文档库 最新最全的文档下载
当前位置:文档库 › 线性代数总复习大纲及复习题

线性代数总复习大纲及复习题

线性代数总复习大纲及复习题
线性代数总复习大纲及复习题

04-05(2) 线性代数总复习大纲及复习题: 一、 概念

1、 行列式的 定义

2、 向量组相关与无关的定义

3、 对称阵与反对称阵

4、 可逆矩阵

5、 矩阵的伴随矩阵

6、 基与向量的坐标

7、 矩阵的特征值与特征向量 8、 正定矩阵 9、 矩阵的迹 10、 矩阵的秩 11、 矩阵的合同 12、 二次型与矩阵

13、 齐次线性方程组的基础解系 二、 性质与结论

1、 与向量组相关与无关相关的等价结论

2、 行列式的性质

3、 克莱姆规则(齐次线性方程组有非零解的充要条件)

4、 矩阵可逆的充要条件及逆矩阵的性质

5、 初等变换与初等矩阵的关系

6、

A A A A A E **==

7、 n 维向量空间坐标变换公式 8、 相似矩阵的性质 9、 合同变换

10、 矩阵正定的充要条件

11、 线性方程组解的性质与结构定理 三、复习题及参考答案

1.若三阶行列式1

23

11

22

331

2

3

2226a a a b a b a b a c c c ---=,则 1

23

1

231

2

3

a a a

b b b

c c c = 12 2.若方程组12312312

3000

tx x x x tx x x x tx ++=??

++=??++=?有非零解,则t=????1???。

3.已知齐次线性方程组32023020x y x y x y z λ+=??

-=??-+=?

仅有零解,则λ≠ 0

4.已知三阶行列式D=123

312231,则元素12a =2的代数,余子式12A = -1 ;

3.若n 阶矩阵A 、B 、C 满足ABC=E (其中E 为n 阶可逆阵),则BCA=E 。( 对 )

4.行列式

0020

023

16.02342345

= ( 对 ) 5.对向量1234,,,αααα,如果其中任意两个向量都线性无关,则1234,,,αααα线性无关。( 错 )

6. 如果A 是n 阶矩阵且0A =,则A 的列向量中至少有一个向量是其余各列向量的线性组合。( 对 )

7. 向量组s ααα,,,21 线性无关的充分必要条件是其中任一部分向量组都线性无关。( 对 )

8 矩阵212111215A ??

?

= ? ???

是正定的。( 对 )

9. n 阶矩阵A 与B 相似,则A 与B 同时可逆或同时不可逆。( 对 )

10.已知向量组123(1,2,1),(,1,1),(1,,1).a a ααα===则当a= 1 或a= 2 时向量组321,,ααα线性相关。

( 对 ) 11.n 阶矩阵A 满足2320,A A E -+=则A-3E 可逆,A-2E 可逆。 ( 对 ) 12.阵A 与其转置T A 具有相同的行列式和特征值。 ( 对 )

13.如果n 阶矩阵 A 的行列式┃A ┃=0,则A 至少有一个特征值为零 。( 对) 14. 设A 为n 阶方阵,k 为常数,则kA k A =。 ( B ) 15.设6阶方阵A 的秩为3,则其伴随矩阵的秩也是3。 ( B )

16.行列式042()2

310.12

3

x f x x x -=-=-的实根为6 ( A )

17. 如果向量组s ααα,,,21 线性相关,则每一个向量都能由其余向量线性表示。

( B )

18.n 阶矩阵A 满足2320,A A E E n

--=其中为阶单位矩阵,则A 可逆。 ( A )

19.若矩阵A 可逆,则AB 与BA 相似。 ( A )

20.如果n 阶矩阵 A 的行列式┃A ┃≠0,则A 的特征值都不为零 。 ( A )

21.矩阵123214341A ?? ?

=- ? ?-??

是正定。 ( b )

22.n 阶单位矩阵的特征值都是1。 ( A )

123123231

232353552,1,0.49

x x x x x x x x x x x x -+=??

+-===-=

??-+=?123.方程组的解为 ( A ) 24.果A 是n 阶矩阵且0A =,则A 的每一个行向量都是其余各行向量的线性组合。

( B )

25. 矩阵A 是m ×n 矩阵,齐次线性方程组AX=0只有零解的充要条件是A 的列向量线性相关。( A )

26.若矩阵A 有特征值1

2,则2一定是矩阵A 的逆矩阵的特征值。 ( B )

27 若12,ζζ为非齐次线性方程组AX b =(0)b ≠的两个解,则12ζζ-为线性方程组 的解;A

28.如果()r A r =,A 中能否有秩等于零的1r -阶子式?能否有秩等于零的r 阶子式? 能否有秩不为零的1r +阶子式?

答 A 中不能有秩等于零的1r -阶子式;能有秩等于零的r 阶子式;没有秩不为零的1r +阶子式。

29.若32,1T A ??

?= ? ?

-??

033,167T B -??= ???则2().4T

AB ??= ??? ( 错 )

30.已知n 元线性方程组AX b =,其增广矩阵为A ,当( C )时,线性方程组有解。 A 、()r A n =, B 、()r A n ≠; C 、()()r A r A =; D 、()()r A r A ≠ 31.若线性方程组Ax b =的增广矩阵A 经初等行变换化为

A →12

3400012λλλλλ??

? ? ?--??

当λ≠( B )时,此线性方程组有惟一解

A 、-1,0

B 、0,1

C 、-1,1

D 、1,2

32.若三阶行列式D 的第三行的元素依次为1、2、3,它们的余子式分别为2、3、4, 则D=( B )

A 、-8

B 、8

C 、-20

D 、20

33. 设A 为n 阶方阵,且|A |=4,则|1

4A |=14

1-n ???A ???? 。

(A ) 114n -; (B )14n ; (C )114n + ; (D )21

4

n +。

34、行列式_______.c a b

a b c b c a

=3333c b a abc --- 35.设矩阵210120001A ?? ?

= ? ???

,矩阵B 满足2ABA BA E **=+,其中E 为三阶单位矩

阵,A *为A 的伴随矩阵,则B =( B ). (A )

13; (B )19; (C )14; (D )13

。 36、 二次型222

1231231213(,,)3264f x x x x x x x x x x =-++-的矩阵为 D

(A )521212

12111??

- ?

?

?- ? ?-- ? ???

; (B )541411112-?? ?

- ? ?--??;

(C )522211212-?? ?- ? ?--??; (D )332320201-?? ?- ? ?-??

37.设矩阵10102102,()03110244A r A *??

?--

?== ?-- ???

则??????1?? 。 (A )0; (B )3; (C )1; (D )4。

38.设A 、B 均为三阶矩阵,且┃A ┃=4,┃B ┃=-2,则*-A B 1)3(=??-8/27???????。 (其中*A 为矩阵A 的伴随矩阵)

39.设实对称矩阵???

?? ??----=020212022A ,则与矩阵A 相似的对角阵为????A ???? 。

(A )????? ??-200010004; (B )????? ??000010001; (C )????

? ??-200010001; (D )?????

??200010004。

40. 设312312311212,,,,R ξξξηηηηξηξξ==-和是的两组基,其中,,

3123ηξξξ=--,

则32132ξξξα+-=关于基321321,,,,ηηηξξξ和的坐标为???(1,-2,3)和(-1,5,-3)????? 。

41 矩阵3151A ??

= ?-??

的特征值是( C )

A 、12λ=,24λ=;

B 、12λ=-,24λ=-;

C 、12λ=-,24λ=;

D 、12λ=,24λ=-。

42. 已知20010132025A ????=??????

,求A ,1A -,*1()A - 答案 14

A =-, 11000106042A -????=-????-??, *1400()0260410A --????=--????--??

。 43 n 阶矩阵A 可以对角化的充分必要条件是( B )。

A 、A 有n 个不全相同的特征值;

B 、A 有n 个线性无关的特征向量;

C 、A 有n 个不相同的特征向量;

D 、T A 有n 个不全相同的特征值。

44.设矩阵120826,435534A B -????

== ? ?????,且满足方程2A+X=B-2X ,则X=???

???

? ??---21122

2?????。 45.设λ=2是非奇异矩阵A 的一个特征值,则矩阵1

213A -??

???有一个特征值等于

B 。

(A )34; (B )4

3

(C )2

1

; (D )4

1

46.设-3是三阶实对称矩阵A 的二重特征值,且A 的迹tr (A )=-1,那么1A -的特征 值为?????1/5,-1/3,-1/3??? 。

47.已知线性方程组12341234

123412342313633153510121x x x x x x x x x x tx x x x x x +++=??+++=??--+=??--+=?,参数t= ???2?????时,方程组有无穷多解。

48.设矩阵1121020601,()15252A r A -?? ?

== ? ?--??

则??????C ?? 。

(A )0; (B )3; (C )2; (D )4

49.行列式

11101

101

_______.10110111

= B (A )3; (B )-3; (C )6; (D )-6。

50.二次型222

1231231213(,,)3224f x x x x x x x x x x =+-+-的矩阵为 3

121

10202-??

? ? ?--?

?

51.方阵A 经过行的初等变换变为方阵B ,且0,A ≠则必有 ( D )

();();()00()0.

A A

B B A B

C B B

D B =≠=≠≠或与所做变换无关;

52. 设A 为m ?n 矩阵,B 为n ?m 矩阵,且m

53.设矩阵A 的逆矩阵为1111121113A -?? ?= ? ???,则=-*1)(A 521220101--?? ?

- ? ?-??

54.设A 为n 阶可逆矩阵,A *是A 的伴随矩阵,则 1

n A A

-*=

55.已知向量组123(1,2,1,1),(2,0,,0),(0,4,5,2)t ααα=-==--的秩为2,则t=?????3 ??。 56.设A 为m ×n 矩阵,则齐次线性方程组AX=0仅有零解的充分条件是:( A ) (A )A 的列向量线性无关;(B )A 的列向量线性相关; (C )A 的行向量线性无关;(D )A 的行向量线性相关。

57.设有向量组123,,ααα和向量β:123(1,1,1),(1,1,0),(1,0,0);(0,3,1)αααβ====

则向量β由向量组123,,ααα的线性表示是 。A

123123123123

()23;()23()23()23A B C D βαααβαααβαααβααα=+-=--=---=++

58.设λ=2是非奇异矩阵A 的一个特征值,则矩阵1

313A -??

???

有一个特征值等

于( 3

8

)。

59.方程组1234123

41234123432024602378060x x x x x x x x x x x x

x x x x

++-=??++-=??++-=??-++=?有一个基础解系为

12(2,1,1,0),(2,4,0,1);ηη=--=-

60.α1,α2,α3是四元非齐次线性方程组AX=B 的三个解向量,且

r (A )=3,α1=(1,2,3,4)T ,α2+α3=(0,1,2,3)T ,c 表示任意常数,则线性方程组AX=B 的通解X=( C ) (A )(1,2,3,4)T +c (1,1,1,1)T (B )(1,2,3,4)T +c (0,1,2,3)T (C )(1,2,3,4)T +c (2,3,4,5)T (D )(1,2,3,4)T +c (3,4,5,6)T

61.若三阶行列式1

23

1

23

1

2312312

31

2

3

221,22x x x z z z y y y y y y z z z x x x =-=则( 2 )

62.若三阶行列式D 的第二行的元素依次1,2,4,它们的余子式分别为4,2,1,则

D=( -4 )

63.设A 和B 为可逆矩阵,????

??=00

B A X 为分块矩阵,则X -1

= ??

?

???--00

11A B 64.设A 和B 均为n 阶方阵,且满足BA=0,则必有( |A|=0或|B|=0 )。 65.设三阶矩阵A 的特征值为3,3,-3,则行列式

=+-133

1

A A ( -8 )。 66.设矩阵10010123015A ?? ?

= ? ???

,则=-*1)(A (9A ) 。

67.二次型222

1231231323(,,)262f x x x x x x x x x x =---+的矩阵为( ).

(A )103011312-?? ?- ? ?--??; (B )313101312-??

?

? ?--??;

(C )122211212-?? ?

-- ? ?

---??

; (D )321211112-??

?- ? ?--??。

68.设有向量组α1=(1,-1,2,4),α2=(0,3,1,2)α3=(3,0,7,14),

α4=(1,-2,2,0),α5=(2,1,5,10)

则该向量组的极大线性无关组是(α1,α2,α4 )

69.n 阶矩阵A 具有n 个不同的特征值是A 与对角矩阵相似的( C )。

(A )充分必要条件;

(B )必要而非充分条件; (C )充分而非必要条件;

(D )既非充分也非必要条件

70.设A 、B 均为三阶矩阵,且3,3A B ==-,则*-A B 1)3(=(1

9- )。(其中

*A 为矩阵A 的伴随矩阵)

线性代数期末试题及答案

工程学院2011年度(线性代数)期末考试试卷样卷 一、填空题(每小题2分,共20分) 1.如果行列式233 32 31 232221 131211 =a a a a a a a a a ,则=---------33 32 31 232221 13 1211222222222a a a a a a a a a 。 2.设2 3 2 6219321862 131-= D ,则=+++42322212A A A A 。 3.设1 ,,4321,0121-=??? ? ??=???? ??=A E ABC C B 则且有= 。 4.设齐次线性方程组??? ?? ??=????? ??????? ??000111111321x x x a a a 的基础解系含有2个解向量,则 =a 。 、B 均为5阶矩阵,2,2 1 == B A ,则=--1A B T 。 6.设T )1,2,1(-=α,设T A αα=,则=6A 。 7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。 8.若31212322 212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。 10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分) 1.若齐次线性方程组??? ??=λ++=+λ+=++λ0 00321 321321x x x x x x x x x 有非零解,则=λ( ) A .1或2 B . -1或-2 C .1或-2 D .-1或2. 2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为 1,1,2,3-,则=A ( ) A .5 B .-5 C .-3 D .3 3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( ) A .0=+ B A B .))B r A r ((= C .O A =或O B = D .0=A 或0=B 4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是 ( ) A .21+ββ B . ()21235 1 ββ+ C .()21221ββ+ D .21ββ- 5. 若二次型3231212 3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( ) A . 1 B .2 C . 3 D . 4 三、计算题 (每题9分,共63分) 1.计算n 阶行列式a b b b a b b b a D n Λ ΛΛΛΛΛΛ=

线性代数习题集(带答案)

第一部分专项同步练习 第一章行列式 一、单项选择题 1.下列排列是 5 阶偶排列的是( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列j1 j2 j n 的逆序数是k , 则排列j n j2 j1的逆序数是( ). n! (A) k (B) n k (C) k 2 n(n 1) (D) k 2 3. n 阶行列式的展开式中含a11a12 的项共有( )项. (A) 0 (B) n 2 (C) (n 2)! (D) (n 1)! 0 0 0 1 4. 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 0 0 1 0 5.0 1 1 ( ). 1 0 0 0 (A) 0 (B) 1 (C) 1 (D) 2 2x x 1 1 6.在函数 1 x 1 2 f (x) 中 3 2 x 3 3 x 项的系数是( ). 0 0 0 1 (A) 0 (B) 1 (C) 1 (D) 2 1

7. 若 a a a 11 12 13 1 D a a a ,则 21 22 23 2 a a a 31 32 33 2a a 13 a 33 a 11 a 31 2a 12 2a 32 11 D 2a a a 2a ( ). 1 21 23 21 22 2a 31 (A) 4 (B) 4 (C) 2 (D) 2 a a 11 ,则 12 8.若 a a a 21 22 a 12 a 11 ka 22 ka 21 ( ). 2 (D) k2a (A) ka (B) ka (C) k a 9.已知 4 阶行列式中第 1 行元依次是4, 0, 1, 3, 第 3 行元的余子式依次为2, 5,1, x, 则x ( ). (A) 0 (B) 3 (C) 3 (D) 2 8 7 4 3 10. 若 6 2 3 1 D ,则D 中第一行元的代数余子式的和为( ). 1 1 1 1

《线性代数》课程教学大纲

《线性代数》课程教案大纲 课程代码:课程性质:专业基础理论课必修 适用专业:工科类各专业总学分数: 总学时数:修订年月: 编写年月:执笔:韩晓卓、李锋 课程简介(中文): 线性代数是理、工、经管各专业重要的基础课之一。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性,是数学的一个重要分支,其理论与方法已广泛应用于其它科学领域中。主要包括:矩阵、行列式、线性方程组、秩问题、矩阵的特征值和特征向量、二次型等内容。 课程简介(英文): , . , , . . , , , , , , . 一、课程目的 《线性代数》是高等院校工科专业学生必修的一门基础理论课。它是以讨论有限维空间线性理论为主,具有较强的抽象性与逻辑性。通过本课程的学习,使学生比较系统地获得线性代数中的行列式、矩阵、线性方程组、矩阵和向量组的秩,矩阵的特征值和特征向量等方面的基本概念、基本理论和基本方法,培养学生独特的代数思维模式和解决实际问题的能力,同时使学生了解线性代数在经济方面的简单应用,并为学生学习后继课程及进一步扩大数学知识面奠定必要的数学基础。 二、课程教案内容及学时分配 (一)教案内容 第一章行列式(学时) 教案内容:

二阶三阶行列式;阶行列式的定义;行列式的性质(证明选讲);行列式按行(列)展开(定理证明选讲,行列式按某行(列)展开选讲);克莱姆法则。 本章的重点与难点: 重点:行列式的性质;行列式按一行(列)展开定理;克莱姆法则的应用。 难点:阶行列式的定义的理解;阶行列式计算。 第二章矩阵(学时) 教案内容: 矩阵的概念;矩阵的运算(矩阵的加、减法;数乘;乘法;矩阵转置;方阵的幂;方阵的行列式);几种特殊的矩阵(对角矩阵,数量矩阵,三角形矩阵,单位矩阵,对称矩阵与反对称矩阵);分块矩阵(分块阵及其运算,分块对角阵);逆矩阵(可逆阵的定义;奇异阵,伴随阵与逆阵的关系;逆阵的性质,二阶上三角分块阵的求逆方法);本章的重点与难点: 重点:矩阵的运算规律;逆矩阵的性质以及求法; 难点:矩阵的乘积及分块矩阵的乘积;逆矩阵(抽象矩阵的逆矩阵)的求法。 第三章矩阵的初等变换与线性方程组(学时) 教案内容: 矩阵的初等变换(初等矩阵定义;初等矩阵与矩阵初等变换的关系。用初等变换求矩阵的逆);矩阵的秩(矩阵的秩的定义;矩阵的秩与其子式的关系;初等变换求矩阵的秩)。线性方程组的消元解法(消元解法与初等行变换的关系;线性方程组有唯一解、无穷多组解和无解的讨论;线性方程组有解的判别定理;齐次线性方程组有非零解的充分和必要条件); 本章的重点与难点: 重点:利用初等变换求矩阵的逆矩阵与矩阵的秩;利用初等变换求线性方程组的通解。 难点:利用初等变换求线性方程组的通解。

昆明理工大学线性代数考试试题集及答案

《线性代数B 》 2010~ 2011 学年第 一 学期课程试卷A 一、填空 1. 125 642782516945 4321111= 12 . 2. 设A 、B 为4阶方阵,且,2||1 =-A 813=B ,则=||AB 1/2 . 3. 给定矩阵A ,且E A -可逆,满足B A E AB +=+2,则=B E A + . 4.设??????????=210110001A ,则=-1A ???? ??????--11012000 1 . 5.已知321,,ααα线性相关,3α不能由21,αα线性表示,则21,αα线性 相关 . 6.设???? ? ?????=??????????=??????????=120,61,321321αααt ,且1α,32αα,线性相关, 则=t 8 . 7.设A 是34?矩阵,且2)(=A R ,???? ? ?????=213010321B 则=)(AB R __2___ 8.设三阶方阵A 的每行元素之和均为零,又2)(=A R ,则齐次线性方程组O Ax =的通解为 )(111R k k ∈???? ?????? . 9. 向量组,11011????????????-=α,02132????????? ???-=α,31103????????????-=α???? ? ? ??????-=01014α的一个最大线性无关组为 421,,ααα . 10. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为 0 . 二、单项选择

1..若=---+=--1 2 1 203242,112 2013z y x z y x 则( A ) )A ( 1- ; )B ( 2 ; )C ( 1 ; )D ( 0. 2.设C B A ,,均为二阶方阵,AC AB =,则当(C )时,可以推出C B =. .1111)D (;0110)C (;0011)B (;0101)A (? ? ? ???=? ?? ???=? ?? ???=? ?? ???=A A A A 3. 下列结论正确的是( A ) . )A ( s ααα,,,21 线性无关的充要条件是其中任意一个向量都不是其余向量的线性组合; )B ( 若向量321,,ααα线性相关,则21,αα线性相关; )C ( 若n 阶方阵A 与对角阵相似,则A 有n 个不同的特征值; )D ( 若方程组O Ax =有非零解,则b Ax =有无穷多解. 4. 已知321,,ηηη是四元方程组b Ax =的三个解,其中,3)(=A R ? ? ??? ???????=43211η,???? ????????=+444432ηη, 则以下不是方程组b Ax =的通解为( D ) . )A (;43214202???? ?? ??????+????????????--k )B ( ;43212101????????????+????????????--k )C (;22222101???? ????????+????????????--k )D (????? ? ??????+????????????43210123k . 5. 设向量组321,,ααα线性无关,则下列向量组中线性无关的是( B ) )A (133221,,αααααα--- ; )B (1321,,αααα+ ; )C (212132,,αααα- ; )D (32322,,αααα+. 6.若n 阶矩阵B A ,有共同的特征值,且各有n 个线性无关的特征向量,则(A )

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。每小题 5 分,共 25 分) 1 3 1 1.若0 5 x 0 ,则__________。 1 2 2 x1 x2 x3 0 2.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。 x1x2x30 3.已知矩阵 A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。 4.已知矩阵A 为 3 3的矩阵,且| A| 3,则| 2A|。 5.n阶方阵A满足A23A E 0 ,则A1。 二、选择题(每小题 5 分,共 25 分) 6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?() A. 4 0 B. 4 4 C. 0 t 4 4 1 t 5 t D. t 2 5 5 5 5 1 4 2 1 2 3 7.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值() 0 4 3 0 0 5 A.3 B.-2 C.5 D.-5 8 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是() A. A0 B. A 1 0 C.r (A) n D.A 的行向量组线性相关 9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为() 1

x y 2 z 4 A. 3 1 2 x y 2 z 4 C. 3 1 2 x y 2 z 4 B. 3 2 2 x y 2 z 4 D. 3 2 2 10 3 1 .已知矩阵 A , 其特征值为( ) 5 1 A. 1 2, 2 4 B. C. 1 2, 2 4 D. 三、解答题 (每小题 10 分,共 50 分) 1 1 2, 2, 2 2 4 4 1 1 0 0 2 1 3 4 0 2 1 3 0 1 1 0 11.设B , C 0 2 1 且 矩 阵 满足关系式 0 0 1 1 0 0 1 0 0 0 2 T X (C B) E ,求 。 a 1 1 2 2 12. 问 a 取何值时,下列向量组线性相关? 1 1 1 , 2 a , 3 。 2 1 2 1 a 2 2 x 1 x 2 x 3 3 13. 为何值时,线性方程组 x 1 x 2 x 3 2 有唯一解,无解和有无穷多解?当方 x 1 x 2 x 3 2 程组有无穷多解时求其通解。 1 2 1 3 14.设 1 4 , 2 9 , 3 0 , 4 10 . 求此向量组的秩和一个极大无关 1 1 3 7 0 3 1 7 组,并将其余向量用该极大无关组线性表示。 15. 证明:若 A 是 n 阶方阵,且 AA A1, 证明 A I 0 。其中 I 为单位矩阵 I , 2

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

2020年考研线性代数重点内容和典型题型总结

XX年考研线性代数重点内容和典型题型总结线性代数在考研数学中占有重要地位,必须予以高度重视.线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,专家们提醒广大的xx年的考生们必须注重计算能力.线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。下面,就将线代中重点内容和典型题型做了总结,希望对xx年考研的同学 们学习有帮助。 行列式在整张试卷中所占比例不是很大,一般以填空题、选择题 为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式.如果试卷中没有独立的行列式的试题,必 然会在其他章、节的试题中得以体现.行列式的重点内容是掌握计算 行列式的方法,计算行列式的主要方法是降阶法,用按行、按列展开公式将行列式降阶.但在展开之前往往先用行列式的性质对行列式进 行恒等变形,化简之后再展开.另外,一些特殊的行列式(行和或列和相等的行列式、三对角行列式、爪型行列式等等)的计算方法也应掌握.常见题型有:数字型行列式的计算、抽象行列式的计算、含参数 的行列式的计算.关于每个重要题型的具体方法以及例题见《xx年全国硕士研究生入学统一考试数学120种常考题型精解》。 矩阵是线性代数的核心,是后续各章的基础.矩阵的概念、运算及理论贯穿线性代数的始终.这部分考点较多,重点考点有逆矩阵、伴

随矩阵及矩阵方程.涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题.这几年还经常出现有关初等变换与初等矩阵的命题.常见题型有以下几种:计算方阵的幂、与伴随矩阵相关联的命题、有关初等变换的命题、有关逆矩阵的计算与证明、解矩阵方程。 向量组的线性相关性是线性代数的重点,也是考研的重点。xx年的考生一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定法并能灵活应用,还应与线性表出、向量组的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.常见题型有:判定向量组的线性相关性、向量组线性相关性的证明、判定一个向量能否由一向量组线性表出、向量组的秩和极大无关组的求法、有关秩的证明、有关矩阵与向量组等价的命题、与向量空间有关的命题。 往年考题中,方程组出现的频率较高,几乎每年都有考题,也是线性代数部分考查的重点内容.本章的重点内容有:齐次线性方程组有非零解和非齐次线性方程组有解的判定及解的结构、齐次线性方程组基础解系的求解与证明、齐次(非齐次)线性方程组的求解(含对参数取值的讨论).主要题型有:线性方程组的求解、方程组解向量的判别及解的性质、齐次线性方程组的基础解系、非齐次线性方程组的通解结构、两个方程组的公共解、同解问题。 特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大,共有三部分重点内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化.重点题型有:数

同济大学2010-11线性代数B期末考试试卷_A卷_

同济大学课程考核试卷(A 卷) 2010—2011学年第一学期 命题教师签名: 审核教师签名: 课号:122009 课名:线性代数B 考试考查:考试 此卷选为:期中考试( )、期终考试( √ )、重修( )试卷 年级 专业 学号 姓名 任课教师 题号 一 二 三 四 五 六 七 总分 得分 (注意:本试卷共七大题,三大张,满分100分.考试时间为120分钟. 要求写出解题过程,否则不予计分) 一、填空与选择题(均为单选题)(27分) 1、 已知4阶方阵1234 567890 54 a b A c d ????? ? =?????? ,函数()||f x xE A =?,这里E 为4阶单位阵,则函数()f x 中3x 项的系数为_______a+b+c+d____________. 2、 设12312,,,,αααββ均为4维列向量,已知4阶行列式 1231,,,m αααβ=,又 1223,,,n ααβα=,则4阶行列式32112,,,αααββ+=______n m ?_______________. 3、 已知3阶方阵A 满足320A E A E A E +=?=?=,其伴随矩阵为* A ,则行列式 *A =_____36_________. 4、 已知α是3维实列向量,且111111111T αα?????=????????? ,则α=5、设α是3 R 空间中的某一向量,它在基123,,εεε下的坐标为()123,,T x x x ,则α在基 1323,,k εεεε+下的坐标是_________1231(,,)T x x x kx ?________________. 6、 下列关于矩阵乘法的结论中错误的是____________B_________. 1(). ). (). ().n A A A A B C n cE c D ?若矩阵可逆,则与可交换 (可逆阵必与初等矩阵可交换任一个阶方阵均与可交换,这里为任意常数 初等矩阵与初等矩阵乘法未必可交换 7、 设A B 、均为n 阶方阵,且()2 AB E =,则下列式子中成立的是_____D_______. ()2 2 2 (). (). (). ().A AB E B AB E C A B E D BA E ==?== 8、 设Ax b =为n 元非齐次线性方程组,则下面说法中正确的是_____C____ (). 0 (). 0 (). 0 ().() A Ax Ax b B Ax Ax b C Ax b Ax D Ax b R A n =======?=若只有零解,则有唯一解若有无穷多个解,则有无穷多个解若有两个不同的解,则有无穷多个解 有唯一解 9、 下列向量组中线性无关的是_______C__________. ()()()()()()()()()()()()()() (). 1,1,0,20,1,1,10,0,0,0). ,,,,,,,,,,, (). ,1,,0,0,,0,,1,0,,0,,0,1().1,2,1,5,1,2,1,6,1,2,3,7,0,0,0,1A B a b c b c d c d a d a b C a b c d e f D ??,, ( 二、(10分) 已知n 阶行列式1 231 200 1 0301 00n n D n ="""###%#",求第一行各元素的代数余子式之和.

线性代数期末考试试卷答案合集

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=32312221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032 =--E A A ,则=-1A 。 二、判断正误(正确的在括号填“√”,错误的在括号填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1 -A 的特征值为λ。 ( ) 三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号。每小题2分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 1 2 -n ③ 1 2 +n ④ 4 2. n 维向量组 s ααα,,, 21(3 £ s £ n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示

大一线性代数期末试卷试题卷及标准答案解析.doc

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 诚信应考 ,考试作弊将带来严重后果! 线性代数期末考试试卷及答案 号 位 座 注意事项: 1. 考前请将密封线内填写清楚; 线 2. 所有答案请直接答在试卷上(或答题纸上 ); 3.考试形式:开(闭)卷; 4. 本试卷共五大题,满分100 分,考试时间 120 分钟。 题号一二三四五总分 业得分 专 评卷人 ) 一、单项选择题(每小题 2 分,共 40 分)。 题 封 答1.设矩阵A为2 2矩 阵, B 为2 3矩阵 , C为3 2矩阵,则下列矩阵运算无意义的是 院 不 内 【】学 线 封 密 A. BAC B. ABC C. BCA D. CAB ( 2.设 n 阶方阵 A 满足 A2+ E =0,其中 E 是 n 阶单位矩阵,则必有【】 A. 矩阵 A 不是实矩阵 B. A=-E C. A=E D. det(A)=1 3.设 A 为 n 阶方阵,且行列式det(A)= 1 ,则 det(-2A)= 【】 n C. -2n A. -2 D. 1 B. -2 号密 4.设 A 为 3 阶方阵,且行列式det(A)=0 ,则在 A 的行向量组中【】学 A.必存在一个行向量为零向量 B.必存在两个行向量,其对应分量成比例 C. 存在一个行向量,它是其它两个行向量的线性组合 D. 任意一个行向量都是其它两个行向量的线性组合 5.设向量组a1,a2, a3线性无关,则下列向量组中线性无关的是【】名A.a1 a2 , a2 a3 , a3 a1 B. a1, a2 ,2a1 3a2 姓

C. a 2 ,2a 3 ,2a 2 a 3 D. a 1- a 3 , a 2 ,a 1 6.向量组 (I): a 1 , ,a m (m 3) 线性无关的充分必要条件是 【 】 A.(I)中任意一个向量都不能由其余 m-1 个向量线性表出 B.(I)中存在一个向量 ,它不能由其余 m-1 个向量线性表出 C.(I)中任意两个向量线性无关 D.存在不全为零的常数 k 1 , , k m , 使 k 1 a 1 k m a m 0 7.设 a 为 m n 矩阵,则 n 元齐次线性方程组 Ax 0存在非零解的充分必要条件是 【 】 A . A 的行向量组线性相关 B. A 的列向量组线性相关 C. A 的行向量组线性无关 D. A 的列向量组线性无关 a 1x 1 a 2 x 2 a 3 x 3 0 8.设 a i 、 b i 均为非零常数( i =1, 2, 3),且齐次线性方程组 b 2 x 2 b 3 x 3 b 1 x 1 的基础解系含 2 个解向量,则必有 【 】 a 1 a 2 B. a 1 a 2 a 1 a 2 a 3 a 1 a 3 0 A. b 1 b 2 0C. b 2 b 3 D. b 2 b 3 b 1 b 1 b 2 9.方程组 2x 1 x 2 x 3 1 x 1 2x 2 x 3 1 有解的充分必要的条件是 【 】 3 x 1 3x 2 2 x 3 a 1 A. a=-3 B. a=-2 C. a=3 D. a=1 10. 设η 1,η2,η3 是齐次线性方程组Ax = 0 的一个基础解系, 则下列向量组中也为该方程 组的一个基础解系的是 【 】 A. 可由 η 1, η2, η3 线性表示的向量组 B. 与 η1, η2 , η3 等秩的向量组 C.η 1-η2, η2- η3, η3- η1 D. η 1, η1-η3, η1-η 2-η 3 11. 已知非齐次线性方程组的系数行列式为 0 ,则 【 】 A. 方程组有无穷多解 B. 方程组可能无解, 也可能有无穷多解 C. 方程组有唯一解或无穷多解 D. 方程组无解 阶方阵 A 相似于对角矩阵的充分必要条件是 A 有 n 个 【 】 A.互不相同的特征值 B.互不相同的特征向量 C.线性无关的特征向量 D.两两正交的特征向量 13. 下列子集能作成向量空间 R n 的子空间的是 【 】 n A. {( a 1 , a 2 , ,a n ) | a 1a 2 0} B. {( a 1 , a 2 , , a n ) | a i 0} C. {( a 1, a 2 , , a n ) | a i z,i 1,2, , n} D. {( a 1 , a 2 , i n 1 1} , a n ) | a i 1 0 i 1 14.若 2 阶方阵 A 相似于矩阵 B - 3 ,E 为 2 阶单位矩阵 ,则方阵 E –A 必相似于矩阵 2

线性代数期末复习题

线性代数 一. 单项选择题 1。设A 、B 均为n 阶方阵,则下列结论正确的是 . (a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b )若A ≠0且B ≠0,则AB ≠0 (c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d )若AB 是可逆矩阵,则A 和B 都是可逆矩阵 2. 设A 、B 是两个n 阶可逆方阵,则()1-?? ????'AB 等于( ) (a )()1-'A ()1-'B (b ) ()1-'B ()1-'A (c )() '-1B )(1'-A (d )() ' -1B ()1-'A 3.n m ?型线性方程组AX=b,当r(A )=m 时,则方程组 。 (a ) 可能无解 (b)有唯一解 (c)有无穷多解 (d )有解 4.矩阵A 与对角阵相似的充要条件是 。 (a )A 可逆 (b)A 有n 个特征值 (c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5。A 为n 阶方阵,若02 =A ,则以下说法正确的是 。 (a ) A 可逆 (b ) A 合同于单位矩阵 (c ) A =0 (d ) 0=AX 有无穷多解 6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( ) (A )ACB E = (B)CBA E = (C )BAC E = (D ) BCA E = 7.若233 32 31 232221 131211 ==a a a a a a a a a D ,则=------=33 32 3131 2322 212113 1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题 1.A 为n 阶矩阵,|A |=3,则|AA '|= ,| 1 2A A -* -|= . 2.设???? ??????=300120211A ,则A 的伴随矩阵=*A ; 3.设A =? ? ?? ??--1112,则1 -A = 。

线性代数期末考试试题(含答案)

江西理工大学《线性代数》考题 一、 填空题(每空3分,共15分) 1. 设矩阵??????????=333222 111 c b a c b a c b a A ,??????????=333 222111d b a d b a d b a B 且4=A ,1=B 则=+B A ______ 2. 二次型233222213214),,(x x tx x x x x x f +-+=是正定的,则t 的取值范围__________ 3. A 为3阶方阵,且2 1=A ,则=--*12)3(A A ___________ 4. 设n 阶矩阵A 的元素全为1,则A 的n 个特征值是___________ 5. 设A 为n 阶方阵,n βββ ,,21为A 的n 个列向量,若方程组0=AX 只有零解,则向量组(n βββ ,,21)的秩为 _____ 二、选择题(每题3分,共15分) 6. 设线性方程组?????=+=+--=-032231 3221ax cx bc bx cx ab ax bx ,则下列结论正确的是( ) (A)当c b a ,,取任意实数时,方程组均有解 (B)当a =0时,方程组无解 (C) 当b =0时,方程组无解 (D)当c =0时,方程组无解 7. A.B 同为n 阶方阵,则( )成立 (A) B A B A +=+ (B) BA AB = (C) BA AB = (D) 111)(---+=+B A B A 8. 设??????????=333231232221 131211 a a a a a a a a a A ,??????????+++=331332123111131211232221a a a a a a a a a a a a B ,??????????=1000010101P , ???? ??????=1010100012P 则( )成立 (A)21P AP (B) 12P AP (C) A P P 21 (D) A P P 12 9. A ,B 均为n 阶可逆方阵,则AB 的伴随矩阵=*)(AB ( ) (A) **B A (B) 11--B A AB (C) 11--A B (D)**A B 10. 设A 为n n ?矩阵,r A r =)(<n ,那么A 的n 个列向量中( ) (A )任意r 个列向量线性无关

线性代数教学大纲2016

中国海洋大学本科生课程大纲 课程属性:公共基础课 课程性质:必修 一.课程介绍 1.课程描述: 线性代数课程是高等院校理科(非数学类专业)、工科、经济和管理各专业(特别是需要数学基础知识较强的相关专业)的一门公共基础课。线性代数主要处理线性关系问题,它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的应用性。通过线性代数课程学习,要求学生掌握该课程的基本理论与方法,为学习相关课程及进一步扩大数学知识面奠定必要的基础。同时,培养学生的逻辑思维能力以及解决实际问题的能力等,还可以提升学生相应的数学素养。 2.课程内容: 主要内容包括:行列式、矩阵、线性方程组、向量空间与线性变换、特征值和特征向量及矩阵的对角化、二次型。 行列式和矩阵是学习解线性方程组的基础,利用行列式,根据克拉默法则可以求解某些非齐次方程组的解;利用行列式可以判定某些齐次线性方程组是否有非零解。行列式也可以判定矩阵是否可逆,并用之求可逆矩阵的逆矩阵;利用矩阵可以判定和求非齐次方程组的解,以及可以求齐次线性方程组的非零解;建立R n的基与向量在基下的坐标及坐标变换,并讨论欧式空间及其结构;讨论矩阵的特征值和特征向量及矩阵 - 1 -

的对角化问题;利用以上理论讨论二次型及其矩阵表示,合同变换与合同矩阵,二次型的秩、惯性定理、标准形和规范形,用正交变换和配方法化二次型为标准形等。 3. 课程与其他课程的关系: 先修课程:无; 并行课程:微积分,高等数学等; 后置课程:概率论与数理统计。在计算机数据结构、算法、计算机图形学、计算机辅助设计、密码学、经济学、网络技术、虚拟现实等课程中,都会涉及到线性代数的相关基础知识。由于理解及知识储备的原因,建议在一年级下学期或者二年级时,学生开始选修《线性代数》。 二、课程目标 本课程目标是为非数学类专业学生学习有关专业课程和扩大数学知识面提供必要的数学基础和基本技能,更旨在通过本课程的学习培养学生的逻辑推理和抽象思维能力、空间直观和想象能力。到课程结束时,学生应能: (1)掌握行列式、矩阵的基本定义及性质等,能够计算行列式的值; (2)理解线性方程组求解理论,掌握向量组的秩、矩阵的秩、线性相关、线性无关等概念,会分析并求解齐次、非齐次线性方程组。 (3)熟练掌握向量的运算,理解R n中的基、坐标、基变换与坐标变换及内积的相关知识; (4)掌握矩阵的特征值和特征向量,矩阵的对角化理论; (5)掌握二次型的标准型和正定二次型的基本概念和理论; (6)能够借助Matlab等计算机软件进行行列式的计算、求解线性方程组等。 三、学习要求 要完成所有的课程任务,学生必须: - 1 -

线性代数期末考试试题

《线性代数》重点题 一. 单项选择题 1.设A 为3阶方阵,数 = 3,|A | =2,则 | A | =( ). A .54; B .-54; C .6; D .-6. 解. .54227)3(33-=?-=-==A A A λλ 所以填: B. 2、设A 为n 阶方阵,λ为实数,则|λA |=( ) A 、λ|A |; B 、|λ||A |; C 、λn |A |; D 、|λ|n |A |. 解. |λA |=λn |A |.所以填: C. 3.设矩阵()1,2,12A B ?? ==- ??? 则AB =( ). 解. ().24121,221???? ??--=-???? ??=AB 所以填: D. A. 0; B. ()2,2-; C. 22?? ?-??; D. 2142-?? ?-?? . 4、123,,a a a 是3维列向量,矩阵123(,,)A a a a =.若|A |=4,则|-2A |=( ). A 、-32; B 、-4; C 、4; D 、32. 解. |-2A |=(-2)3A =-8?4=-32. 所以填: D. 5.以下结论正确的是( ). A .一个零向量一定线性无关; B .一个非零向量一定线性相关; C .含有零向量的向量组一定线性相关; D .不含零向量的向量组一定线性无关. 解. A .一个零向量一定线性无关;不对,应该是线性相关. B .一个非零向量一定线性相关;不对,应该是线性无关. C .含有零向量的向量组一定线性相关;对. D .不含零向量的向量组一定线性无关. 不对, 应该是:不能判断. 所以填: C. 6、 1234(1,1,0,0),(0,0,1,1),(1,0,1,0),(1,1,1,1),αααα====设则它的极 大无关组为( ) A 、 12,; αα B 、 123,, ;ααα C 、 124,, ;ααα D 、1234,, ,αααα

渤海大学 线性代数试题 期末考试试卷及参考答案

渤海大学20 级 专科 (机电一体化技术专业) 第二学期《线性代数》试卷 题号 一 二 三 四 五 六 总分 得分 一、 填空:(每空2分,共20分) (1) _________3 412=。 (2)_________40 00 03000020 00011 =????? ???? ???- (3) _________4 00 083005 720604 1= (4)_________11211120122431210133=???? ??????-+??????????- (5)若__________ 5032==??? ? ??=A A A T 则 (6)=+-==-=32132127) ,5, 2( ,)1 ,2 ,4( , )2 ,1 ,1(αααααα则有=_______ (7)1 2111-??? ? ??=____________。 (8)若A=???? ??????333222321则A 的列向量组为____________若r(A)=2,则列 向量组的秩为________。 二、选择题: (每题2分,共10分) (1) 设==≠==2 2 2 333 1 1113 3 3 222 111 222222222D ,0c b a c b a c b a k c b a c b a c b a D 则( ) (a)-2k (b)2k (c)-8k (d)8k (2)n 阶行列式D 的元素ij a 的余子式ij M 和代数余子式ij A 的关系为( ) ij ij A M a -=)( ij n ij A M b )1()(-= ij ij A M c =)( ij j i ij A M d +-=)1()( (3)E C B A 、、、为同阶矩阵,且E 为单位阵,若E ABC =,下式( )总是成立的。 E BCA a =)( E ACB b =)( E CBA c =)( E CAB d =)( (4)), (=κ下列方程组有唯一解。 ?? ?? ?? ?---=--=-=--=++)1)(3()1(32213332321k k x k k x k x x k x x x 2)(a 1)( 4)( 3)( -d c b (5)设A 是n m ?矩阵,0=AX 是非齐次线性方程组B AX =所对应的齐次线性方程组,则下列 结论正确的是( ) 有唯一解。仅有零解,则若B AX AX a ==0)( 有无穷多解。非零解,则若B AX AX b ==0)( 仅有零解。有无穷多解,则若0)(==AX B AX c 有非零解。有无穷多解,则若0)(==AX B AX d 三、 简单计算(每题8分,共24分) (1)1 3 042 241 -- (2) ???? ? ??? ????????-021012 7011011 得分 阅卷人 得分 阅卷人 得分 阅卷人

线性代数期末考试试卷答案合集

线性代数期末考试试卷 答案合集 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

×××大学线性代数期末考试题 一、填空题(将正确答案填在题中横线上。每小题2分,共10分) 1. 若02 2 1 50 1 31 =---x ,则=χ__________。 2.若齐次线性方程组??? ??=++=++=++0 00321 321321x x x x x x x x x λλ只有零解,则λ应满足 。 3.已知矩阵n s ij c C B A ?=)(,,,满足CB AC =,则A 与B 分别是 阶矩阵。 4.矩阵??? ? ? ??=3231 2221 1211 a a a a a a A 的行向量组线性 。 5.n 阶方阵A 满足032=--E A A ,则=-1A 。 二、判断正误(正确的在括号内填“√”,错误的在括号内填“×”。每小题2分,共10分) 1. 若行列式D 中每个元素都大于零,则0?D 。( ) 2. 零向量一定可以表示成任意一组向量的线性组合。( ) 3. 向量组m a a a ,, , 21中,如果1a 与m a 对应的分量成比例,则向量组s a a a ,,, 21线性相关。( ) 4. ? ? ??? ???? ???=010********* 0010 A ,则A A =-1。( ) 5. 若λ为可逆矩阵A 的特征值,则1-A 的特征值为λ。 ( )

三、单项选择题 (每小题仅有一个正确答案,将正确答案题号填入括号内。每小题2 分,共10分) 1. 设A 为n 阶矩阵,且2=A ,则=T A A ( )。 ① n 2 ② 12-n ③ 12+n ④ 4 2. n 维向量组 s ααα,, , 21(3 s n )线性无关的充要条件是( )。 ① s ααα,, , 21中任意两个向量都线性无关 ② s ααα,, , 21中存在一个向量不能用其余向量线性表示 ③ s ααα,, , 21中任一个向量都不能用其余向量线性表示 ④ s ααα,, , 21中不含零向量 3. 下列命题中正确的是( )。 ① 任意n 个1+n 维向量线性相关 ② 任意n 个1+n 维向量线性无关 ③ 任意1+n 个n 维向量线性相关 ④ 任意1+n 个n 维向量线性无关 4. 设A ,B 均为n 阶方阵,下面结论正确的是( )。 ① 若A ,B 均可逆,则B A +可逆 ② 若A ,B 均可逆,则 A B 可逆 ③ 若B A +可逆,则 B A -可逆 ④ 若B A +可逆, 则 A ,B 均可逆 5. 若4321νννν,,,是线性方程组0=X A 的基础解系,则4321νννν+++是0=X A 的( ) ① 解向量 ② 基础解系 ③ 通解 ④ A 的行向量 四、计算题 ( 每小题9分,共63分) 1. 计算行列式 x a b c d a x b c d a b x c d a b c x d ++++。

相关文档