文档库 最新最全的文档下载
当前位置:文档库 › 奥氏体、马氏体、珠光体

奥氏体、马氏体、珠光体

奥氏体、马氏体、珠光体
奥氏体、马氏体、珠光体

奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处

铁素体——碳与合金元素溶解在a-Fe中的固溶体。

亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

渗碳体——碳与铁形成的一种化合物。

在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。

珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。

珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。

上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。

过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od 铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。

下贝氏体——同上,但渗碳体在铁素体针内。

过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。

粒状贝氏体——大块状或条状的铁素体内分布着众多小岛的复相组织。

过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,可能全部保留成为残余奥氏体;也可能部分或全部分解为铁素体和渗碳体的混合物(珠光体或贝氏体);最可能部分转变为马氏体,部分保留下来而形成两相混合物,称为M-A组织。

回火马氏体——马氏体分解得到极细的过渡型碳化物与过饱和(含碳较低)的a-相混合组织它由马氏体在150~250℃时回火形成。

这种组织极易受腐蚀,光学显微镜下呈暗黑色针状组织(保持淬火马氏体位向),与下贝氏体很相似,只有在高倍电子显微镜下才能看到极细小的碳化物质点。

回火屈氏体——碳化物和a-相的混合物。

它由马氏体在350~500℃时中温回火形成。其组织特征是铁素体基体内分布着极细小的粒状碳化物,针状形态已逐渐消失,但仍隐约可见,碳化物在光学显微镜下不能分辨,仅观察到暗黑的组织,在电镜下才能清晰分辨两相,可看出碳化物颗粒已明显长大。

回火索氏体——以铁素体为基体,基体上分布着均匀碳化物颗粒。

它由马氏体在500~650℃时高温回火形成。其组织特征是由等轴状铁素体和细粒状碳化物构成的复相组织,马氏体片的痕迹已消失,渗碳体的外形已较清晰,但在光镜下也难分辨,在电镜下可看到的渗碳体颗粒较大。

魏氏组织——如果奥氏体晶粒比较粗大,冷却速度又比较适宜,先共析相有可能呈针状(片状)形态与片状珠光体混合存在,称为魏氏组织。

亚共析钢中魏氏组织的铁素体的形态有片状、羽毛状或三角形,粗大铁素体呈平行或三角形分布。它出现在奥氏体晶界,同时向晶内生长。过共析钢中魏氏组织渗碳体的形态有针状或杆状,它出现在奥氏体晶粒的内部。

--来自金相吧

马氏体不锈钢与奥氏体不锈钢的区别

马氏体不锈钢:标准马氏体钢材的改良,含有类如镍、钼、钒等的添加元 素,主要是用于将标准钢材受限的容许工作温度提升至高于1100K,当添加这些元素时,碳含量也增加,随着碳含量的增加,在焊接物的硬化热影响区中避免龟裂的问题变成更严重。 马氏体不锈钢能在退火、硬化和硬化与回火的状态下焊接,无论钢材的原先状态如何,经过焊接后都会在邻近焊道处产生一硬化的马氏体区,热影响区的硬度主要是取决于母材金属的碳含量,当硬度增加时,则韧性减少,且此区域变成较易产生龟裂、预热和控制层间温度,是避免龟裂的最有效方法,为得最佳的性质,需焊后热处理。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏体铬不锈钢和马氏体铬镍不锈钢。 马氏体铬不锈钢的主要合金元素是铁、铬和碳。图1-4是Fe-Cr系相图富铁部分,如Cr大于13%时,不存在γ相,此类合金为单相铁素体合金,在任何热处理制度下也不能产生马氏体,为此必须在内Fe-Cr二元合金中加入奥氏体形成元素,以扩大γ相区,对于马氏体铬不锈钢来说,C、N是有效元素,C、N元素添加使得合金允许更高的铬含量。在马氏体铬不锈钢中,除铬外,C是另一个最重要的必备元素,事实上,马氏体铬不锈耐热钢是一类铁、铬、碳三元合金。当然,还有其他元素,利用这些元素,可根据Schaeffler图确定大致的组织。 马氏体不锈钢主要为铬含量在12%-18%范围内的低碳或高碳钢。各国广泛应用的马氏体不锈钢钢种有如下3类: 1.低碳及中碳13%Cr钢 2.高碳的18%Cr钢 3.低碳含镍(约2%)的17%Cr钢 马氏体不锈钢具备高强度和耐蚀性,可以用来制造机器零件如蒸汽涡轮的叶片(1Cr13)、蒸汽装备的轴和拉杆(2Cr13),以及在腐蚀介质中工作的零件如活门、螺栓等(4Cr13)。碳含量较高的钢号(4Cr13、9Cr18)则适用于制造医疗器械、餐刀、测量用具、弹簧等。 与铁素体不锈钢相似,在马氏体不锈钢中也可以加入其它合金元素来改进其他性能:1.加入0.07%S或Se改善切削加工性能,例如1Cr13S或4Cr13Se;2.加入约1%Mo及0.1% V,可以增加9Cr18钢的耐磨性及耐蚀性;3.加入约1Mo-1W-0.2V,可以提高1Cr13及2Cr13钢的热强性。 马氏体不锈钢与调制钢一样,可以使用淬火、回火及退火处理。其力学性质与调制钢也相似:当硬度升高时,抗拉强度及屈服强度升高,而伸长率、截面收缩率及冲击功则随着降低。 马氏体不锈钢的耐蚀性主要取决于铬含量,而钢中的碳由于与铬形成稳定的碳化铬,又间接的影响了钢的耐蚀性。因此在13%Cr钢中,碳含量越低,则耐蚀性越高。而在1Cr13、2Cr13、3Cr13及4Cr13四种钢中,其耐蚀性与强度的顺序恰好相反。

第三章 奥氏体在冷却时的转变

第六节钢在冷却时的转变 一、共析钢的过冷奥氏体转变 由铁碳相图可知,共析钢从奥氏体状态冷却到临界点A1点以下时将要发生珠光体转变。实际上,迅速冷却到A1点以下温度时,转变并不是立即开始的,在A1点以下未转变的奥氏体称为过冷奥氏体。 1.过冷奥氏体转变曲线 (1)过冷奥氏体等温转变曲线图10—38是通过实验测定的共析钢过冷奥氏体等温转变 动力学曲线,又称过冷奥氏体等温转变 等温图(又称TTT图或C曲线)。图中 左边的曲线是转变开始线,右边的曲线 是转变完了线。它的上部向A1线无限 趋近,它的下部与Ms线相交。Ms点是 奥氏体开始向马氏体转变的温度。由图 可以看出,过冷奥氏体开始转变需要经 过一段孕育期,在550~500℃等温时孕 育期最短,转变最快,称为C曲线的 “鼻子”。在鼻温以上的高温阶段,随过冷 度的增加,转变的孕育期缩短,转变加 快;在鼻温以下的中温阶段,随过冷度的 增加,转变的孕育期变长,转变变慢。这 是因为共析转变是扩散型相变,转变速 率是由相变驱动力和扩散系数D两个 因素综合决定的(参看第三节)。 过冷奥氏体在不同的温度区间会发 生三种不同的转变。在A1~500~C区间 发生珠光体转变,转变的产物是珠光体(P),其硬度值较低,在11~40HRC之间;550~C~

Ms点区间发生贝氏体转变,产物是贝氏体(B),硬度值较高在40~55HRC之间;在Ms点 以下将发生马氏体转变,得到马氏体(M),马氏体的硬度很高,可达到60HRC以上。碳素 钢的贝氏体转变温度区间与珠光体、马氏体转变的温度区间没有严格的界限,相互之间有重叠。 一般认为过冷奥氏体有了1%的转变即为转变的开始,转变已完成99%即为转变完了。在转变开始线和转变完了线之间,还可以划出转变量为10%、50%、90%等等几条大体平行的曲线(图中以虚线表示)。转变开始线、终止线与A。线、Ms线之间将等温转变图划分成几个区域,各个区域表示组织状态及转变量与温度和时间之间的关系。从等温转变图右侧的纵坐标,还可以看出各温度下转变产物的硬度值。例如,过冷奥氏体在600~C进行等温转变,若等温时间只有1s,钢仍然处在过冷奥氏体状态;如果等温了3s,这时已有50%的奥氏体转变成珠光体,组织状态是奥氏体加珠光体各占50%;若在600~C等温7s以上,过冷奥氏体早已全部转变成珠光体,珠光体的硬度值是38HRC。如果在600~C等温3s后立即淬火,将得到50%马氏体加珠光体的组织。 (2)过冷奥氏体连续冷却转变曲线在绝大多数情况下奥氏体转变是在连续冷却的条件下进行的。如铸造、锻轧、焊接之后,一般都是采用在空气中冷却,或在坑中堆放冷却等连续冷却方式。从奥氏体状态经炉内冷却退火。或空气中冷却正火,或水中急冷淬火等热处理工艺也都是连续冷却过程。因此,研究过冷奥氏体连续冷却转变图(CCT图),有更大的实际意义。实验测定的不同冷却条件下共析碳钢的CCT图如图10—39所示。由图可以看出,不同冷却速度下,过冷奥氏体开始转变的时间和温度不同,冷却速度越快,开始转变所需的时间越短,转变温度越低。图中还划出该钢的c曲线。与c曲线相比较,CCT图中同样性质的曲线(转变开始线,转变终了线)均位于C曲线的下方。在连续冷却条件下,共析碳钢不发生贝氏体转变。若冷却速度小于33.4~C.s叫(图中的曲线3)时,奥氏体将全部转变成珠光 一、

马氏体奥氏体珠光体贝氏体的区别

马氏体奥氏体珠光体贝氏体 马氏体(martensite)是黑色金属材料的一种组织名称。马氏体(M)是碳溶于α-Fe的过饱和的固溶体,是奥氏体通过无扩散型相变转变成的亚稳定相。其比容大于奥氏体、珠光体等组织,这是产生淬火应力,导致变形开裂的主要原因。马氏体最初是在钢(中、高碳钢)中发现的:将钢加热到一定温度(形成奥氏体) 奥氏体(austenite)A、γ是晶体结构:面心立方(fcc)。是碳在γ-Fe中形成的间隙固溶体。奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。古代铁匠打铁时烧红的铁块即处于奥氏体状态。另外,奥氏体因为是面心立方,四面体间隙较大,可以容纳更多的碳。 珠光体pearlite 珠光体是奥氏体(奥氏体是碳溶解在γ-Fe中的间隙固溶体)发生共析转变所形成的铁素体与渗碳体的共析体。得名自其珍珠般(pearl-like)的光泽。其形态为铁素体薄层和渗碳体薄层交替重叠的层状复相物,也称片状珠光体。用符号P表示,含碳量为ωc=%。在珠光体中铁素体占88%,渗碳体占12%,由于铁素体的数量大大多于渗碳体,所以铁素体层片要比渗碳体厚得多.在球化退火条件下,珠光体中的渗碳休也可呈粒状,这样的珠光体称为粒状珠光体。珠光体的性能介于铁素体和渗碳体之间,强韧性较好.其抗拉强度为750 ~900MPa,180 ~280HBS,伸长率为20 ~25%,冲击功为24 ~32J.力学性能介于铁素体与渗碳体之间,强度较高,硬度适中,塑性和韧性较好。

铁素体(ferrite,缩写:FN,用F表示)即α-Fe和以它为基础的固溶体,具有体心立方点阵。亚共析成分的奥氏体通过先共析析出形成铁素体。在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;室温下的铁素体的机械性能和纯铁相近。铁素体的强度、硬度不高,但具有良好的塑性与韧性。 经过硝酸溶液侵蚀后,从颜色上观察区分金相组织形态. 铁素体是白色,珠光体是黑色,马氏体(M)是碳溶于α-Fe的过饱和的固溶体,在金相观察中为细长的板条状或针叶状。

奥氏体马氏体铁素体的区别

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 奥氏体/马氏体/铁素体 奥氏体(钢的组别:A1, A2, A3 A4, A5)(性能等级:50软,70冷加工,80高强度) 马氏体(钢的组别:C1,C2,C3) (性能等级:50软,70、110淬火并回火,80淬火并回火) 铁素体(钢的组别:F1) (性能等级:45软,60冷加工) 马氏体不锈钢属于铬不锈钢。由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。具有很高的耐蚀性,优良的塑性,良好的焊接性及低温韧性,不具有磁性,易加工硬化。主要用于在腐蚀介质中工作的零件、容器、管道、医疗器械以及抗磁环境中。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc= 0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取

出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名

奥氏体马氏体铁素体不锈钢区别

奥氏体马氏体铁素体不锈钢区别? 铁素体型不锈钢 它的内部显微组织为铁素体,其铬的质量分数在11.5%~32.0%范围内。随着铬含量的提高,其耐酸性能也提高,加入钼(Mo)后,则可提高耐酸腐蚀性和抗应力腐蚀的能力。这类不锈钢的国家标准牌号有00Cr12、1Cr17、00Cr17Mo、00Cr30Mo2等。 430是铁素体不锈钢。 铁素体不锈钢是含铬大于14%的低碳铬不锈钢,含铬大于27%的任何含碳量的铬不锈钢,以及在上述成分基础上再添加有钼、钛、铌、硅、铝、、钨、钒等元素的不锈钢,化学成分中形成铁素体的元素占绝对优势,基体组织为铁素。这类钢在淬火(固溶)状态下的组织为铁素体,退火及时效状态的组织中则可见到少量碳化物及金属间化合物。 属于这一类的有Crl7、Cr17Mo2Ti、Cr25,Cr25Mo3Ti、Cr28等。铁素体不锈钢因为含铬量高,耐腐蚀性能与抗氧化性能均比较好,但机械性能与工艺性能较差,多用于受力不大的耐酸结构及作抗氧化钢使用。 马氏体型不锈钢 它的显微组织为马氏体。这类钢中铬的质量分数为11.5%~18.0%,但碳的质量分数最高可达0.6%。碳含量的增高,提高了钢的强度和硬度。在这类钢中加入的少量镍可以促使生成马氏体,同时又能提高其耐蚀性。这类钢的焊接性较差。列入国家标准牌号的钢板有1Cr13、2 Cr13、3Cr13、1Cr17Ni2等。 410是马氏体不锈钢,其中碳最大含量为0.15%,锰最大含量1.00%,硅最大含量为1.00%,铬含量为11.50~13.50%。为通用型可热处理不锈钢,耐腐蚀,耐热,硬度可达42HRC或更高些。 奥氏体型不锈钢 其显微组织为奥氏体。它是在高铬不锈钢中添加适当的镍(镍的质量分数为8%~25%)而形成的,具有奥氏体组织的不锈钢。奥氏体型不锈钢以Cr18Ni19铁基合金为基础,在此基础上随着不同的用途,发展成图1-2所示的铬镍奥氏体不锈钢系列。 奥氏体、铁素体、马氏体不锈钢在用途上如何区分? 工业上应用的不锈钢按金相组织可分为三大类:铁素体不锈钢,马氏体不锈钢,奥氏体不锈钢。可以把这三类不锈钢的特点归纳(如下表),但需要说明的是马氏体不锈钢并不是都不可焊接,只是受某些条件的限制,如焊前应预热焊后应作高温回火等,而使焊接工艺比较复杂。实际生产中一些马氏体不锈钢如1Cr13,2Cr13以及2Cr13与45钢焊接还是比较多的。 马氏体不锈钢属于铬不锈钢。 由于含碳量高,碳化铬多,钢的耐蚀性能下降,虽可通过热处理的方法改善,但防腐性不高。马氏体不锈钢多用于制造力学性能要求较高,并有一定耐蚀性能要求的零件,如汽轮机叶片、喷嘴、阀座、量具、刃具等。 铁素体不锈钢也属于铬不锈钢。 含碳量小,抗大气、硝酸及盐水溶液的腐蚀能力强,有高温抗氧化性能好等特点。主要用于制作化工设备中的容器、管道。 奥氏体不锈钢属于铬镍不锈钢。

铁素体奥氏体马氏体等归纳

1铁素体,奥氏体,马氏体是钢在不同温度下,或是不同处理使得存在形式,首先碳溶在铁中若含量极少,小于0.0218%,在较低温度时就会形成铁素体,碳含量增加的话就会存在铁素体和渗碳体,铁素体和渗碳体机械混合结构和成珠光体,将碳含量小于0.77%的铁加热到727摄氏度以上就会变成奥氏体,奥氏体与铁素体的不同是结构不一样,奥氏体是面形立方,铁素体是体心立方,将奥氏体以极快的速度冷却,它就不能变为低温下的铁素体和渗碳体混合结构,因为碳原子无法扩散,直接就切变成体心立方的马氏体,马氏体是碳过饱和溶于体心立方的铁中,之所以研究这些东西,在于这些结构的性质不同,如,铁素体有好的塑形,但是非常软,马氏体是很硬的,但塑形不怎么样,一般淬火得到的就是马氏体,2正火得到珠光体组织,淬火是将奥氏体变化为马氏体,回火是将马氏体变为铁素体。 加入锰和镍能将奥氏体临界转变温度降至室温以下,使钢在室温下保持奥氏体组织,即所谓奥氏体钢。 3铁素体,奥氏体都有很好的塑性,韧性,珠光体有较高的综合机械性能;莱氏体\渗碳体都是脆性的,硬度高,耐磨性好;索氏体较珠光体有更高的综合机械性能;马氏体分2种:低碳M有很高的强韧性,高碳M有更高的耐磨性;屈氏体较索氏体的层片间距更小,屈服强度更高,弹性更好. 4奥氏体——碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处铁素体——碳与合金元素溶解在a-Fe中的固溶体。 亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体——碳与铁形成的一种化合物。 在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 珠光体——铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 上贝氏体——过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。 过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 下贝氏体——同上,但渗碳体在铁素体针内。 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度

奥氏体不锈钢与马氏体不锈钢的区别

管件知识(2)奥氏体不锈钢与马氏体不锈钢的区别 奥氏体不锈钢与马氏体不锈钢的区别与不同用处 奥氏体不锈钢:在常温下具有奥氏体组织的不锈钢。钢中含Cr约18%、Ni 8%~10%、C约0.1%时,具有稳定的奥氏体组织。奥氏体铬镍不锈钢包括著名的18Cr-8Ni 钢和在此基础上增加Cr、Ni含量并加入Mo、Cu、Si、Nb、Ti等元素发展起来的高Cr-Ni系列钢。奥氏体不锈钢无磁性而且具有高韧性和塑性,但强度较低,不可能通过相变使之强化,仅能通过冷加工进行强化。如加入S,Ca,Se,Te等元素,则具有良好的易切削性。此类钢除耐氧化性酸介质腐蚀外,如果含有Mo、Cu等元素还能耐硫酸、磷酸以及甲酸、醋酸、尿素等的腐蚀。此类钢中的含碳量若低于0.03%或含Ti、Ni,就可显著提高其耐晶间腐蚀性能。高硅的奥氏体不锈钢浓硝酸肯有良好的耐蚀性。由于奥氏体不锈钢具有全面的和良好的综合性能,在各行各业中获得了广泛的应用。 奥氏体型钢 (1)1Cr17Mn6Ni15N;(2)1Cr18Mn8Ni5N;(3)1Cr18Ni9;(4)1Cr18Ni9Si3;(5)0Cr18Ni9;(6)00Cr19Ni10;(7)0Cr19Ni9N;(8)0Cr19Ni10NbN; (9)00Cr18Ni10N;(10)1Cr18Ni12;(11) 0Cr23Ni13;(12)0Cr25Ni20;(13) 0Cr17Ni12Mo2;(14) 00Cr17Ni14Mo2;(15) 0Cr17Ni12Mo2N;(16) 00Cr17Ni13Mo2N;(17) 1Cr18Ni12Mo2Ti;(18) 0Cr18Ni12Mo2Ti;(19) 1Cr18Ni12Mo3Ti;(20) 0Cr18Ni12Mo3Ti;(21) 0Cr18Ni12Mo2Cu2;(22) 00Cr18Ni14Mo2Cu2;(23) 0Cr19Ni13Mo3;(24) 00Cr19Ni13Mo3;(25) 0Cr18Ni16Mo5;(26) 1Cr18Ni9Ti;(27) 0Cr18Ni10Ti;(28) 0Cr18Ni11Nb;(29) 0Cr18Ni13Si4 1.概述 奥氏体不锈钢1913年在德国问世,在不锈钢中一直扮演着最重要的角色,其生产量和使用量约占不锈钢总产量及用量的70%。钢号也最多,当今我国常用奥氏体不锈钢的牌号就有40多个,最常见的就是18-8型。 定义:常温下具有奥氏体组织的不锈钢。 分类:Fe-Cr-Ni (主体) Fe-Cr-Mn

奥氏体转变

逆转变奥氏体 科技名词定义 中文名称:逆转变奥氏体 英文名称:reverse transformed austenite 定义:在铁素体或马氏体稳定存在的温度范围内,局部区域的铁素体或马氏体向奥氏体转变所形成的奥氏体。 应用学科:材料科学技术(一级学科);金属材料(二级学科);钢铁材料(三级学科);钢铁材料基础及组织和性能(四级学科) 以上内容由全国科学技术名词审定委员会审定公布 在碳钢中,淬火获得马氏体后,再次加热到奥氏体化温度应该可以获得奥氏体,这种奥氏体不能叫逆转变奥氏体。 一般材料很少提到逆变奥氏体,马氏体不锈钢或沉淀硬化不锈钢时见的可能多点。 1. 逆变奥氏体的形成(形核和长大)必须具备的条件:原生马氏体板条直到加热至稍高于Ac1点是稳定的。在略低于Ac1(As)点回火时,马氏体中过饱和的C部分以碳化物的形式在板条间界面弥散析出,使马氏体转变为回火马氏体。当回火温度升至稍高于As点时,逆变奥氏体相的核心就通过切变方式在此高Ni区直接生成,并沿板条界面纵向长大成极细的针条状逆变奥氏体。在-196℃,逆变奥氏体也是稳定的,可能因为其富集奥氏体化元素,很低的温度下也不发生转变。 2. 回火后样品中逆变奥氏体含量受两个因素控制:即高温时奥氏体转变量及其在回火冷却过程中的稳定性。As-Af之间回火时,室温得到的逆变奥氏体量随着回火温度的升高出现先增后减的趋势,中间存在最优化回火温度,能使室温逆变奥氏体量达到最大。

奥氏体在冷却时发生的组织转变,既可在恒温下进行,也可在连续冷却过程中进行,随着冷却条件的不同,奥氏体可在A1以下不同的温度发生转变,获得不同的组织。所以,冷却是热处理的关键工序,它决定着钢在热处理后的组织和性能。 在临界转变温度A1以上存在的奥氏体是稳定的,不会发生转变。但一旦冷却到A1以下,则变得不稳定,冷却时要发生组织转变。这种在临界温度以下存在且不稳定的、将要发生转变的奥氏体称为过冷奥氏体。 研究过冷奥氏体的冷却转变行为,通常采用两种方法,一种是利用奥氏体等温转变曲线研究奥氏体在不同过冷度下的等温转变过程,另一种是利用奥氏体连续冷却转变曲线研究奥氏体在不同冷速下的连续冷却中的转变过程。 亚温区的奥氏体转变 Г.Н.Теплухин魏卓夫 【摘要】:正亚共析钢在亚温区冷却时α-相的析出过程通常看作如同平衡状态一样。这时形成的α-相数量,可根据Fe-Fe_3C平衡图用杠杆定律来估算。计算的正确性只有钢足够缓慢地冷却时才不致引起疑问。亚共析钢在实际热处理条件下(如在完全退火或均匀化退火、正火以及借助轧制加热或特殊加热的热强化时),在亚温区其冷却是被加快的。无论何时所形成的α-相数量 【关键词】:奥氏体转变亚共析钢相数量杠杆定律均匀化退火温区析出过程热处理条件完全退火平衡状态 【正文快照】: 亚共析钢在亚温区冷却时“一相的析出过程通常看作如同平衡状态一样.这时形成的。一相数量,可根据Fe一Fe:C乎衡图用杠杆定律来估算。计算的正确性只有钢足够缓慢地冷却时才不致引起疑问。亚共析钢在实际热处理条件下(如在完全退火或均匀化退火、正火以及借助轧制加热或特殊

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性?铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内,?912?℃?以上称?α? 铁,?1394?℃?以上称?δ?铁);另一是面心立方结构(存在 于?912?~?1394?℃?之间,称?γ?铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体(?Fe?3C?),其硬度高、脆性大。碳溶于?α?铁中形成的固溶体称铁素体;溶于?γ?铁中形成的固溶体称奥氏体,其最大溶解度为??%。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成? 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为%的碳,在727℃时最大的溶碳能力为%, 它仍保持的体心立方晶格.常用符号F表示。

由于铁素体含碳量很低,其 c:\iknow\docshare\data\cur_work\&aid=6148&sid=&click=1&url=http:的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等c:\iknow\docshare\data\cur_work\&aid=6025&sid=&click=1&url=http:727℃1148℃727℃是奥氏体不锈钢的三大元素之一(碳、铬、镍)。镍在奥氏体不锈钢中的作用是与碳紧密结合(不锈钢含碳量越大越容易生锈,为了使奥氏体不锈钢既具有强度又不容易生锈,就需要控制碳的含量,而镍正好弥补这一缺陷),增加其强度及硬度。因为镍抗磁性元素,所以奥氏体不锈钢是没有磁性的。因为铁素体不锈钢主要用于加工装饰方面,需具有良好的塑性与韧性,所以它只含极少量的镍元素,因而它是有磁性的。B. 因为马氏体和铁素体的内部电子都有规则的排列;决定磁性的关键因素是排列规则的电子有规律的运动.而镍正好破坏了电子间这种有规则的排列。 为什么不锈钢不生锈铬具有耐腐蚀性。奥氏体不锈钢、马氏体和铁素体不锈钢都含有12%——30%的铬元素,所以它们不生锈。

奥氏体马氏体知识

固态金属及合金都是晶体,即在其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体,它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体 组织结构,加热时不发生相变,称为铁素体型不锈钢。当含铬量较低(但高于12%),碳含量较高,合金在从高温冷却时,极易形成马氏体,故称这类钢为马氏体型不锈钢。镍可以扩展Υ相区,使钢材具有奥氏体组织。如果镍含量足够多,使钢在室温下也具有奥氏体组织结构,则称这种钢为奥氏体型不锈钢。

奥氏体和马氏体定义

奥氏体: 固态金属及合金都是晶体,其内部原子是按一定规律排列的,排列的方式一般有三种即:体心立方晶格结构、面心立方晶格结构和密排六方晶格结构。金属是由多晶体组成的,它的多晶体结构是在金属结晶过程中形成的。组成铁碳合金的铁具有两种晶格结构:910℃以下为具有体心立方晶格结构的α——铁,910℃以上为具有面心立方晶格结构的Υ——铁。如果碳原子挤到铁的晶格中去,而又不破坏铁所具有的晶格结构,这样的物质称为固溶体。碳溶解到α——铁中形成的固溶体称铁素体,它的溶碳能力极低,最大溶解度不超过0.02%。而碳溶解到Υ——铁中形成的固溶体则称奥氏体, 马氏体: 它的溶碳能力较高,最高可达2%。奥氏体是铁碳合金的高温相。钢在高温时所形成的奥氏体,过冷到727℃以下时变成不稳定的过冷奥氏体。如以极大的冷却速度过冷到230℃以下,这时奥氏体中的碳原子已无扩散的可能,奥氏体将直接转变成一种含碳过饱和的α固溶体,称为马氏体。 铁素体: 由于含碳量过饱和,引起马氏体强度和硬度提高、塑性降低,脆性增大。不锈钢的耐蚀性主要来源于铬。实验证明,只有含铬量超过12%时钢的耐蚀性能才会大大提高,因此,不锈钢中的含铬量一般均不低于12%。由于含铬量的提高,对钢的组织也有很大影响,当铬含量高而碳含量很少时,铬会使铁碳平衡,图上的Υ相区缩小,甚至消失,这种不锈钢为铁素体. 铁素体铁素体是c溶于α-Fe中所形成的间隙固溶体,具有体心立方晶体结构,用字母F或者α表示. 奥氏体奥氏体是c溶于γ-Fe中所形成的间隙固溶体.具有面心立方晶体结构,用字母A或者γ表示. 马氏体马氏体有点长,我懒的打,只是简单的告诉你,它分为上马氏体和下马氏体,是过冷奥氏体等温冷却到230摄氏度以下形成的!!!! 奥氏体简介 英文名称:austenite 晶体结构:面心立方(fcc) 字母代号:A、γ 定义:碳在γ-Fe中形成的间隙固溶体 命名:为纪念英国冶金学家罗伯茨-奥斯汀(1843~1902)对金属科学中的贡献而命名。 微观表述:γ-Fe为面心立方晶体,其最大空隙为0.51×10-8cm,略小于碳原子半径,因而它的溶碳能力比α-Fe大,在1148℃时,γ-Fe最大溶碳量为2.11%,随着温度下降,溶碳能力逐渐减小,在727℃时其溶碳量为0.77%。 性能特点:奥氏体是一种塑性很好,强度较低的固溶体,具有一定韧性。不具有铁磁性。因此,分辨奥氏体不锈钢刀具(常见的18-8型不锈钢)的方法之一就是用磁铁来看刀具是否具有磁性。

铁素体马氏体和奥氏体的区别

铁素体和奥氏体的区别 钢的组织和特性铁是钢的基本组成元素。铁在固态有两种晶体结构,一是体心立方结构(存在于两个温度范围内, 912 ℃以上称α铁, 1394 ℃以上称δ铁);另一是面心立方结构(存在于 912 ~ 1394 ℃之间,称γ铁)。碳是钢中另一主要元素,对钢的组织和性能起重要作用,通常随着含碳量的增加,钢的强度增加、塑性下降。碳在钢中主要有两种存在形式,一是溶入铁中与铁形成固溶体(两种以上化学组分互相溶解而形成的均匀固相);另一是与铁形成铁碳化合物,称渗碳体( Fe 3C ),其硬度高、脆性大。碳溶于α铁中形成的固溶体称铁素体;溶于γ铁中形成的固溶体称奥氏体,其最大溶解度为 2.11 %。钢在冷却过程中,过饱和的奥氏体将发生分解,形成铁素体和渗碳体。铁素体和渗碳体组成的呈片状相间排列的混合物称珠光体。一般碳素钢在室温下的金相组织由铁素体、珠光体和渗碳体组成 铁素体是碳溶解在a-Fe中的间隙固溶体,常用符号F表示。 不锈钢中的“铁素体”,指的是碳溶解在a-Fe中的间隙固溶体,其溶碳能力很小,常温下仅能溶解为0.0008%的碳,在727℃时最大的溶碳能力为0.02%,它仍保持的体心立方晶格.常用符号F表示。 由于铁素体含碳量很低,其性能与纯铁相似,塑性、韧性很好,伸长率δ=45%~50%。强度、硬度较低,σb≈250MPa,而HBS=80。 所谓铁素体不锈钢.指的是在使用状态下以铁素体组织为主的不锈钢。它的含铬量在 11%~30%,具有体心立方晶体结构,至于不锈钢含铁量与它是否是铁素体不锈钢并无关系.铁素体不锈钢只取决于在使用状态下,它是否以铁素体组织为主. 铁素体有磁性. 在使用状态下以铁素体组织为主的不锈钢。含铬量在11%~30%,具有体心立方晶体结构。这类钢一般不含镍,有时还含有少量的Mo、Ti、Nb等到元素,这类钢具导热系数大,膨胀系数小、抗氧化性好、抗应力腐蚀优良等特点,多用于制造耐大气、水蒸气、水及氧化性酸腐蚀的零部件。 这类钢存在塑性差、焊后塑性和耐蚀性明显降低等缺点,因而限制了它的应用。炉外精炼技术(AOD或VOD)的应用可使碳、氮等间隙元素大大降低,因此使这类钢获得广泛应用。 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。 奥氏体是没有磁性的。

奥氏体、马氏体、铁素体、双相不锈钢的区别简介

奥氏体、马氏体、铁素体、双相不锈钢的区别简介

不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。

200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材

奥氏体不锈钢和马氏体不锈钢有什么区别

奥氏体不锈钢和马氏体不锈钢有什么区别? 主要是磁性,奥氏体不带磁性,马氏体带磁性。 奥氏体 奥氏体是碳溶解在γ-Fe中的间隙固溶体,常用符号A表示。它仍保持γ-Fe的面心立方晶格。其溶碳能力较大,在727℃时溶碳为ωc=0.77%,1148℃时可溶碳2.11%。奥氏体是在大于727℃高温下才能稳定存在的组织。奥氏体塑性好,是绝大多数钢种在高温下进行压力加工时所要求的组织。奥氏体是没有磁性的。 马氏体分级淬火 是将奥氏体化工件先浸入温度稍高或稍低于钢的马氏体点的液态介质(盐浴或碱浴)中,保持适当的时间,待钢件的内、外层都达到介质温度后取出空冷,以获得马氏体组织的淬火工艺,也称分级淬火。分级淬火由于在分级温度停留到工件内外温度一致后空冷,所以能有效地减少相变应力和热应力,减少淬火变形和开裂倾向。分级淬火适用于对于变形要求高的合金钢和高合金钢工件,也可用于截面尺寸不大、形状复杂地碳素钢工件。 马氏体不锈钢 通过热处理可以调整其力学性能的不锈钢,通俗地说,是一类可硬化的不锈钢。典型牌号为Cr13型,如2Cr13 ,3Cr13 ,4Cr13等。粹火后硬度较高,不同回火温度具有不同强韧性组合,主要用于蒸汽轮机叶片、餐具、外科手术器械。根据化学成分的差异,马氏体不锈钢可分为马氏体铬钢和马氏体铬镍钢两类。根据组织和强化机理的不同,还可分为马氏体不锈钢、马氏体和半奥氏体(或半马氏体)沉淀硬化不锈钢以及马氏体时效不锈钢等。 马氏体就是以人命命名的: 对于学材料的人来说,“马氏体”的大名如雷贯耳,那么说到阿道夫·马滕斯又有几个人知道呢?其实马氏体的“马”指的就是他了。在铁碳组织中这样以人名命名的组织还有很多,今天我们就来说说这些名称和它们背后那些材料先贤的故事。 马氏体Martensite,如前所述命名自Adolf Martens (1850-1914)。这位被称作马登斯或马滕斯的先生是一位德国的冶金学家。他早年作为一名工程师从事铁路桥梁的建设工作,并接触到了正在兴起的材料检验方法。于是他用自制的显微镜(!)观察铁的金相组织,并在1878年发表了《铁的显微镜研究》,阐述金属断口形态以及其抛光和酸浸后的金相组织。(这个工作我们现在做的好像也蛮多的。)他观察到生铁在冷却和结晶过程中的组织排列很有规则(大概其中就有马氏体),并预言显微镜研究必将成为最有用的分析方法之一(有远见)。他还曾经担任了柏林皇家大学附属机械工艺研究所所长,也就是柏林皇家材料试验所("Staatliche Materialprüfungsamt")的前身,他在那里建立了第一流的金相试验室。1895年国际材料试验学会成立,他担任了副主席一职。直到现在,在德国依然有一个声望颇高的奖项以他的名字命名。 马氏体不锈钢是一类可以通过热处理(淬火、回火)对其性能进行调整的不锈钢,通俗地讲,是一类可硬化的不锈钢。这种特性决定了这类钢必须具备两个基本条件:一是在平衡相图中必须有奥氏体相区存在,在该区域温度范围内进行长时间加热,使碳化物固溶到钢中之后,进行淬火形成马氏体,也就是化学成分必须控制在γ或γ+α相区,二是要使合金形成耐腐蚀和氧化的钝化膜,铬含量必须在10.5%以上。按合金元素的差别,可分为马氏

钢的奥氏体等温转变图测定

实验三钢的奥氏体等温转变图测定 一、概述 奥氏体等温转变:钢加热奥氏体化后,冷却到临界点以下进行等温转变时所发生的组织转变为奥氏体等温转变。 奥氏体等温转变图:描述过冷奥氏体在等温转变过程中的转变温度与转变开始和转变终了时间的关系图为奥氏体等温转变图。 奥氏体等温转变图根据转变产物的形态和性质不同分三个区域,低温转变区、中温转变区和高温转变区。 高温转变区转变产物为珠光体。 中温转变区转变产物为贝氏体。 低温转变区转变产物为马氏体和残余奥氏体。 二、实验目的 1、用金相法研究并建立GCr15钢奥氏体的等温转变图。 2、了解不同加热温度对GCr15钢奥氏体等温转变图的影响。 三、实验内容 1、影响奥氏体等温转变的因素 (1)化学成分的影响。 (2)奥氏体晶粒大小对过冷奥氏体转变的影响。 (3)塑性变形的影响。 2、测定奥氏体等温转变图的方法 (1)金相法 (2)硬度法 (3)磁性法 (4)膨胀法 金相法: 金相法能直接而精确地观察到奥氏体分解产物的数量和组织特征。可以确定奥氏体分解的开始点和结束点,还可以精确确定在等温过程中不同等温时间内的奥氏体的分解量。

测量面积法、画线法、定点法和称重法。 硬度法: 随等温停留时间的延长,奥氏体分解量增加,随后淬火得到的马氏体量减少,硬度值随之下降。点1处硬度开始下降,为转变开始时间。到点2处硬度值不再下降,为转变的终了时间。 3、实验步骤 将GCr15钢加热至840℃保温5分钟将试样分别迅速投入到保持在不同温度的盐浴中进行不同时间的等温,然后取出,淬入水中冷却。进行金相组织观察,用画线法测出转变开始时间和结束时间。最后画出GCr15钢奥氏体的等温转变图。

奥氏体马氏体铁素体双相不锈钢的区别简介

不锈钢简介: 不锈钢通俗地说,不锈钢就是不容易生锈的钢,实际上一部分不锈钢,既有不锈性,又有耐酸性(耐蚀性)。不锈钢的不锈性和耐蚀性是由于其表面上富铬氧化膜(钝化膜)的形成。这种不锈性和耐蚀性是相对的。试验表明,钢在大气、水等弱介质中和硝酸等氧化性介质中,其耐蚀性随钢中铬含水量的增加而提高,当铬含量达到一定的百分比时,钢的耐蚀性发生突变,即从易生锈到不易生锈,从不耐蚀到耐腐蚀。不锈钢的分类方法很多。按室温下的组织结构分类,有马氏体型、奥氏体型、铁素体和双相不锈钢;按主要化学成分分类,基本上可分为铬不锈钢和铬镍不锈钢两大系统;按用途分则有耐硝酸不锈钢、耐硫酸不锈钢、耐海水不锈钢等等,按耐蚀类型分可分为耐点蚀不锈钢、耐应力腐蚀不锈钢、耐晶间腐蚀不锈钢等;按功能特点分类又可分为无磁不锈钢、易切削不锈钢、低温不锈钢、高强度不锈钢等等。由于不锈钢材具有优异的耐蚀性、成型性、相容性以及在很宽温度范围内的强韧性等系列特点,所以在重工业、轻工业、生活用品行业以及建筑装饰等行业中获取得广泛的应用。 不锈钢牌号分组 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号303—通过添加少量的硫、磷使其较304更易切削加工。 型号304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号309—较之304有更好的耐温性。 型号316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。[1] 型号321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号416—添加了硫改善了材料的加工性能。 型号420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。

相关文档
相关文档 最新文档