A.温度反映了每个分子热运动的剧烈程度 B.温度是分子平均动能的标志 C.一定质量的某种物质,内能增加,温度一定升高 D.温度较高的物体,每个分子的动能一定比温度较低的物体分子的动能大 [答案] B [解析] 温度是分子平均动能的标志,但不能反映每个分子的运动情况,所以A、D错误,由ΔU=Q+W可知C错,故选项B正确. 2.第二类永动机不可能制成,这是因为( ) A.违背了能量守恒定律 B.热量总是从高温物体传递到低温物体 C.机械能不能全部转变为内能 D.内能不能全部转化为机械能,同时不引起其他变化 [答案] D [解析] 第二类永动机的设想虽然符合能量守恒定律,但是违背了能量转化中有些过程是不可逆的规律,所以不可能制成,选项D正确. 3.(2010·重庆)给旱区送水的消防车停于水平地面.在缓慢放水过程中,若车胎不漏气,胎内气体温度不变,不计分子间势能,则胎内气体( ) A.从外界吸热B.对外界做负功 C.分子平均动能减小D.内能增加 [答案] A [解析] 该题考查了热力学定律,由于车胎内温度保持不变,故分子的平均动能不变,内能不变,放水过程中体积增大对外做功,由热力学第一定律可知,胎内气体吸热.A选项正确. 4.如图所示,两相同的容器装同体积的水和水银,A、B两球完全 相同,分别浸没在水和水银的同一深度,A、B两球用同一种特殊的材料 制成,当温度稍升高时,球的体积会明显变大.如果开始时水和水银的 温度相同,且两液体同时缓慢地升高同一值,两球膨胀后,体积相等, 则( ) A.A球吸收的热量较多 B.B球吸收的热量较多

2019高考物理一轮复习-选修3-1

选修3-1 第一章静电场 一、电荷、电荷守恒定律 1.两种电荷:用毛皮摩擦过的橡胶棒带负电荷,用丝绸摩擦过的玻璃棒带正电荷。(丝正毛负) 2.元电荷:e=1.6×10-19C 3.起电方式①摩擦起电②接触起电(电荷的变化是电子的转移引起的;完全相同的带电金属球相接触,同种电荷总电荷量平均分配,异种电荷先中和后再平分)③感应起电(切割磁感线或磁通量发生变化)④光电效应 4、电荷守恒定律 二、库仑定律1.k=9.0×109N·m2/C2 2.适用条件:点电荷是一个理想化的模型,相似于力学中的质点。 三个自由点电荷平衡问题 ①三点共线,两同夹异,两大夹小②中间电荷靠近另两个中电量较小的 ③关系式为 3 1 3 2 2 1 q q q q q q= + 三、电场: 1.电场是存在于带电体周围的传递电荷之间相互作用的特殊媒介物质。电荷间的作用总是通过电场进行的。只要电荷存在它周围就存在电场,电场是客观存在的,它具有力和能的特性。 四、电场强度(矢量) 1.求E的规律及方法

①E = q F (定义、普遍适用) 单位是:N/C 或V/m ; ②2r Q k E = (导出式,真空中的点电荷,其中Q 是产生该电场的电荷) ③d U E = (导出式,仅适用于匀强电场,其中d 是沿电场线方向上的距离) 2.方向:场强的方向与该处等势面的方向垂直。 五、电场线: 定义:在电场中为了形象的描绘电场而人为想象出或假想的曲线(描述E 的强弱和方向)。电场线实际上并不存在。 ①疏密表示表示该处场强的大小。电场线越密,则电场强度越大。 ②沿着电场线方向,电势越来越低。但场强不一定减小;沿电场线方向电势降低最快。 ③电场线垂直于等势面,电场线由高等势面指向低等势面. ④电场线不是电荷运动的轨迹.也不能确定电荷的速度方向。 六、电势差U 意义:反映电场本身性质,取决于电场两点,与移动的电荷无关,与零电势 的选取无关。 七、电势? 描述电场能性质的物理量 必须先选一个零势点,(具有相对性)相对零势点而言,常选无穷远或大地作为零电势。 1.定义:某点相对零电势的电势差叫做该点的电势,是标量. 2.特点:① 标量:有正负,无方向,只表示相对零势点比较的结果。 ②电场中某点的电势由电场本身因素决定,与零势点的选取有关。 八、电势能E P 1.概念:由电荷及电荷在电场中的相对位置决定的能量,叫电荷的电势能。

高考物理动量守恒定律解题技巧及练习题

高考物理动量守恒定律解题技巧及练习题 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

相关文档
相关文档 最新文档