文档库 最新最全的文档下载
当前位置:文档库 › 脉冲压缩雷达与匹配滤波【定稿材料】

脉冲压缩雷达与匹配滤波【定稿材料】

脉冲压缩雷达与匹配滤波【定稿材料】
脉冲压缩雷达与匹配滤波【定稿材料】

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真

姓名:--------

学号:----------

2014-10-28

西安电子科技大学

信息对抗技术

一、 雷达工作原理

雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。

雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。

但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。

二、 线性调频(LFM )信号

脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。

脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。

LFM 信号的数学表达式:

(2.1)

其中c f 为载波频率,()t rect T

为矩形信号:

(2.2)

其中

B

K

T

=是调频斜率,信号的瞬时频率为()

22

c

T T

f Kt t

+ -≤≤,如图

(图2.1.典型的LFM信号(a)up-LFM(K>0)(b)down-LFM(K<0))将式1改写为:

(2.3)

其中

(2.4)

是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而以,因此,Matlab仿真时,只需考虑S(t)。以下Matlab程序产生(2.4)的LFM 信号,并作出其时域波形和幅频特性。

%%线性调频信号的产生

T=10e-6; %持续时间是10us

B=30e6; %调频调制带宽为30MHz

K=B/T; %调频斜率

Fs=2*B;Ts=1/Fs; %采样频率和采样间隔N=T/Ts;

N=T/Ts;

t=linspace(-T/2,T/2,N);

St=exp(j*pi*K*t.^2); %产生线性调频信号

subplot(211)

plot(t*1e6,real(St));

xlabel('时间/us');

title('LFM的时域波形');

grid on;axis tight;

subplot(212)

freq=linspace(-Fs/2,Fs/2,N);

plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('频率/MHz'); title('LFM 的频域特性'); grid on;axis tight;

(图2.2:LFM 信号的时域波形和频域特性)

三、 压缩脉冲的匹配滤波

信号()s t 的匹配滤波器的时域脉冲响应为:

(3.1)

0t 是使滤波器物理可实现所附加的时延。理论分析时,可令0t =0,重写3.1式,

(3.2)

将2.1式代入3.2式得:

(3.3)

图3.1:LFM 信号的匹配滤波

如图3.1,()s t 经过系统()h t 得输出信号()o s t ,

(3.4)

当0t T ≤≤时,

(3.5)

当0T t -≤≤时,

(3.6)

合并3.5和3.6两式:

(3.7)

3.7式即为LFM 脉冲信号经匹配滤波器得输出,它是一固定载频c f 的信号。当t T ≤时,包络近似为辛克(sinc )函数。

(3.8)

图3.2:匹配滤波的输出信号

如图3.2,当πB t=±π时,t=±1/B为其第一零点坐标;当πB t=±π/2时,t=±1/2B,习惯上,将此时的脉冲宽度定义为压缩脉冲宽度。

(3.9)

LFM信号的压缩前脉冲宽度T和压缩后的脉冲宽度 之比通常称为压缩比D,

(3.10)

式3.10表明,压缩比也就是LFM信号的时宽频宽积。

由 2.1,3.3,3.7式,s(t),h(t),so(t)均为复信号形式,Matab仿真时,只需考虑它们的复包络S(t),H(t),So(t)。

以下Matlab程序段仿真了图3.1所示的过程,并将仿真结果和理论进行对照。

%%线性调频信号的匹配滤波

T=10e-6;

B=30e6;

K=B/T;

Fs=10*B;Ts=1/Fs;

N=T/Ts;

t=linspace(-T/2,T/2,N);

St=exp(j*pi*K*t.^2); %产生线性调频信号

Ht=exp(-j*pi*K*t.^2); %匹配滤波器

Sot=conv(St,Ht); %线性调频信号经过匹配滤波器

subplot(211)

L=2*N-1;

t1=linspace(-T,T,L);

Z=abs(Sot);Z=Z/max(Z); %归一化

Z=20*log10(Z+1e-6);

Z1=abs(sinc(B.*t1)); %sinc函数

Z1=20*log10(Z1+1e-6);

t1=t1*B;

plot(t1,Z,t1,Z1,'r.');

axis([-15,15,-50,inf]);grid on;

legend('仿真','sinc');

xlabel('时间sec \times\itB');

ylabel('振幅,dB');

title('线性调频信号经过匹配滤波器');

subplot(212) %放大

N0=3*Fs/B;

t2=-N0*Ts:Ts:N0*Ts;

t2=B*t2;

plot(t2,Z(N-N0:N+N0),t2,Z1(N-N0:N+N0),'r.');

axis([-inf,inf,-50,inf]);grid on;

set(gca,'Ytick',[-13.4,-4,0],'Xtick',[-3,-2,-1,-0.5,0,0.5,1,2,3]);

xlabel('时间sec \times\itB');

ylabel('振幅,dB');

title('线性调频信号经过匹配滤波器(放大)');

结果:

图3.3:线性调频信号的匹配滤波

上图中,时间轴进行了归一化,(t/(1/B)=t x B)。图中反映出理论与仿真结果吻合良好。第一零点出现在±1(即±1/B)处,此时相对幅度-13.4dB。压缩后的脉冲宽度近似为1/B(±1/2B),此时相对幅度-4dB,这理论分析(图3.2)一致。

四、Matlab仿真

1.任务:对以下雷达系统仿真。

雷达发射信号参数:

幅度:1.0

信号波形:线性调频信号

频带宽度:30MHz

脉冲宽度:10us

中心频率:1GHzHz

雷达接收方式:

正交解调接收

距离门:10Km~15Km

目标:

Tar1:10.5Km

Tar2:11Km

Tar3:12Km

Tar4:12Km+5m

Tar5:13Km

Tar6:13Km+2m

2.系统模型:

结合以上分析,用Matlab仿真雷达发射信号,回波信号,和压缩后的信号的复包络特性,其载频不予考虑(实际中需加调制和正交解调环节),仿真信号与系统模型如下图。

图4.1:雷达仿真等效信号与系统模型

3.线性调频脉冲压缩雷达仿真程序LFM_radar

仿真程序模拟产生理想点目标的回波,并采用频域相关方法(以便利用FFT)实现脉冲压缩。函数LFM_radar的参数意义如下:

T:LFM信号的持续脉宽;

B:LFM信号的频带宽度;

Rmin:观测目标距雷达的最近位置;

Rmax:观测目标距雷达的最远位置;

R:一维数组,数组值表示每个目标相对雷达的距离;

RCS:一维数组,数组值表示每个目标的雷达散射截面。

在Matlab指令窗中输入:

LFM_radar(10e-6,30e6,10000,15000,[10500,11000,12000,12005,13000,13002],[1,1,1,1,1,1])

得到的仿真结果如下图。

五、心得

通过这次使用Matlab对脉冲压缩雷达的仿真,让我充分理解到了脉冲压缩雷达的工作原理,以及脉冲压缩雷达与普通脉冲雷达的差异,这让我对与雷达原理这门课有了更加深入的理解,对于匹配滤波的深入了解,使得在课堂中没有充分理解的地方清晰的展现在眼前。这次实验不仅仅会促进我雷达原理课程的学习,也为我以后学习雷达专业提供了一种可靠的方法。

六、附录

Matlab代码(LFM_radar.m)

%%脉冲压缩雷达仿真

function LFM_radar(T,B,Rmin,Rmax,R,RCS)

if nargin==0

T=10e-6; %脉冲持续时间10us

B=30e6; %频带宽度30MHz

Rmin=10000;Rmax=15000; %作用范围

R=[10500,11000,12000,12008,13000,13002]; %目标位置

RCS=[1 1 1 1 1 1]; %雷达散射面

end

%%参数设定

C=3e8; %设定速度为光速

K=B/T; %调频斜率

Rwid=Rmax-Rmin; %距离

Twid=2*Rwid/C; %时间

Fs=5*B;Ts=1/Fs; %采样频率和采样间隔

Nwid=ceil(Twid/Ts);

%%回波

t=linspace(2*Rmin/C,2*Rmax/C,Nwid); %接收范围(2*Rmin/C < t < 2*Rmax/C)

M=length(R); %目标数量

td=ones(M,1)*t-2*R'/C*ones(1,Nwid);

Srt=RCS*(exp(j*pi*K*td.^2).*(abs(td)

%%利用FFT和IFFT进行数字信号处理

Nchirp=ceil(T/Ts); %多脉冲持续时间

Nfft=2^nextpow2(Nwid+Nwid-1);

Srw=fft(Srt,Nfft); %雷达回波的fft计算

t0=linspace(-T/2,T/2,Nchirp);

St=exp(j*pi*K*t0.^2); %线性调频信号

Sw=fft(St,Nfft); %线性调频信号的fft计算

Sot=fftshift(ifft(Srw.*conj(Sw))); %脉冲压缩后的信号

N0=Nfft/2-Nchirp/2;

Z=abs(Sot(N0:N0+Nwid-1));

Z=Z/max(Z);

Z=20*log10(Z+1e-6);

%产生图像

subplot(211)

雷达脉冲压缩matlab

雷达脉冲压缩 摘要:脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 关键词:脉冲压缩;匹配滤波;matlab 1、雷达工作原理 雷达是Radar (Radio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能[1]。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1 简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对 电磁波的散射能力[2]。再经过时间R 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。

脉冲压缩雷达与匹配滤波【定稿材料】

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 西安电子科技大学 信息对抗技术

一、 雷达工作原理 雷达,是英文Radar 的音译,源于radio detection and ranging 的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号的数学表达式: (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: (2.2)

脉冲压缩技术

脉冲压缩技术 在雷达信号处理中的应用

一.脉冲压缩的产生背景及定义 1.1 脉冲压缩的定义 脉冲压缩即pulse compression,它是指发射宽编码脉冲并对回波进行处理以获得窄脉冲,因此脉冲压缩雷达既保持了窄脉冲的高距离分辨力,又能获得宽脉冲的强检测能力。 1.2脉冲压缩的主要手段 目前的脉冲压缩的手段主要有线性调频、非线性调频与相位编码等。 1)线性调频 是最简单的脉冲压缩信号,容易产生,而且其压缩脉冲形状和信噪比对多普勒频移不敏感,因而得到了广泛的应用,但是,在利用多普勒频率测量目标方位和距离的情况下很少使用; 2)非线性调频 非线性调频具有几个明显的优点,不需要对时间和频率加权,但是系统复杂。为了达到所需的旁瓣电平,需要对每个幅度频谱分别进行调频设计,因而在实际中很少应用; 3)相位编码 相位编码波形不同于调频波形,它将宽脉冲分为许多短的子脉冲。这些子脉冲宽度相等,其相位通过编码后被发射。根据所选编码的类型,包括巴克码、伪随机序列编码以及多项制编码等。 1.3脉冲压缩的产生背景 随着飞行技术的飞速发展,对雷达的作用距离、分辨能力、测量精度和单值性等性能指标提出越来越高的要求。测距精度和距离分辨力对信号形式的要求是一致的,主要取决于信号的频率结构,为了提高测距精度和距离分辨力,要求信号具有大的带宽。而测速精度和速度分辨力则取决于信号的时域结构,为了提高测速精度和速度分辨力,要求信号具有大的时宽。除此之外,为提高雷达系统的发现能力,要求信号具有大的能量。由此可见,为了提高雷达系统的发现能力、测量精度和分辨能力,要求雷达信号具有大的时宽、带宽、能量乘积。但是,在系统的发射和馈电设备峰值功率受限制的情况下,

雷达信号matlab仿真

雷达信号matlab仿真

雷达系统分析大作 作 者: 陈雪娣 学号:0410420727 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.44o db G θπ == 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ()21 j t p p t s t ct e T T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

()sin 1 ;01 1p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

LFM脉冲压缩雷达标准实验报告

电子科技大学电子工程学院标准实验报告(实验)课程名称LFM脉冲压缩雷达的设计与验证 电子科技大学研究生院制表

电子科技大学 实验报告 学生姓名:学号: 指导教师: 实验地点:科B516室实验时间: 一、实验室名称:电子信息工程专业学位研究生实践基地 二、实验项目名称:LFM脉冲压缩雷达的设计与验证 三、实验学时:20 四、实验原理: 1、LFM脉冲信号和脉冲压缩处理 脉冲雷达是通过测量目标回波延迟时间来测量距离的,距离分辨力直接由脉冲带宽确定。窄脉冲具有大带宽和窄时宽,可以得到高距离分辨力,但是,采用窄脉冲实现远作用距离需要有高峰值功率,在高频时,由于波导尺寸小,会对峰值功率有限制,以避免传输线被高电压击穿,该功率限制决定了窄脉冲雷达有限的作用距离。现代雷达采用兼具大时宽和大带宽的信号来保证作用距离和距离分辨力,大时宽脉冲增加了雷达发射能量,实现远作用距离,另一方面,宽脉冲信号通过脉冲压缩滤波器后变换成窄脉冲来获得高距离分辨力。 进行脉冲压缩时的LFM脉冲信号为基带信号,其时域形式可表示为

2()exp 2i t t s t Arect j T μ???? = ? ????? 其中的矩形包络为 1 12102 t T t rect T t T ? ≤????=? ???? >?? 式中的μ为调频斜率,与调频带宽和时宽的关系如下式 2/B T μπ= 时带积1D BT =>>时,LFM 脉冲信号的频域形式可近似表示为 22[2/]()4220i B B j f f S f ππμ?? ?-+- ≤≤???=? ???? 其他 脉冲压缩滤波器实质上就是匹配滤波器,匹配滤波器是以输出最大信噪比为准则设计出来的最佳线性滤波器。假设系统输入为()()() i i x t s t n t =+,噪声 () i n t 为 均匀白噪声,功率谱密度为 0()2 n p N ω=, () i s t 是仅在[0,]T 区间取值的输入脉 冲信号。根据线性系统的特点,经过频率响应为()H ω匹配滤波器的输出信号为 ()()() o o y t s t n t =+,其中输入信号分量的输出为 ()()()exp()o i s t S H j t d ωωωω ∞ -∞ =? 与此同时,输出的噪声平均功率为 2 ()2 N N H d ωω ∞ -∞ =? 则0t 时刻输出信号信噪比可以表示为 2 2 02 0()()e () ()2 j t i o S H d s t N N H d ωωωωωω ∞ -∞ ∞ -∞ =? ? 要令上式取最大值,根据Schwarz 不等式,则需要匹配滤波器频响为 0()()exp() i H KS j t ωωω*=-

雷达线性调频脉冲压缩的原理及其MATLAB仿真

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM)脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar(RAdio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关

由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R,为了探测这个目标,雷达发射信号()s t,电磁波以光速C向四周传播,经过时间R C后电磁波到达目 标,照射到目标上的电磁波可写成:()R -。电磁 s t C 波与目标相互作用,一部分电磁波被目标散射, 被反射的电磁波为()R σ?-,其中σ为目标的雷达 s t C 散射截面(Radar Cross Section ,简称RCS),反映目标对电磁波的散射能力。再经过时间R C后, 被雷达接收天线接收的信号为(2)R σ?-。 s t C 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI(线性时不变)系统。 图 1.2:雷达等效于LTI系统

第三章 脉冲压缩雷达简介

??第三章 脉冲压缩雷达简介 3.1 脉冲压缩简介 雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。具有大时宽带宽的信号通常被称作脉冲压缩信号。 脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。 3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念 发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩 比 ,即 0D ττ= (3-1) 因为01B τ=,所以,式(3-1)可写成 D B τ= (3-2) 即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。大时宽带宽矩形脉冲信号的复包络表达式可以写成

: (),/2/2()0,j t Ae T t T u t θ?-<<=? ? 其他 (3-3) 匹配滤波器输出端的信噪比为: ()00S N E N = (3-4) 其中信号能量为[13] : 212 E A T = (3-5) 这种体制的信号具有以下几个显著的特点: (1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。 (2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。 (3)有利于提高系统的抗干扰能力。 当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度 τ 的限制。 (2)收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 (3)存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB ~35dB 以上,但将有1 dB ~3 dB 的信噪比损失。 (4)存在一定的距离和速度测定模糊。适当选择信号参数和形式可以减小模糊。但脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制

雷达线性调频脉冲压缩的原理及其MATLAB仿真汇总

线性调频(LFM )脉冲压缩雷达仿真 宋萌瑞 201421020302 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ) ,反映目标对电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成:

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM )脉冲压缩雷达仿真 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ) ,反映目标对电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()()M i i i h t t σδτ== -∑ (1.1)

第三章 脉冲压缩雷达简介

第三章 脉冲压缩雷达简介 3.1 脉冲压缩简介 雷达的分辨理论表明:要得到高的测距精度和好的距离分辨力,发射信号必须具有大的带宽;要得到高的测速精度和好的速度分辨力,信号必须具有大的时宽。因此,要使作用距离远,又具有高的测距、测速精度和好的距离、速度分辨力,首先发射信号必须是大带宽、长脉冲的形式。显然,单载频矩形脉冲雷达不能满足现代雷达提出的要求。而脉冲压缩技术可以获得大时宽带宽信号,使雷达同时具有作用距离远、高测距、测速精度和好的距离、速度分辨力。具有大时宽带宽的信号通常被称作脉冲压缩信号。 脉冲压缩技术包括两部分:脉冲压缩信号的产生、发射部分和为获得较窄的脉冲对接收回波的处理部分。在发射端,它通过对相对较宽的脉冲进行调制使其同时具有大的带宽,在接收端对接收的回波波形进行压缩处理得到较窄的脉冲。 3.2 脉冲压缩原理 3.2.1时宽-带宽积的概念 发射脉冲宽度τ和系统有效(经压缩的)脉冲宽度0τ的比值称为脉冲压缩 比 ,即 0D ττ= (3-1) 因为01B τ=,所 (3-1)可写成 D B τ= (3-2) 即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽积表示。大时宽带宽矩形脉冲信号的复包络表达式可以写成: (),/2/2 ()0,j t Ae T t T u t θ?-<<=? ? 其他 (3-3) 匹配滤波器输出端的信噪比为:

()0 0S N E N = (3-4) 其中信号能量为[13] : 212 E A T = (3-5) 这种体制的信号具有以下几个显著的特点: (1)在峰值功率受限的条件下,提高了发射机的平均功率av P ,增强了发射信号的能量,因此扩大了探测距离。 (2)在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号变成窄脉冲,因此保持了良好的距离分辨力。 (3)有利于提高系统的抗干扰能力。 当然,采用大时宽带宽信号也会带来一些缺点[14][15],这主要有: (1)最小作用距离受脉冲宽度 τ 的限制。 (2)收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 (3)存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB ~35dB 以上,但将有1 dB ~3 dB 的信噪比损失。 (4)存在一定的距离和速度测定模糊。适当选择信号参数和形式可以减小模糊。但脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。 3.2.2 线性调频脉冲信号 线性调频脉冲压缩体制的发射信号,其频谱在脉冲宽度内按线性规律变化,即用对载频进行调制的方法展宽发射信号的频谱,使其相位具有色散。同时,在 t P 受限情况下为了充分利用发射机的功率,往往采用矩形宽脉冲包络,线性调 频脉冲信号的复数表达式可写成[16][17]: 2 00() 2 ()()()t j t j t t s t u t e Arect e μωωτ + ==

雷达线性调频信号的脉冲压缩处理

题目 : 雷达线性调频信号的脉冲压缩处理 线性调频脉冲信号,时宽 10us ,带宽 40MHz ,对该信号进行匹配滤波后,即脉压处理,脉压后 的脉冲宽度为多少?用图说明脉压后的脉冲宽度, 内差点看 4dB 带宽,以该带宽说明距离分辨 率与带宽的对应关系。 分析过程: 1、线性调频信号( LFM ) LFM 信号(也称 Chirp 对于一个理想的脉冲压缩系统, 要求发射信号具有非线性的相位谱, 并使其包络接近矩形; 其中 S(t) 就是信号 s(t) 的复包络。由傅立叶变换性质, S(t) 与 s(t) 具有相同的幅频特性,只 是中心频率不同而已。因此, Matlab 仿真时,只需考虑 S(t) 。以下 Matlab 程序产生 S(t) , 并作出其时域波形和幅频特性,程序如下: T=10e-6; % 脉冲时宽 10us B=40e6; % 带宽 40MHz K=B/T; Fs=2*B;Ts=1/Fs; N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); subplot(211) plot(t*1e6,St); xlabel('t/s'); title(' 线性调频信号 '); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('f/ MHz'); 信号)的数学表达式为: 式中 f c 为载波频率, rect s(t) rect( t )e 为矩形信号 , j2 (f c t 2t ) rect(T t ) 0, t T el se 上式中的 up-chirp 信号可写为 : s(t) 当 TB>1时, LFM 信号特征表达式如下: S(t)e j2 fct S LFM ( f ) k 2rect ( f B f c ) LFM ( f ) (f f c ) 4 S(t) rect (T t )e j Kt

雷达信号的脉冲压缩原理

第二章 脉冲压缩 2.1 概述 表2.1 窄脉冲高距离分辨力雷达的能力 窄脉冲具有宽频谱带宽。如果对宽脉冲进行频率或相位调制,那么它就可以具有和窄脉冲相同的带宽。假设调制后的脉冲带宽增加了B ,由接收机的匹配滤波器压缩后,带宽将等于1/B ,这个过程叫脉冲压缩。 脉冲压缩雷达不需要高能量窄脉冲所需要的高峰值功率,就可同时实现宽脉冲的能量和窄脉冲的分辨力。 脉冲压缩比定义为宽脉冲宽度T 与压缩后脉冲宽度τ的之比,即/T τ。带宽B 与压缩后的脉冲宽度τ的关系为1/B τ≈。这使得脉冲压缩比近似为BT 。即压缩比等于信号的时宽-带宽积。在许多应用场合,脉冲压缩系统常用其时宽-带宽 积表征。 这种体制最显著的特点是: ⑴ 它的发射信号采用载频按一定规律变化的宽脉冲,使其脉冲宽度与有效频谱宽度的乘积1B τ≥,这两个信号参数基本上是独立的,因而可以分别加以选择

来满足战术要求。在发射机峰值功率受限的条件下,它提高了发射机的平均功率P增加了信号能量,因此扩大了探测距离。 av ⑵在接收机中设置一个与发射信号频谱相匹配的压缩网络,使宽脉冲的发射信号(一般认为也是接收机输入端的回波信号)变成窄脉冲,因此保持了良好的距离分辨力。这一处理过程称之为“脉冲压缩”。 ⑶有利于提高系统的抗干扰能力。对有源噪声干扰来说,由于信号带宽很大,迫使干扰机发射宽带噪声,从而降低了干扰的功率谱密度。 当然,采用大时宽带宽信号也会带来一些缺点,这主要有: ⑴最小作用距离受脉冲宽度 限制。 ⑵收发系统比较复杂,在信号产生和处理过程中的任何失真,都将增大旁瓣高度。 ⑶存在距离旁瓣。一般采用失配加权以抑制旁瓣,主旁瓣比可达30dB~35dB 以上,但将有1dB~3dB的信噪比损失。 ⑷存在一定的距离和速度测定模糊。 总之,脉冲压缩体制的优越性超过了它的缺点,已成为近代雷达广泛应用的一种体制。 根据上面讨论,我们可以归纳出实现脉冲压缩的条件如下: ⑴发射脉冲必须具有非线性的相位谱,或者说,必须使其脉冲宽度与有效频谱宽度的乘积远大于1. ⑵接收机中必须具有一个压缩网络,其相频特性应与发射信号实现“相位共轭匹配”,即相位色散绝对值相同而符号相反,以消除输入回波信号的相位色散。 第一个条件说明发射信号具有非线性的相位谱,提供了能被“压缩”的可能性,它是实现“压缩”的前提;第二个条件说明压缩网络与发射信号实现“相位共轭匹配”是实现压缩的必要条件。只有两者结合起来,才能构成实现脉冲压缩的充要条件。 综上所述,一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱与相位谱)实现完全的匹配。 根据这些要求,可用下面的框图来描述一个理想的脉冲压缩系统, 如图2.1所示。

2021年雷达脉冲压缩matlab仿真

雷达发射线性调频信号,载频10GHz,线性调频信号带宽10MHz,脉宽5us,采样率自设,两目标距离雷达5000米和5020米 (1) 欧阳光明(2021.03.07) (2)模拟两个目标的回波,并进行脉冲压缩(匹配滤波),验证脉冲压缩对改善雷达距离分辨力的作用 (3)调整两个目标的间距从1米到20米,观察结果得出结论。 ①源代码: clear all; close all; fc=10e9;%载频 B=10e6;%带宽 fs=2*fc;%采样率 T=5*10^-6;%雷达脉宽 t=0:1/fs:10*T; s1=5000;%目标1距离 s2=5020;%目标2距离 c=3e8;%光速 t1=2*s1/c;%雷达波从目标1回波的延时

t2=2*s2/c;%雷达波从目标2回波的延时 u=B/T; st=rectpuls(t,T).*exp(j*2*pi*(fc*t+u*t.^2));%发射信号 sr1=rectpuls((t-t1),T).*exp(j*2*pi*(fc*(t-t1)+u*(t-t1).^2));%目标1的回波 sr2=rectpuls((t-t2),T).*exp(j*2*pi*(fc*(t-t2)+u*(t-t2).^2));%目标2的回波 sr=sr1+sr2;%两目标总的回波 figure(1); plot(real(sr));%未压缩回波 title('未压缩回波'); axis([6*10^5,7.4*10^5,-2,2]); F=fftshift(fft(sr));%进行脉冲压缩 Ft=F.*conj(F); f=ifft(Ft); figure(2); plot(fftshift(abs(f)));%压缩回波 title('压缩回波'); axis([4.9*10^5,5.1*10^5,0,2*10^5]); ②运行结果: 改变相对距离为1米,运行结果如下: 两目标不可分辨,直到两目标相对距离为13米时,目标可清晰分辨,如下:

脉冲压缩技术研究

雷达系统 课程论文(设计) 题目脉冲压缩技术研究 学生姓名鲁建彬 学号20111227362 院系电子与信息工程学院 专业信号与信息处理 指导教师葛俊祥 二〇一二年六月十八日

脉冲压缩技术研究 鲁建彬 11级信号与信息处理 20111227362 摘要:脉冲压缩技术是雷达信号处理的关键技术之一。文中主要从信号形式、优势和不足、应用场合等方面介绍了线性调频、巴克码、多相码、非线性调频等几类常用脉冲压缩信号。并针对一个雷达应用实例,利用Matlab对线性调频信号的脉冲压缩经行了仿真,对比压缩前后的回波信号,从而直观地看出脉冲压缩对雷达探测能力的改善。 关键词:脉冲压缩调频信号编码信号信号仿真 一、引言 脉冲压缩技术是雷达信号处理的关键技术之一。主要是通过发射许多具有脉内调制的足够宽的脉冲,从而在峰值功率不太高的情况下也能给出所需的平均功率,然后,在接收时用解调办法将收到的回波“压缩”起来,解决了距离分辨率与作用距离之间的矛盾。现代雷达信号处理中常用的脉冲压缩主要有应用最广的线性调频信号脉压、巴克码信号脉压、多相码信号脉压、非线性调频信号脉压等几类。 本文在首先总结了脉冲压缩的基本原理的基础上从信号形式、优势和不足、应用场合等方面介绍这几类常用脉冲压缩信号。最后就最为普遍的线性调频信号经行了进一步分析,利用Matlab对某个雷达的回波经行了仿真,对比脉冲压缩前后的回波信号,加深了对脉冲压缩的认识。 二、脉冲压缩的基本原理 随着雷达技术的发展和雷达应用领域的不断扩大,雷达的作用距离、分辨能力和测量精度等性能指标必须得到相应的提高。然而,根据已有的分析可知,当噪声的功率谱密度一定时,对信号而言的检测能力取决于信号能量E。而对简单的恒定载频矩形脉冲信号,其信号能量为其峰值功率与信号能量的乘积,即E=PT。于是通过加大信号能量以增加雷达的作用距离可以考虑两个途径:提高峰值功率P或增大脉冲宽度T。由于P的提高受到发射管最大允许峰值功率和传输线功率容量等因素的限制,因此在考虑发射机最大允许平均发射功率范围内,增大脉冲宽度T,这样还有利于测速精度和速度分辨率的提高。然而对恒定载频单脉冲信号,我们有B=1/T,因此T的增大等效为信号带宽的减小。根据距离分辨率的表达式

单脉冲压缩雷达原理

单脉冲角度跟踪技术研究 学生尤阳 班级 0209991班 学号 02099043 专业电子信息工程 学院电子工程学院 西安电子科技大学 2012年5月

一、引言 单脉冲角跟踪系统的方案包括三通道、双通道、单通道单脉冲等。在跟踪系统精度要求不高的系统中,采用单通道单脉冲跟踪系统的设备越来越多,例如业务测控站、遥感地面站、卫星侦察信号接收站、遥测地面站等。较常用的实现方案是在常规双通道的基础上,用低频调制信号对差信号进行四相调制后再与和信号合并,变成一个通道输出,其合成信号只需经包络检波即可得到误差电压。由于进行了通道合并,这种体制不存在和、差通道合并后的相位和增益不一致问题不需要调整通道的相位除低噪放大器(LNA)外所有的设备可以安装在机房,大大提高了设备的可靠性、使用性和维护性,同时减少了设备,造价也大大降低。 二、系统工作原理及误差电压的提取 为了确保系统的G / T 值,应考虑在LNA后进行和、差信号的合成。为了阐明其物理概念,将双通道单脉冲合成为单通道单脉冲的跟踪系统方框图进行简化。简化后的框图如图 1 所示。 图1 跟踪系统框图 设从天馈来的信号为单频信号,在分析时假定天线和、差信道在接收频带内辐射特性保持不变,而且和、差信道及从天线的来波均为理想圆极化波。馈源端口输出和信号的瞬时值为 差信号由方位与俯仰差信号相位正交合成得到为 式中μ为差斜率,A为目标在方位上偏离电轴的角度,E 为目标在俯仰上偏离电轴的角度。 差信号的矢量关系为A = θcosФE = θs i nФ 图 2 双通道单脉冲合成矢量图

由图2,可将ed 变换为 式中Am μθ 为差信号的幅度,其中θ =B A+ 22;φ = tg -1 E / A为差路合成载波的相位,它与A、E 的比例大小有关,可见误差信号包含在幅度Am μθ 和相位φ 之中。 1. 单通道单脉冲的合成跟踪接收系统采用单通道时,和、差信号必须以适当的方式合成,目的是合成后的信号能在终端解调出角误差信息。通常在和、差信号合成前,先对差信号进行四相调制,再与和信号合成。 和、差信号分别经低噪声放大K E 、K ? 后为 差信号经四相调制后为 其中,φ为和、 差信号的相对相位差β(t)周期为 t4 =1/ Ω的信号调相, 在四相调制时有 ~t 调制后的差信号经一定向耦合器与和信号合成,其合成信号为 式中 M 为定向耦合器的耦合系数,一般取 6 ~ 9 dB。 2. 合成信号的解调和误差电压的提取 合成信号经下变频和放大后,频率仍记作ω,将合成信号变换后得:

雷达发射LFM 信号时,脉冲压缩公式的推导与 Matlab 仿真实现雷达测距。

雷达发射LFM 信号时,脉冲压缩公式的推导与 Matlab 仿真实现雷达测距。 摘要:基于MATLAB平台以线性调频信号为例通过仿真研究了雷达信号处理中的脉冲压缩技术。在对线性调频信号时域波形进行仿真的基础上介绍了数字正交相干检波技术。最后基于匹配滤波算法对雷达回波信号进行了脉冲压缩仿真,仿真结果表明采用线性调频信号可以有效地实现雷达回波信号脉冲压缩、实现雷达测距并且提高雷达的距离分辨力。 关键词:线性调频,脉冲压缩,数字正交相干,匹配滤波。 When radar transmits LFM signal, the pulse compression formula is deduced and Matlab simulation is used to realize radar ranging Abstract: Based on the MATLAB platform as example for LFM signal is studied by simulation of pulse compression technology in radar signal processing. Based on the simulation of time domain linear FM signal waveform is introduced on the digital quadrature coherent detection technology. Finally, based on the matched filter algorithm of radar echo signal of pulse compression simulation, the simulation results show that the linear FM signal can effectively realize the radar echo signal of pulse compression radar, improve the range resolution. Key word: Linear frequency modulation,pulse compressiondigital,quadrature coherence,matched filtering. 1、引言 1.1雷达起源 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。 二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。 后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究 1

雷达线性调频信号的脉冲压缩处理

题目:雷达线性调频信号的脉冲压缩处理 线性调频脉冲信号,时宽10us ,带宽40MHz ,对该信号进行匹配滤波后,即脉压处理,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB 带宽,以该带宽说明距离分辨率与带宽的对应关系。 分析过程: 1、线性调频信号(LFM ) LFM 信号(也称Chirp 信号)的数学表达式为: 式中c f 为载波频率,()t rect T 为矩形信号, 上式中的up-chirp 信号可写为: 当TB>1时,LFM 信号特征表达式如下: 对于一个理想的脉冲压缩系统,要求发射信号具有非线性的相位谱,并使其包络接 近矩形; 其中)(t S 就是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而已。因此,Matlab 仿真时,只需考虑S(t)。以下Matlab 程序产生S(t),并作出其时域波形和幅频特性,程序如下: T=10e-6; %脉冲时宽 10us B=40e6; %带宽 40MHz K=B/T; Fs=2*B;Ts=1/Fs; N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); subplot(211) plot(t*1e6,St); xlabel('t/s'); title('线性调频信号'); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('f/ MHz'); title('线性调频信号的幅频特性');

雷达脉冲压缩matlab仿真

雷达发射线性调频信号,载频10GHz,线性调频信号带宽10MHz,脉宽5us,采样率自设,两目标距离雷达5000米与5020米 (1)模拟两个目标得回波,并进行脉冲压缩(匹配滤波),验证脉冲压缩对改善雷达距离分辨力得作用 (2)调整两个目标得间距从1米到20米,观察结果得出结论。 ①源代码: clearall; close all; fc=10e9;%载频 B=10e6;%带宽 fs=2*fc;%采样率 T=5*10^-6;%雷达脉宽 t=0:1/fs:10*T; s1=5000;%目标1距离 s2=5020;%目标2距离 c=3e8;%光速 t1=2*s1/c;%雷达波从目标1回波得延时 t2=2*s2/c;%雷达波从目标2回波得延时 u=B/T; st=rectpuls(t,T)。*exp(j*2*pi*(fc*t+u*t、^2));%发射信号 sr1=rectpuls((t-t1),T)、*exp(j*2*pi*(fc*(t-t1)+u*(t-t1).^2));%目标1得回波

sr2=rectpuls((t-t2),T)、*exp(j*2*pi*(fc*(t-t2)+u*(t—t2).^2));%目标2得回波 sr=sr1+sr2;%两目标总得回波 figure(1); plot(real(sr));%未压缩回波 title('未压缩回波'); axis([6*10^5,7、4*10^5,-2,2]); F=fftshift(fft(sr));%进行脉冲压缩 Ft=F.*conj(F); f=ifft(Ft); figure(2); plot(fftshift(abs(f)));%压缩回波 title(’压缩回波'); axis([4、9*10^5,5。1*10^5,0,2*10^5]); ②运行结果:

雷达脉冲压缩

雷达脉冲压缩 1、雷达工作原理 雷达是Radar (Radio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能[1]。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1 简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对 电磁波的散射能力[2]。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2 雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成:

脉冲压缩雷达与匹配滤波

脉冲压缩雷达的仿真 脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为" 无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: 2014-10-28 () 乐享科技 信息对抗技术

其中c f 为载波频率,()t rect T 为矩形信号: () 其中B K T = 是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: () 其中 () 是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而以,因此,Matlab 仿真时,只需考虑S(t)。以下Matlab 程序产生)的LFM 信号,并作出其时域波形和幅频特性。 %%线性调频信号的产生 T=10e-6; %持续时间是10us B=30e6; %调频调制带宽为30MHz K=B/T; %调频斜率 Fs=2*B;Ts=1/Fs; %采样频率和采样间隔N=T/Ts; N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); %产生线性调频信号 subplot(211) plot(t*1e6,real(St)); xlabel('时间/us'); title('LFM 的时域波形'); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('频率/MHz'); title('LFM 的频域特性'); grid on;axis tight;

相关文档
相关文档 最新文档