文档库 最新最全的文档下载
当前位置:文档库 › 电解电容使用寿命的分析和计算

电解电容使用寿命的分析和计算

电解电容使用寿命的分析和计算
电解电容使用寿命的分析和计算

MTBF寿命计算公式

寿命计算公式 MTBF (平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F “电子设备之可靠性预估” 来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217 的基 本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确定各元 器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK- 217E.F计算,以25 C环境温度为参考温度。 电解电容寿命预测 Rubycon 品牌的电解电容的寿命计算公式 L X=Lr X2【(T°-Tx)/1°】X2(A r s/Ao- A Tj/A) L X预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度一105C或85C, Tx:实际外壳温度(C), △Ts:额定纹波电流(Io)下的电解电容中心温升「C), △Tj:实际纹波电流(lx)下的电解电容中心温升(C), A: A= 10 —0.25XZTj,(0

Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Q), S:电解电容的表面积(cm2), S=dDX(D+ 4L)/4 , B:热辐射常数,一般取3= 2.3 X1O-3XS0.2, D:电解电容的截面积的直径(cm), L:电解电容的高度(cm), nichicon品牌的电解电容的寿命计算公式 2 L X= Lr X2【(To-Tx)/10] x21-(Ix/Io )/K, K:温升加速系数,二10—6X(Tx—75 C)/30 (Tx W75C 时,K 值 取 10) 其余字符的表达含意同上。 其余品牌的电解电容的寿命计算公式 2 b= L r X2【(To-Tx)/10]眾1-(Ix/Io ) ] XZTo/10 △To:最高工作温度下的电解电容中心容许温升(取△T o= 5C), K= 2,纹波电流允许的范围内;K= 4,超过纹波电流允许的范围时。

铝电解电容的寿命

铝电解电容的寿命 电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。因此,了解如何计算铝电解电容的寿命很有必要。下面将我的一些心得整理出来,供大家参考。希望有助于提高国人的知识水平。说白了很简单,只不过很多人找不到相关的资料而已。同时也希望学校的教材中能够近早讲解相关知识。我尽量少翻译,因为我的语言能力及相关的专业术语还不行。仅供参考。 Chapter 1铝电解电容的特性 1.1 Circuit model (等效模型) The following circuit models the al uminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性) C A C c R P ESR L D = Anode capacitance (阳极电容) = Cathode capacitance(阴极电容) = Parallel resistance, due to dielectric (并联电阻) = Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感 = Over and reverse voltage 等效稳压管 The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数) The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加) The inductance L is the equivalen t series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数) The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加) The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the cap acitor’s surge voltage rating causes high。(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zener diode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V) 1.2 Capacitance (电容的容量) The rated capacitance is the nominal capacitance and it is specified at 120 Hz and a temperature of 25°C. Capacitance is a measure of the energy storage capability of a capacitor at a given voltage. (额定容量:标称电压,120Hz, 25°C时测量)。 The capacitance decreases under load conditions and increases under no load conditions over time. When

铝电解电容寿命计算公式

寿命计算式
改版
铝电容器 推定寿命计算式
http://www.chemi-con.co.jp
上海贵弥功贸易有限公司
1
CONFIDENTIAL(秘密的)

寿命计算式
寿命计算式 目录
? 寿命计算式
A) DC加载保证品 B) 纹波电流加载保证品 C) 螺丝端子型(额定电压350V以上) 螺丝端子型(额定电压 以上) D) 导电性高分子电容器
? 温度测定方法
A) 周围温度测定方法 B) 单元中心发热温度测定方法 1) 单元中心温度测定 2) 周围温度/电容器表面温度测定 3) 纹波电流测定 >>> 发热温度计算
注意事项
纹波电流频率修正系数与温度修正系数使用方法
CONFIDENTIAL(秘密的)
2

寿命计算式
推定寿命计算式
A) DC加载保证品 ) 加载保 品
Lx L = Lo × 2
Tx ? To 10
×2
? ?T 5
Lx (hrs):推定寿命 Lo (hrs):保证寿命 Tx (℃):最大可能周围温度 To (℃):实际使用周围温度 ( ) 纹波电流发热温度 ⊿T (℃):纹波电流发热温度 <应用系列> 贴片型:全般 引钱型:SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ 引钱型 SRM/SRE/KRE/SRA/KMA/SRG/KRG/SMQ/SMG/ SME-BP/KME-BP/LLA
CONFIDENTIAL(秘密的)
3

电解电容纹波及寿命测试方法

Electrolytic Capacitor Ripple Current Derating Test Method and Life Time Evaluation From:郭雪松 Date:Oct-27-04 一.SPEC 1.电解电容零件工程规格书中之Standard Rating表格,其中规定了不同规格的电解电容Rated Ripple Current值,例如:Sharp机种PWPC C904(滤波电容) 67L215L-820-15N (CNN公司KXG Series) 2.此电容用于电源输入端滤波,因此采用120Hz时的Rated Ripple Current规格715mA。 3.而用于评估电解电容Ripple Current之Spec要依据以下公式: SPEC=Spec(component)×频率系数(FM)×温度系数(TM)注:FM/TM取值方法见附表 4.OTPV 评估电解电容Ripple Current的Derating规格为85%,因此测试值

线电流的有效值(rms),测试时要调整输入电压值(90V~264V)达到纹波电流最大。见图示: Irms 三.附表(FM&TM取值方法):NCC公司产品为例 1.Multiplying Factors on KMG Series(radial lead type) Frequency Multipliers Temperature Multipliers 2. Multiplying Factors on KY Series Frequency Multipliers

电解电容寿命分析

电解电容寿命分析 像其它电子器件应用一样 , 电解电容同样遵循一种被称为“Bathtub Curve”的失效率曲线。 其表征的是一种普遍的器件(设备)失效率趋势。但在实际应用中,电解电容的设计可靠性一般以其实际应用中的期望寿命( Expected Life )作为参考。这种期望寿命表达的是一种磨损失效( wear-our failure )。如下图所示,在利用威布尔概率纸( Weibull Probability Paper )对电解电容的失效率进行分析时可看到在某一使用期后其累进失效率曲线 (Accumulated Fallure Rate) 斜率要远大于 1 ,这说明了电解电容的失效模式其实为磨损失效所致。 影响电解电容寿命的因素可分为两大部分: 1) 电容本身之特性。其中包括制造材料(极片、电解液、封口等)选择及配方,制造工艺及技术(封口方式、散热技术等)。 2) 电容设计应用环境(环境温度、散热方式、电压电流参数等)。 电容器件一旦选定,寿命计算其实可归结为自身损耗及热阻参数的求取过程。 1 、寿命评估方式 电解电容生命终结一般定义为电容量 C 、漏电流( I L)、损耗角( tan δ)这三个关键参数之一的衰退超出一定范围的时刻。在众多的寿命影响因素中,温升是最关键的一个。而温升又是使用损耗的表现,故额定寿命测试往往被定为“在最大工作温度条件下(常见的有 85degC 及 105degC ),对电容施以一定的 DC 及 AC 纹波后,电容关键参数电容量 C 、漏电流( IL )、损耗角( tan )的衰竭曲线”。如下图所示: 2 、环境温度与寿命的关系 一般地(并非绝对),当电容在最大允许工作环境温度以下工作时(一般最低到 + 40degC 的温度范围),电解电容的期望寿命可以根据阿列纽斯理论( Arrhenius theory )进行计算。该理论认为电容之寿命会随温度每十摄氏度的上升而减半(每上升十摄氏度将在原基础上衰减一半)。从而可以得到如下寿命曲线以及用于计算寿命的环境温度函数 f(T ): 环境温度函数 f(T ) : 在一些纹波电流很小以致其在 ESR 上损耗引起的温升远远小于环境温度的作用时(例如与几乎无纹波的 DC 电源并联使用),即可认为电容器里面的热点温度与环境温度相等。一般可以按下式进行寿命计算: L OP=LoXf(t)

电解电容寿命计算

铝电解电容器寿命的计算方法 LIFETIME CALCULATION FORMULA OF ALUMINUM ELECTROLYTIC CAPACITORS 铝电解电容的寿命的计算公式 1. Lifetime Calculation Formula 寿命计算公式 L : Life expectancy at the time of actual use. 实际使用平均寿命 Lb : Basic life at maximum operating temperature 最大工作温度下的基本寿命Tmax : Maximum operating temperature 最大工作温度 Ta : Actual ambient temperature 实际环境温度 ΔTjo : Internal temperature rise when maximum rated ripple current is https://www.wendangku.net/doc/1a1426383.html,R, USC, USG : 10℃VXP : 3.5℃Other type : 5℃ 加上最大额定波纹电流后,电容器的内部温升USR, USC, USG ::10℃VXP :3.5℃其它类型:5℃ ΔTj : Internal temperature rise when actual ripple current is applied. 加入实际波纹电流后,电容内部的温升 F : Frequency coefficient 频率系数[这个不李理解] Io : Rated ripple current at maximum operating temperature 最高工作温度时的额定波纹电流 I : Actual ripple current 实际波纹电流 2. Ambient Temperature Calculation Formula 环境温度计算公式 If measuring ambient temperature (Ta) is difficult, Ta can be calculated from surface temperature of the capacitor as follows. .Ta = Tc –ΔTj/α如果测量环境温度Ta有困难,Ta可以根据电容器的表面温度按下式计算:Ta = Tc –ΔTj/α Ta : Calculated ambient Temperature 计算所使用的环境温度 Tc : Surface Temperature of capacitor 电容器的表面温度 α : Ratio of case top and core of capacitor element [此处不太理解] CaseφD ≤ 8 10,12.5 16, 18 20, 22 25 30 35 α 1.0 1.1 1.2 1.3 1.4 1.5 1.6 3. Ripple Current Multiplier 额定电流系数 (1) Temperature coefficient 温度系数 Temperature coefficients are shown as below. 温度系数选取如下:

铝电解电容器寿命与温度之间的关系

铝电解电容器与温度之间的关系 BIT 销售经理郑淋先生 现如今市场上铝电解电容器的温度标准有85度、105度、125度、130度等几种,很多工程师的选择的时候不是很在意这个问题,所以就会导致很多时候电容没用多长时间就出问题。 铝电解电容器作为电子产品的重要部件,在电路中起着不可或缺的作用,它的使用寿命和工作状况与整体产品的寿命息息相关。当电路中铝电解电容器发生损坏,特别是铝电解电容器爆炸,电解液外溢时,那到底是电容器的质量出问题还是整体线路设计不合理呢?了解铝电解电容器的寿命与温度之前的关系,能为电子工程师提供一些判断依据。 阿列纽斯方程是用来描述化学物质反应速率随温度变化关系的经验公式。电解电容内部是由金属铝等和电解液等化学物质组成的,所以电解电容的寿命与阿列纽斯方程密切相关。 阿列纽斯方程公式:k=Ae-Ea/RT或lnk=lnA—Ea/RT(作图法) K化学反应速率, R为摩尔气体常量, T为热力学温度,

Ea 为表观活化能, A 为频率因子 根据阿列纽斯方程可知,温度升高,化学反应速率(寿命消耗)增大,一般来说,环境温度每升高10℃,化学反应速率(K 值)将增大2-10倍,即电容工作温度每升高10℃,电容寿命减小一倍,电容工作温度每下降10℃,其寿命增加一倍,所以,环境温度是影响电解电容寿命的重要因素 根据阿列纽斯方程结论可知,铝电解电容器使用寿命与温度之间的计算公式如下 L=L 0×2T0?T110 L:环境温度为T1时铝电解电容器的使用寿命,单位:H L 0:额定寿命,单位:H T 0:额定最高使用温度,单位:℃ T 1:环境温度,单位:℃ 举例说明:如果产品的额定温度为85度,2000小时的额定寿命,那么如果环境温度在55度时,铝电解电容器的使用寿命则为16000小时(约1.8年),那换成BIT 的铝电解电容器呢,那么同样是85度的产品,那使用寿命则为24000小时(约2.7年),

MTBF寿命计算公式

寿命计算公式MTBF(平均间隔失效时间)预估 概述 MTBF之计算系依据军用手册MIL-HDBK-217F“电子设备之可靠性预估”来 进行,此部份涵盖了电子零件实际的应力关系、失效率。MIL-HDBK-217的 基本版本将保持不变,只有失效率的资料会更新。在评估过程之前,应确 定各元器件的相关特性(如基本失效率、质量等级,环境等级等等)。 定义 “MTBF”的解释为“平均间隔失效时间”而MTBF是由MIL-HDBK-217E.F 计算,以25℃环境温度为参考温度。 电解电容寿命预测 Rubycon品牌的电解电容的寿命计算公式 L X=Lr×2[(To-Tx)/10]×2(ΔTs/Ao-ΔTj/A), L X:预测寿命(Hr), Lr:制造商承诺的在最高工作温度(To)及额定纹波电流(Io)下的寿命, To:最高工作温度—105℃或85℃, Tx:实际外壳温度(℃), ΔTs:额定纹波电流(Io)下的电解电容中心温升(℃), ΔTj:实际纹波电流(Ix)下的电解电容中心温升(℃), A:A=10-0.25×ΔTj,(0≤ΔTj≤20) Ao:Ao=10-0.25×ΔTs, 其中 ΔTs=α×ΔTco=α×Io2×R/(β×S), ΔTj=α×ΔTcx=α×Ix2×R/(β×S), ΔTco:额定纹波电流(Io)下的电解电容外壳温升(℃), ΔTcx:实际纹波电流(Ix)下的电解电容外壳温升(℃), α:电解电容中心温升与外壳温升的比例系数, Ix:纹波电流的实际测量值(Arms), Io:额定的纹波电流值(Arms), R:电解电容的等效串连阻抗(Ω), S:电解电容的表面积(cm2),S=πD×(D+4L)/4,

NCC铝电解电容器寿命计算方法

TO : PI Electronics HK Life Estimation Formula ?For Input Filtering (ripple frequency 100 - 120Hz) : 160V or Higher Rated Voltage Available to apply KMG, KMH, KMM, KMQ, SMH, SMM, SMQ and some other series for input filtering .........................................................................…........... Page 2 - 4?For Output Filtering (ripple frequency 10k - 100kHz) : Low-ESR Radial Type Capacitors up to 100V Rated Voltage Available to apply KY, KZE and KZH series for output filtering ................................… Page 5 Available to apply LXJ, LXV, LXY, LXZ, KMY series for output filtering.................... Page 6 - 8?For Snap-ins and 105o C Radial up to 100V rated items ..................................... Page 9 Available to apply KMH and SMH series for Snap-ins Available to apply KMQ, KMG, KME, KMF series for 105o C Radial ?For other types, general use capacitors .............................................................. Page 10 Available to apply Chip, 5mm height, 7mm height, Other Radial ?Appendix ..................................................................................................................... Page 11, 12 Nippon Chemi-Con Corporation Revised May03, 2004 HCC Engineering Koh Ohno

电解电容寿命设计

一、电解电容寿命设计 本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻(ESR )和电感(ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算 纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为:

充电电流的峰值为 dU 是纹波电压(U max – U min) 则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度:

铝电解电容寿命计算

最近在网上寻找资料,获益非浅。不能光索取而不奉献,花了一周的时间,牺牲了晚上和周末,得罪了夫人。当然了,整理过程中,自己也有所提高。同时也呼吁大家行动起来,多总结经验形成文字。当然了,年轻人有所保留是可以理解的,毕竟为了减少竞争者;但是有些人说自己是退休者,为啥如此吝啬或障碍重重? 网络是一个虚拟世界,现实生活已经有如此众多的虚伪,面子,为啥还要将其带入网络中呢?多么希望技术栏目中能恢复人与人间的真诚与无私奉献,体现出知识分子.学者.工程师的风范。当然,许多人不错,但是更多的人让我感觉差劲。我很少上网,也不愿与人争吵,只是提出个人的感受而已。 铝电解电容的寿命 电源产品中经常用到铝电解电容,他的寿命往往决定了整个产品的寿命。因此,了解如何计算铝电解电容的寿命很有必要。下面将我的一些心得整理出来,供大家参考。希望有助于提高国人的知识水平。说白了很简单,只不过很多人找不到相关的资料而已。同时也希望学校的教材中能够近早讲解相关知识。我尽量少翻译,因为我的语言能力及相关的专业术语还不行。仅供参考。 Chapter 1铝电解电容的特性 1.1 Circuit model (等效模型) The following c ircuit models the aluminium electrolytic capacitor’s normal operation as well as the over voltage and reverse voltage behavior. (此模型包含正常运行,过压,反压时的特性) C A C c R P ESR L D = Anode capacitance (阳极电容) = Cathode capacitance(阴极电容) = Parallel resistance, due to dielectric (并联电阻) = Series resistance, as a result of connections, paper, electrolyte, ect. 等效串联电阻= Winding inductance and connections 等效串联电感 = Over and reverse voltage 等效稳压管 The capacitance Ca and Cc are the capacitance of the capacitor and is frequency and temperature depended. (Ca and Cc,它的容量是频率及温度的函数) The resistance ESR is the equivalent series resistance which is frequency and temperature depended. It also increases with the rated voltage. (ESR是频率及温度的函数,随着额定电压的增加而增加) The inductanc e L is the equivalent series inductance, and it’s independent for both frequency and temperature. It increases with terminal spacing. (L是频率及温度的函数) The resistance Rp is the equivalent parallel resistance and accounts for leakage current in the capacitor. It decreases with increasing the capacitance, temperature and voltage and it increases with time. (Rp的大小决定了漏电流的大小,随着容量温度电压的增加而降低,随着使用时间的延长而增加) The zener diode D models the over voltage and reverse voltage behavior. Application of over voltage on the order of 50 V beyond the capacitor’s surge voltage rating causes high。(D模拟过压及加反向电压时特性)Leakage current and a constant voltage-operating mode quite like the reverse conduction of a zenerdiode. Applications of reverse voltage much beyond 1.5 V causes high leakage current quite like the forward conduction of a diode. Neither of these operating modes can be maintained for long because hydrogen gas is produced, and the pressure built up will cause failure. (加到电容两端的反向电压不能大于1.5V)

纹波电容计算

本文主要是通过纹波电流的计算,然后通过电容的热等效模型来计算电容中心点的温度,在得到中心点温度后,也就是得到电容的工作点最高的问题后,通过电容的寿命估算公式来估算电容的设计寿命。 首先,电容等效成电容、电阻( ESR )和电感( ESL )的串联。关于此请参考其他资料,接下来演示电容寿命计算步骤: 1 、纹波电流计算,纹波电流计算是得到电容功率损耗的一个重要参数,在设计电容时候,我们必须首先确定下来电流的纹波大小,这和设计规格和具体拓扑结构相关。铝电解电容常被用在整流模块后以平稳电压,我们在选择好具体拓扑结构后,根据规格要求得到最小的电容值: 控制某一纹波电压所需的电容容值为: P: 负载功率(单位 W ) 注意:这是应用所需要的最小电容容值。此外,电容容值有误差,在工作寿命期内,容值会逐步降低,随着温度降低,容值也会降低。 必须知道主线及负载侧的纹波电流数据。可以首先计算出电容的充电时间。 f main是电网电流的频率。 电容的放电时间则为: 充电电流的峰值为 dU 是纹波电压( U max – U min)

则充电电流有效值: 接下来计算放电电流峰值和有效值。 最后计算得出:整流模块后纹波电流: 这个有效值只是纹波电流的计算式,在复杂的市电输入的情况下,我们必须考虑各阶谐波的纹波有效值,也就是说要通过各阶谐波的有效值叠加,才是最后得到的电容纹波寿命计算的纹波,也就是需要将电流傅立叶分解。 2 、计算功率损耗 在得到纹波电流后,我们可以计算各阶电流的纹波损耗,然后将各阶纹波求和: 3 、计算电容中心点温度 得到功率损耗后,我们由电容的热等效模型(参考其他资料)计算中心点温度: 其中: Th 电容为电容中心点温度 , 为电容最高温度,其值直接影响到电容寿命,是电容寿命计算公式中的重要参数。 Rth 为电容的热阻,其值和风速等有关 ,Ta 表示电容表面温度。 P Loss 为纹波电流的中损耗。 4 、计算电容寿命 得到电解电容中心点最高温度后,我们可以计算电容的寿命,各个电容生产厂商会有不同的电容寿命的计算参数,也有不同的电容寿命修正值,现我们介绍阿列纽斯理论来计算电容寿命,其公式是说,电容工作没下降 10 度,其寿命增加一倍,反过来也就是电容温度升高 10 度,电容寿命减小一倍:

电解电容寿命计算方法

电解电容寿命计算方法 寿命估算(Life Expectancy):电解电容在最高工作温度下,可持续动作的时间。Lx=Lo*2(To-Ta)/10 Lx=实际工作寿命 Lo=保证寿命 To=最高工作温度(85℃or105℃) Ta= 电容器实际工作周围温度 Example:规范值105℃/1000Hrs 65℃寿命推估:Lx=1000*2(105-65)/10 实际工作寿命:16000Hrs 高温负荷寿命(Load Life)将电解电容器在最高工作温度下,印加额定工作电压,经一持续规定完成时间后,须符合下列变化:Δcap:试验前之值的20%以内tanδ:初期特性规格值的200%以下 LC :初期特性规格值以下 高温放置寿命(Shelf Life):将电解电容器在最高工作温度下,经一持续规定完成时间后,须符合下列变化:Δcap: 试验前之值的20%以内 tanδ:初期特性规格值的200%以下 LC:初期特性规格值以下 高温充放电试验(Charge/Discharge Test)将电解电容器在最高工作温度下,印加额定工作电压,经充电30秒后再放电330秒为一cycle,如此经1,000 cycles 后,须符合下列变化:Δcap : 试验前之值的10%以内 tanδ : 初期特性规格值的175%以下 LC : 初期特性规格值以下 纹波负荷试验(Ripple Life)将电解电容器在最高工作温度下,印加直流电压及最大纹波电流(直流电压+最大涟波电压峰值=额定工作电压),经一持续规定完成时间后,须符合下列变化:Δcap : 试验前之值的20%以内 tanδ : 初期特性规格值的200%以下 LC : 初期特性规格值以下 常用电解电容公式 容抗 : XC=1/(2πfC) 【Ω】 感抗 : XL=2πfL 【Ω】 阻抗: Z=√ESR2+(XL-XC)2 【Ω】 纹波电流: IR=√(βA△T/ESR) 【mArms】 功率 : P=I2ESR 【W】 谐振频率 : fo=1/(2π√LC) 【Hz】

铝电解电容可靠性--寿命估算

铝电解电容寿命的简单推算 1) 不含有纹波电流工作状态的铝电解电容器的推算。 基本依据为“10℃法则”,即环境温度每上升10℃寿命减半,反之亦然。 这个10℃法则只在零纹波电流条件下适用,在铝点解电容流过比较大的纹波电流时不一定适用。 2) 公式推算。在额定电压下,铝电解电容器的寿命可以由下式计算: )10 ( 200T T L L -?= 式中,L 和0L 分别为实际环境温度T 时的寿命和额定最高温度0T 时的寿命。 上面的推算方法仅适用于存储状态和无纹波电流(很小纹波电流)的工作状态,对于明显含有纹波电流的场合上述方法不一定适用,这时候应该将纹波电流的效应考虑在应用条件中。 铝电解电容寿命估算 环境因子 包括环境温度,应用电压,纹波电流 voltage tem p K K Lr Lx ??= Lx 估算的寿命 Lr 寿命基数 temp K 温度系数 voltage K 电压系数 环境温度系数 铝电解电容器是一种电化学元件,化学反应速度遵循Arrhenius 方程 10)(0002r T T tem p L K L Lr -?=?= 10)(02r T T tem p K -= Lr 估算寿命 0L 寿命基数 0T 最高额定温度 r T 实际环境温度 电压系数

voltage K =1 纹波电流的影响 DC AC W W W += D C D C e AC I V R I W ?+?=2 W 内部功率损耗 AC W 电源纹波电流造成的功率损耗 DC W 直流电源造成的功率损耗 AC I 纹波电流 e R 纹波频率下的ESR DC V DC 电压 DC I 漏电流 如果DC 电压在额定电压下,漏电流远远小于纹波电流,纹波功率损耗远大于直流功率损耗。 功率损耗计算公式: e AC A R I W W ?==2 电容温度提到到一定程度,内部产生的热量与热辐射平衡。平衡的温度计算公式。 T A R I e AC ???=?β2 所以A R I T e AC ??=?β2 =β热辐射常数W ?3-10℃2 cm =A 表面面积)(2Cm 、 对L D ?ψ电容 )4()4/(L D D A +=π T ?由于纹波电流导致的核心温度上升

电解电容寿命的计算方法

Load life If the capacitor`s max.operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) for Lo hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification. where L0 is called ”load life” or “useful life (lifetime) at 105℃(85℃)”. L x=L0x2(To-Tx)/10x2—△Tx/5where △T x=△T0x(I x/I0)2 Ripple life: If the capacitor`s max .operating temperature is at 105℃(85℃),then after applying capacitor`s rated voltage (WV) with the ripple current for Lr hours at 105℃(85℃),the capacitor shall meet the requirements in detail specification . where Lr is called ”ripple life” or ”useful ripple life (ripple lifetime) at105℃(85℃) ”. Lx= L r x2(To-Tx)/10x2(△To-△Tx)/5where △T x=△T0x(Ix/I0)2 The (ripple) life expectancy at a lower temperature than the specified maximum temperature may be estimated by the following equation , but this expectancy formula does not apply for ambient below+40℃. L0 = Expected life period (hrs) at maximum operating temperature allowed Lr = Expected ripple life period (hrs) at maximum operating temperature allowed Lx = Expected life period (hrs) at actual operating temperature T0 = Maximum operating temperature (℃) allowed Tx = Actual operating ambient temperature(℃) Ix = Actual applied ripple current (mArms) at operating frequency fo (Hz) I0 = Rated maximum permissible ripple current IR (mArms) x frequency multiplier (C f) at f0 (Hz) △T0≦5℃= Maximum temperature rise (℃) for applying Io (mArms) △Tc = Temperature rise (℃) of capacitor case for applying Ix (mA/rms) △T x = Temperature rise (℃) of capacitor element for applying Ix (mArms) = K c△T c= K c(T c-T x) where T c is the surface temperature (℃) of capacitor case Tx is ditto. K c is transfer coefficient between element and case of capacitor From table below: Dia ≦8Φ10Φ12.5Φ13Φ16Φ18Φ22Φ25Φ30Φ35Φ Kc 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.50 1.65

电容寿命计算公式

RIFA、Nichicon、Rubycon的电解电容计算公式 电解电容寿命计算是电容电路设计的最关键的一步,它直接考量电容的设计寿命,电容寿命主要受到温度的影响,所以在设计时候考虑到热源和风道,是提高电容寿命的有效方式,在设计时尽量让电容远离热源,通风好,有时利用强制风冷的方式,尽量让电容工作于低温情况下。关于电容的寿命计算步骤这里不详述,请参考“电解电容寿命设计步骤”一文,以下主要介绍rifa ,nichicon ,Rubycon 电容寿命得计算公式。 1、nichicon 的电解电容寿命计算公式 nichicon 的电解电容寿命计算公式分为两种:a 、大封装电解电容(large can type );b 、小封装(miniature type )的电容,以下针对两种电容分别列出其计算公式。 A、large can type 电容结算公式如下: 其中: Ln: 估算之寿命(在环境温度Tn 和总纹波In ) Lo: 在最大允许工作温度To 和最大允许工作纹波Im 条件下的额定寿命 To: 最大允许工作温度 Tn: 环境温度 to: 在最大允许工作温度To 和最大允许工作纹波电流Im 条件下内部温升量 Im :在最大允许工作温度To 条件下的最大允许工作纹波电流有效值(在标准频率条件下的正弦波) In :实际应用的纹波电流有效值 Δ tn: 在环境温度Tn 和纹波电流In 条件下致使的内部温升 K: 因纹波损耗引起温升的加速系数

(Tn 从实际应用环境获得,In 根据其规格书中的纹波系数将实际纹波有效值归一到标准频率上的有效值。其它参数可从规格书中得到) 以上公式给出的是一个基本寿命与环境温度函数、热点温度及纹波电流函数之积。其内部温升Δ tn 估算并非由电阻损耗计算方式,而是提供了一个参考点值和相应的比例转换公式。此公式关键点是归一到标准频率的等效电流有效值In 的求解。 B、miniature type 对小封装的电容有两种情况,对应不同情况有两种计算公式 (a)使用规格书的L 值 L: 在最大允许工作温度To 和额定DC 电压条件下的额定寿命 Bn: 因实际应用纹波损耗引起温升的加速系数; α:寿命常数。 其它参数与“ Large Can type ”相同。 2、rifa 电容的寿命计算公式 rifa 电容的寿命计算公式利用阿列纽斯理论来计算,其原意为温度每升高10 度,电解电容寿命降低一半,RIFA 电容中计算中不一定都是10 度,有些是12 度或别的,具体参考规格书。 其寿命计算公式如下:

相关文档