文档库 最新最全的文档下载
当前位置:文档库 › 高二数学期末复习卷(导数、立体几何、解析几何、简易逻辑、积分、复数)

高二数学期末复习卷(导数、立体几何、解析几何、简易逻辑、积分、复数)

高二数学期末复习卷(导数、立体几何、解析几何、简易逻辑、积分、复数)
高二数学期末复习卷(导数、立体几何、解析几何、简易逻辑、积分、复数)

上饶中学2017—2018学年凌云年级第十七周周练卷(理科零班、奥赛)

数学试卷

考试范围:选修2-1、2-2、4-4、4-5 命题人:吕峰 审题人:高二数学组

一、选择题

1.已知复数z 在复平面内对应点是(1,2),若i 虚数单位,则1

1

z z +=- ( ) A. 1i -- B. 1i -+ C. 1i - D. 1i +

2.已知命题:,23x x p x R ?∈<;命题32:,1q x R x x ?∈=-,则下列命题中为真命题的是( )

A. p q ∧

B. p q ?∧

C. p q ∧?

D. p q ?∧?

3.一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:“乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话,且这四人中只有一人是罪犯,由此可判断罪犯是( )

A.甲

B.乙

C.丙

D.丁 4.设函数32()3f x x tx x =-+,在区间[]

1,4上单调递减,则实数t 的取值范围是( ) A. 51(,]8-∞ B. (,3]-∞ C. 51

[,)8

+∞ D. [)3,+∞ 5设若函数有大于零的极值点,则( ) A.

B.

C.

D.

6.已知函数1()x

f x x a e ?

?

=-

??

?

,曲线(x)y f =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是( )

A. ()

2

,e -+∞ B. ()

2,0e - C. 2

1,e ??-

+∞ ???

D. 21,0e ??

- ??? 7.如图,在直三棱柱111ABC A BC -中,

190,2,1ACB AA AC BC ∠====,则异面直线1AB 与AC 所成

角的余弦值是( )

A. B. C. D.8.在平行六面体1111ABCD A BC D -中,底面是边长为1的正方形,若1160A AD A AB ∠-∠=且13A A =,则1AC 的长为( )

A. B. C. D.

9.若抛物线2

2(0)y px p =>上一点到焦点和抛物线对称轴的距离分别为10和6,则抛物线方程为( )

A. 2

4y x = B. 2

36y x = C. 2

4y x =或2

36y x = D. 2

8y x =或2

32y x =

10.在平面直角坐标系 xOy 中,过椭圆()22

22:10x y C a b a b

+=>>的右焦点F 作x 轴的垂线,

交C 于点P ,若2,cos OP OF OPF ?=∠=uu u r uu u r 则椭圆C 的方程为( )

A.

22143x y += B. 22142

x y += C. 22

14x y += D. 2212x y += 11.设12,F F 是双曲线22

221(0,0)x y a b a b

-=>>的左、右焦点,若双曲线右支上存在一点P ,

使()

220OP OF F P +?= (O 为坐标原点),且123PF PF =,则双曲线的离心率为(

)

A.

12

B.1

C.

D.1 12.给出下列四个命题:

(1)若p q ∨为假命题,则,p q 均为假命题;

(2)命题“[)2

1,2,0x x a ?∈-≤”为真命题的一个充分不必要条件可以是1a ≥;

(3)已知函数2

2

11

()f x x x x -=+

,则(2)6f =; (4)若函数2143mx y mx mx -=++的定义域为R ,则实数

m 的取值范围是3

(0,)4

. 其中真命题的个数是( )

A.0

B.1

C.2

D.3

二、填空题

13.已知命题“x R ?∈,使2

1

4(2)04

x a x +-+

≤”是假命题,则实数a 的取值范围是 __________

14.若向区域{(,)|01,01}x y x y ≤≤≤≤内投点,则该点落在由直线y x =与曲线y 围成区域内的概率为__________

15.已知正方体的1111ABCD A BC D -棱长为2,点M ,N 分别是棱BC ,11C D 的中点,点P 在平面1111A B C D 内,点Q 在线段1A N 上,若PM =则P Q 、长度的最小值为__________

16.

已知函数2

,0

()1,0

x

e x

f x x ax x ?≤?=?

++>??,()()1F x f x x =--,且函数()F x 有两个零点,则实数a 的取值范围为__________

三、解答题

17.[选修4-4:坐标系与参数方程]

在直角坐标系xOy 中,曲线C 的参数方程为2cos {

22sin x y αα

==+ (α为参数),直线l 的参数方

程为{

132

x y t

==+ (t 为参数),在以坐标原点O 为极点, x 轴正半轴为极轴的极坐标系中,

过极点O 的射线与曲线C 相交于不同于极点的点A ,且点A

的极坐标为()

1θ,其中

1,2

θπ??∈π ??

?

1.求曲线C 的极坐标方程及1θ的值;

2.射线OA 与直线l 相交于点B ,求AB 的值

18.[选修4—5:不等式选讲] 已知函数(),f x x x a a R =-∈ 1.若(1)(1)1f f +->,求a 的取值范围;

2.若0a >,对(],,x y a ?∈-∞,都有不等式5

()4

f x y y a ≤+

+-恒成立,求a 的取值范围

19.在四棱锥P ABCD -中, PA ⊥平面ABCD ,ABC ?是正三角形, AC 与BD 的交点为M ,又PA AB 4,AD CD,CDA 120===∠=?,点N 是CD 中点

1.平面PMN ⊥平面PAB

2.求二面角B PC D --的余弦值

20.在平面直角坐标系中,已知抛物线28y x =, O 为坐标原点,点M 为抛物线上任意一点,过点M 作 x 轴的平行线交抛物线准线于点P ,直线PO 交抛物线于点N 1.求证:直线MN 过定点G ,并求出此定点坐标 2.若,,M G N 三点满足4MG GN =,求直线MN 的方程

21.已知函数2

1()ln (0)2

f x x a x a =

-> 1.若2a =,求()f x 在(1,(1))f 处的切线方程

2.若()f x 在区间(1,)e 上恰有两个零点,求a 的取值范围

参考答案

一、选择题

1.答案:C 解析:

2.答案:B 解析:

3.答案:B

解析:∵乙、丁两人的观点一致,∴乙、丁两人的供词应该是同真或同假;若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出

乙、丙、丁三人不是罪犯的结论,矛盾;∴乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯. 4.答案:C 解析: 答案: A

解析: 解:由题意得知, 令

解得

又函数

有大于零

的极值点,所以

所以

6.答案:D 解析:

7.答案:D 解析:

8.答案:A 解析:

9.答案:C 解析: 10.答案:B 解析: 11.答案:D

解析:取2PF 的中点A ,则由()

220OP OF F P +?=

得220OA F P ?=,即2OA F P ⊥;

在12PF F ?中, OA 为12PF F ?的中位线,

所以12PF PF ⊥,

所以2

2

212(2)PF PF c +=;

又由双曲线定义知122PF PF a -=,

且12PF =,

所以1)2c a =,

解得1e =,故应选D . 12.答案:C 解析:

二、填空题 13.答案:(0,4)

解析: 14.答案:

16

解析:曲线围成区域面积为:

31

21200211

)()|326

x dx x x =-=?

15.

1

解析:

16.答案:1a < 解析:

三、解答题

17.答案:1.由题意知,曲线C 的普通方程为()2

2

24x y +-=,

∵,x cos y sin ρθρθ==,

∴曲线C 的极坐标方程为()()2

2

24,cos sin ρθρθ+-= 即4?sin ρθ=

由ρ=

得sin θ=

∵,2πθπ??∈ ??? ∴23

πθ=

2.

由题,易知直线l

的普通方程为0x -= ∴直线l

的极坐标方程为0cos sin ρθθ-=. 又射线OA 的极坐标方程为()20,3

θρπ

=

≥ 联立,

得2,03cos sin 0p p θθπ?=≥?

??+-=?

解得ρ=∴点B

的极坐标为23π?

? ???

B A AB ρρ∴=-==解析:

18.答案:1. (1)(1)111f f a a +-=--+>

若1a ≤-,则111a a -++>,得21>,即1a ≤-时恒成立;

若11a -<<,则1(1)1a a --+>,得12a <-

,即112

a -<<-; 若1a ≥,则(1)(1)1a a ---+>,得21->,即不等式无解. 综上所述, a 的取值范围是1

(,)2

-∞-.

2.由题意知,要使得不等式恒成立,只需max min 5

[()][]4

f x y y a ≤++-, 当(],x a ∈-∞时, 2

2

max

(),[()]()24

a a f x x ax f x f =-+==

∵55

44

y y a a +

+-≥+, ∴当5[,]4y a ∈-时, min

555444y y a a a ??++-=+=+????则

2

544a a ≤+,解得15a -≤≤,结合0a >,

所以a 的取值范围是(0,5] 解析:

19.答案:1.证明:在正三角形ABC ?中, AB BC =,在ACD ?中, AD CD =,又BD BD =,所以ABD BCD ???,

所以M 为AC 的中点,又点N 是CD 中点,所以//MN AD 因为PA ⊥平面ABCD ,所以PA AD ⊥,又120CDA ∠=?,

AD CD =所以30DAC ∠=?又60?BAC ∠=,AD AB ⊥,又PA AD ⊥,所以AD ⊥平面PAB ,已证//MN AD , 所以MN ⊥平面PAB ,

2.如图所示以A 为原点, ,,AB AD AP 所在直线分别为 x 轴, y 轴, z 轴建立空间直角坐标系。

已知 PA AB 4,CDA 120==∠=?,ABC ?是正三角形,

则()(

)(

)

()A 0,0,0,4,0,0,2,,,0,0,4B C D P ??

? ???

所以()

PC =

,()

BC 2,=-

,DC 2,3??

= ? ??? 设平面PBC

的一个法向量为()11

1,,m x y z =由PC 0BC 0m m ??=???=?

?1111124020

x z x ?+-=???-+=??

令1x =

则111,y z =-=,所以(3,1,m =--

设平面PDC 的一个法向量为()222,,n

x y z =由PC 0

DC 0n n ??=???=?

?2222224020x z x y ?+-=???=??

令2

x 则223,y z =-=所以(3,3,n =-所以

105

cos ,||||

m n m n m n ?<>=

= 所以二面角B PC D --的余弦值为

解析:

20.答案:1.由题意得抛物线准线方程为2x =-,设(2,)P m -,故2,8m M m ??

???

,从而直线OP 的方程为2m y x =-,联立直线与抛物线方程得282

y x

m y x

?=??=-??,解得23216,N m m ??

- ???,故直

线MN 的方程为228168m m y m x m ??-=- ?

-??,整理得28(2)16

m

y x m =--,故直线 MN 恒过定点(2,0)G

2.由1可设直线MN 的方程为2x ky =+,联立直线与抛物线方程得282

y x

x ky ?=?=+?消元整理

得28160y ky --=,设11(,)M x y ,22(,)N x y ,则由韦达定理可得

128y y k +=,1216y y ?=-,因为4MG GN =,故1122(2,)4(2,)x y x y --=-,得12

4y

y =-,

联立两式1

212

416

y y y y ?=-?

???=-?,解得1282y y =-??=?或1282y y =??=-?,代入128y y k +=,解得34k =-或

34k =,故直线MN 的方程为324y x =-或3

24y x -=-,化简得4380x y --=或

4380x y +-=

解析:

21.答案:1.由已知得()'a f x x x =-

,若2a =时,有()'1121f =-=-,()1

12

f =,∴在()()1,1f 处的切线方程为: ()1

12

y x -

=--,化简得2230x y +-= 2.由1知(

)(

'x x f x x

-+=,因为0a >且0x >,令()'0f x =,

得x =

所以当(x ∈时,有()'0f x <,

则(

是函数()f x 的单调递减区间;

当)x ∈+∞时,有()'0f x >,

则)+∞是函数()f x 的单调递增区间;

若()f x 在区间(1,)e 上恰有两个零点,只需(

)()1000

f f f e >???

??,

即22

10202

202

a

e a e a e a ?>??

?-??

所以当

2

2

e

e a

<<时,()

f x在区间(1,)e上恰有两个零点

解析:

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高中数学导数及微积分练习题

1.求 导:(1)函数 y= 2cos x x 的导数为 -------------------------------------------------------- (2)y =ln(x +2)-------------------------------------;(3)y =(1+sin x )2------------------------ ---------------------- (4)y =3x 2+x cos x ------------------------------------ ;(5)y =x 2cos(2x -π 3 )---------------------------------------- . (6)已知y =ln 3x e x ,则y ′|x =1=________. 2.设1ln )(2+=x x f ,则=)2('f ( ). (A).5 4 (B).5 2 (C).5 1 (D). 5 3 3.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点 )0,(),0,0(1x ,)0,(2x ,且)(x f 在1x =-,2=x 时取得极值,则21x x ?的值为 ( ) (A).4 (B).5 (C).-6 (D).不确定 34.()34([0,1])1()1 () ()0 ()1 2 f x x x x A B C D =-∈-函数的最大值是( ) 5.设底面为等边三角形的直棱柱的体积为V ,则其表面积最小时,

底面边长为( ). (A).3V (B).32V (C).34V (D).32V 6.由抛物线x y 22=与直线4-=x y 所围成的图形的面积是( ). (A).18 (B). 3 38 (C). 3 16 (D).16 7.曲线3x y =在点)0)(,(3≠a a a 处的切线与x 轴、直线a x =所围成的三角形的面积为6 1,则=a _________ 。 8.已知抛物线2y x bx c =++在点(12),处的切线与直线20x y ++=垂直,求函数2y x bx c =++的最值. 9.已知函数x bx ax x f 3)(23-+=在1±=x 处取得极值.(1)讨论)1(f 和 )1(-f 是函数)(x f 的极大值还是极小值;(2)过点)16,0(A 作曲线 )(x f y =的切线,求此切线方程.

广东省汕头市东里中学2012-2013学年高二理科数学期末统考复习 解析几何(教师版)

高二理科数学 汕头统考复习――解析几何 基础过关题 一、直线和圆 1、直线方程的五种形式及相互转化: (1)、点斜式:设直线l 过定点)(00y x P ,,斜率为k ,则直线l 的方程为__________________; (2)、斜截式:设直线l 斜率为k ,在y 轴截距为b ,则直线l 的方程为___________________; (3)、两点式:(4)、截距式:(5)、一般式:直线l 的一般式方程为_______________________; 2、两直线平行?两直线的倾斜角相等?两直线的斜率相等或两直线的斜率均不存在; 两直线垂直?两直线的斜率互为负倒数或一直线的斜率不存在,另一直线的斜率为0; 3、两点)( )(2211y x y x ,, ,间的距离:___________________; 点)(00y x P ,到直线l :0=++C By Ax 的距离:_______________________; 4、圆的定义:平面上到定点距离等于定长的动点的轨迹; 圆的标准方程:___________________,圆的一般方程:_____________________________________; 练习题 1.过点(1,3)-且平行于直线032=+-y x 的直线方程为( A ) A .072=+-y x B .012=-+y x C .250x y --= D .052=-+y x 2、如图,在平行四边形ABCD 中,边AB 所在直线方程为220x y --=,点(2,0)C 。 (1)直线CD 的方程为 240x y --= ; (2)AB 边上的高CE 所在直线的方程为 220x y +-= 3 、已知点(a,2)(a>0)到直线l :x-y+3=0的距离为1,则a 等于 (C ) (A).2 (B). 22- (C).12- (D). 1+2 4、 经过圆()()421:2 2 =-+y x C +的圆心且斜率为1的直线方程为( A ) A 、03=+-y x B 、03=--y x C 、01=-+y x D 、03=++y x 5、过点A (2,-3),B (-2,-5),且圆心在直线032=--y x 上的圆的方程为 (x +1)2+(y +2)2=10二、圆锥曲线 1.定义:⑴椭圆:|)|2(,2||||2121F F a a MF MF >=+;⑵双曲线: |)|2(,2||||||2121F F a a MF MF <=-;⑶抛物线:略 2、标准方程。 3、几何性质(离心率) 4、双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x T渐近线方程:22220x y a b -=?x a b y ±= .

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

(word完整版)高二数学导数单元测试题(有答案)

高二数学导数单元测试题(有答案) (一).选择题 (1)曲线32 31y x x =-+在点(1,-1)处的切线方程为( ) A .34y x =- B 。32y x =-+ C 。43y x =-+ D 。45y x =- a (2) 函数y =a x 2 +1的图象与直线y =x 相切,则a = ( ) A . 18 B .41 C .2 1 D .1 (3) 函数13)(2 3 +-=x x x f 是减函数的区间为 ( ) A .),2(+∞ B .)2,(-∞ C .)0,(-∞ D .(0,2) (4) 函数,93)(2 3 -++=x ax x x f 已知3)(-=x x f 在时取得极值,则a = ( ) A .2 B .3 C .4 D .5 (5) 在函数x x y 83 -=的图象上,其切线的倾斜角小于 4 π 的点中,坐标为整数的点的个数是 ( ) A .3 B .2 C .1 D .0 (6)函数3 ()1f x ax x =++有极值的充要条件是 ( ) A .0a > B .0a ≥ C .0a < D .0a ≤ (7)函数3 ()34f x x x =- ([]0,1x ∈的最大值是( ) A . 1 2 B . -1 C .0 D .1 (8)函数)(x f =x (x -1)(x -2)…(x -100)在x =0处的导数值为( ) A 、0 B 、1002 C 、200 D 、100! (9)曲线313y x x = +在点413?? ???,处的切线与坐标轴围成的三角形面积为( ) A.19 B.29 C.13 D.23 (二).填空题 (1).垂直于直线2x+6y +1=0且与曲线y = x 3 +3x -5相切的直线方程是 。 (2).设 f ( x ) = x 3 - 2 1x 2 -2x +5,当]2,1[-∈x 时,f ( x ) < m 恒成立,则实数m 的取值范围为 . (3).函数y = f ( x ) = x 3+ax 2+bx +a 2 ,在x = 1时,有极值10,则a = ,b = 。 (4).已知函数32 ()45f x x bx ax =+++在3 ,12x x ==-处有极值,那么a = ;b = (5).已知函数3 ()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 (6).已知函数32 ()33(2)1f x x ax a x =++++ 既有极大值又有极小值,则实数a 的取值

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一) 时间:120分钟总分:150分 一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx 2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则() A . a = 1, b = 1 B . a =— 1, b = 1 C . a = 1, b =— 1 D . a =— 1, b =— 1 3. 设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =( ) In2 A . e 2 B . e C^^ D . ln2 4. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( ) B . f ‘ (x) = 2 x sinx — x cosx , sinx 厂 C . f (x)= 2 x + x cosx D . f ‘ sinx 厂 (x)= 2 x — x cosx 1 -3 -3

6. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:

①f(x)在区间[—2,—1]上是增函数; ②x=—1是f(x)的极小值点; ③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数; ④x= 2是f(x)的极小值点. 其中,所有正确判断的序号是() A .①② B .②③C.③④ D .①②③④ 7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是() A. O w a w 21 B. a= 0 或a = 7 C. a<0 或a>21 D. a= 0 或a= 21 8某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)() A . 30 元B. 60 元C. 28 000元D. 23 000 元 x 9. 函数f(x) = —g(a

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

高中数学解析几何知识点总结

高中数学解析几何知识 点总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

§0 7. 直线和圆的方程 知识要点 一、直线方程. 1. 直线的倾斜角:一条直线向上的方向与x 轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x 轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是 )0(1800παα ≤≤. 注:①当 90=α或12x x =时,直线l 垂直于x 轴,它的斜率不存在. ②每一条直线都存在惟一的倾斜角,除与x 轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定. 2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式. 特别地,当直线经过两点),0(),0,(b a ,即直线在x 轴,y 轴上的截距分别为)0,0(,≠≠b a b a 时,直线方程是:1=+b y a x . 注:若23 2--=x y 是一直线的方程,则这条直线的方程是23 2--=x y ,但若 )0(23 2 ≥-- =x x y 则不是这条线. 附:直线系:对于直线的斜截式方程b kx y +=,当b k ,均为确定的数值时,它表示一条确定的直线,如果b k ,变化时,对应的直线也会变化.①当b 为定植,k 变化时,它们表示过定点(0,b )的直线束.②当k 为定值,b 变化时,它们表示一组平行直线. 3. ⑴两条直线平行: 1l ∥212k k l =?两条直线平行的条件是:①1l 和2l 是两条不重合的直线. ②在1l 和2l 的斜 率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个“前提”都会导致结论的错误. (一般的结论是:对于两条直线21,l l ,它们在y 轴上的纵截距是21,b b ,则 1l ∥212k k l =?,且21b b ≠或21,l l 的斜率均不存在,即2121A B B A =是平行的必要不充分条 件,且21C C ≠)

高二数学导数测试题(经典版)

一、选择题(每小题5分,共70分.每小题只有一项就是符合要求得) 1.设函数()y f x =可导,则0(1)(1) lim 3x f x f x ?→+?-?等于( ). A.'(1)f B.3'(1)f C.1 '(1)3f D.以上都不对 2.已知物体得运动方程就是4321 4164 S t t t =-+(t 表示时间,S 表示位移),则瞬时速度 为0得时刻就是( ). A.0秒、2秒或4秒 B.0秒、2秒或16秒 C.2秒、8秒或16秒 D.0秒、4秒或8秒 3.若曲线21y x =-与31y x =-在0x x =处得切线互相垂直,则0x 等于( ). C.23 D.23或0 4.若点P 在曲线323 3(34 y x x x =-++上移动,经过点P 得切线得倾斜角为α,则角α得取值范围就是( ). A.[0,]π B.2[0,)[,)23 ππ π C.2[,)3ππ D.2[0,)(,)223 πππ 5.设'()f x 就是函数()f x 得导数,'()y f x =得图像如图 所示,则()y f x =得图像最有可能得就是 3x ))-7.已知函数3 2 ()f x x px qx =--分别为( ). A.427 ,0 B.0,427 C.427- ,0 D.0,427 - 8.由直线21=x ,2=x ,曲线x y 1 =及x 轴所围图形得面积就是( ). A 、 415 B 、 417 C 、 2ln 21 D 、 2ln 2 9.函数3 ()33f x x bx b =-+在(0,1)内有极小值,则( ). A.01b << B.1b < C.0b > D.1 2 b < 10.21y ax =+得图像与直线y x =相切,则a 得值为( ). A.18 B.14 C.1 2 D.1

高二数学解析几何综合复习资料:圆锥曲线的综合问题旧人教版

高二数学寒假辅导资料(6) 圆锥曲线的综合问题 一、基础知识: 解析几何是联系初等数学与高等数学的纽带,它本身侧重于形象思维、推理运算和数形结合,综合了代数、三角、几何、向量等知识反映在解题上,就是根据曲线的几何特征准确地转换为代数形式,根据方程画出图形,研究几何性质学习时应熟练掌握函数与方程的思想、数形结合的思想、参数的思想、分类与转化的思想等,以达到优化解题的目的 具体来说,有以下三方面: (1)确定曲线方程,实质是求某几何量的值;含参数系数的曲线方程或变化运动中的圆锥曲线的主要问题是定值、最值、最值范围问题,这些问题的求解都离不开函数、方程、不等式的解题思想方法有时题设设计的非常隐蔽,这就要求认真审题,挖掘题目的隐含条件作为解题突破口 (2)解析几何也可以与数学其他知识相联系,这种综合一般比较直观,在解题时保持思维的灵活性和多面性,能够顺利进行转化,即从一知识转化为另一知识 (3)解析几何与其他学科或实际问题的综合,主要体现在用解析几何知识去解有关知识,具体地说就是通过建立坐标系,建立所研究曲线的方程,并通过方程求解来回答实际问题在这一类问题中“实际量”与“数学量”的转化是易出错的地方,这是因为在坐标系中的量是“数量”,不仅有大小还有符号 二、基础练习: 1设abc ≠0,“ac >0”是“曲线ax 2+by 2=c 为椭圆”的( ) A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分又不必要条件 答案:B 解析:ac >0曲线ax 2+by 2=c 为椭圆反之成立 2到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A 椭圆 B AB 所在直线 C 线段AB D 无轨迹 答案:C 解析:数形结合易知动点的轨迹是线段AB :y =3 4 x ,其中0≤x ≤3 3若点(x ,y )在椭圆4x 2+y 2=4上,则2 -x y 的最小值为( ) A1 B -1 C -3 2 3 D 以上都不对 答案:C 解析: 2 -x y 的几何意义是椭圆上的点与定点(2,0)连线的斜率显然直线与椭圆相切时取得最值,设直线y =k (x -2)代入椭圆方程(4+k 2)x 2-4k 2x +4k 2-4=0令Δ=0,k =±3 23∴k min =-3 23 4以正方形ABCD 的相对顶点A 、C 为焦点的椭圆,恰好过正方形四边的中点,则该椭圆的离心率为( ) A 3210- B 315- C 2 1 5- D 2 2 10- 答案:D 解析:建立坐标系,设出椭圆方程,由条件求出椭圆方程,可得e = 2 2 10- 5已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n y 2 =1的两个焦点,P 是椭圆上的点,当∠F 1PF 2 =3 π2时,△F 1PF 2的面积最大,则有

人教A版高中数学选修《导数综合练习题》

导数练习题 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程9 )32()(2 +-=a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分) 已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f

高中解析几何知识点

解析几何知识点 一、基本内容 (一)直线的方程 1、直线的方程 确定直线方程需要有两个互相独立的条件,而其中一个必不可少的条件是直线必须经过一已知点.确定直线方程的形式很多,但必须注意各种形式的直线方程的适用范围. 2、两条直线的位置关系 两条直线的夹角,当两直线的斜率k1,k2都存在且k1·k2≠ 外注意到角公式与夹角公式的区别. (2)判断两直线是否平行,或垂直时,若两直线的斜率都存在,可用斜率的关系来判断.但若直线斜率不存在,则必须用一般式的平行垂直条件来判断. 3、在学习中注意应用数形结合的数学思想,即将对几何图形的研究,转化为对代数式的研究,同时又要理解代数问题的几何意义. (二)圆的方程 (1)圆的方程 1、掌握圆的标准方程及一般方程,并能熟练地相互转化,一般地说,具有三个条件(独立的)才能确定一个圆方程.在求圆方程时,若条件与圆心有关,则一般用标准型较易,若

已知圆上三点,则用一般式方便,注意运用圆的几何性质,去简化运算,有时利用圆系方程也可使解题过程简化. 2、 圆的标准方程为(x -a )2+(y -b )2=r 2;一般方程x 2+y 2+Dx+Ey +F =0,圆心坐标 (,)22D E -- 3、 在圆(x -a )2+(y -b )2=r 2,若满足a 2+b 2 = r 2条件时,能使圆过原点;满足a=0,r >0条件时,能使圆心在y 轴上;满足b r =时,能使圆与x 轴相切;r =条件时, 能使圆与x -y =0相切;满足|a |=|b |=r 条件时,圆与两坐标轴相切. 4、 若圆以A (x 1,y 1)B (x 2,y 2)为直径,则利用圆周上任一点P (x ,y ), 1PA PB k k =-求出圆方程(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0 (2) 直线与圆的位置关系 ①在解决的问题时,一定要联系圆的几何性质,利用有关图形的几何特征,尽可能简化运算,讨论直线与圆的位置关系时,一般不用△>0,△=0,△<0,而用圆心到直线距离d <r ,d=r ,d >r ,分别确定相关交相切,相离的位置关系.涉及到圆的切线时,要考虑过切点与切线垂直的半径,计算交弦长时,要用半径、弦心距、半弦构成直角三角形,当然,不失一般性弦长式 ③已知⊙O 1:x 2+y 2 = r 2,⊙O 2:(x -a )2+(y -b )2=r 2;⊙O 3:x 2+y 2+Dx+Ey +F =0则以M (x 0,y 0)为切点的⊙O 1切线方程为xx 0+yy 0=r 2;⊙O 2切线方程 条切线,切线弦方程:xx 0+yy 0=r 2. (三)曲线与方程 (1)在平面内建立直角坐标系以后,坐标平面内的动点都可以用有序实数对x 、y 表示,这就是动点的坐标(x ,y ).当点按某种规律运动而形成曲线时,动点坐标(x ,y )中的变量x ,y 存在着某种制约关系.这种制约关系反映到代数中,就是含有变量x ,y 方程F (x ,y )=0. 曲线C 和方程F (x ,y )=0的这种对应关系,还必须满足两个条件: (1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都在曲线上,这时,我们才能把这个方程叫做曲线的方程,

高二数学函数的单调性与导数测试题

选修2-21.3.1函数的单调性与导数 一、选择题 1.设f(x)=ax3+bx2+cx+d(a>0),则f(x)为R上增函数的充要条件是() A.b2-4ac>0B.b>0,c>0 C.b=0,c>0 D.b2-3ac<0 [答案] D [解析]∵a>0,f(x)为增函数, ∴f′(x)=3ax2+2bx+c>0恒成立, ∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0. 2.(2009·广东文,8)函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) [答案] D [解析]考查导数的简单应用. f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x, 令f′(x)>0,解得x>2,故选D. 3.已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,则该函数的单调递减区间为() A.[-1,+∞) B.(-∞,2] C.(-∞,-1)和(1,2) D.[2,+∞) [答案] B [解析]令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2]. 4.已知函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)

的导函数),下面四个图象中,y =f (x )的图象大致是( ) [答案] C [解析] 当01时xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此否定A 、B 、D 故选C. 5.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( ) A.? ????-π,-π2和? ?? ??0,π2 B.? ????-π2,0和? ?? ??0,π2 C.? ????-π,-π2和? ?? ??π2,π D.? ????-π20和? ?? ??π2,π

高中数学必修2解析几何公式知识点总结

高中数学必修2解析几何知识点 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0

(完整版)高二导数练习题及答案

高二数学导数专题训练 一、选择题 1. 一个物体的运动方程为S=1+t+2 t 其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( ) A 7米/秒 B 6米/秒 C 5米/秒 D 8米/秒 2. 已知函数f (x )=ax 2 +c ,且(1)f '=2,则a 的值为( ) A.1 B.2 C.-1 D. 0 3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则 ()f x 与()g x 满足( ) A ()f x =2()g x B ()f x -()g x 为常数函数 C ()f x =()0g x = D ()f x +()g x 为常数函数 4. 函数3 y x x =+的递增区间是( ) A )1,(-∞ B )1,1(- C ),(+∞-∞ D ),1(+∞ 5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( ) A. f(x) 〉0 B.f(x)〈 0 C.f(x) = 0 D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A (1,0) B (2,8) C (1,0)和(1,4)-- D (2,8)和(1,4)-- 8.函数3 13y x x =+- 有 ( ) A.极小值-1,极大值1 B. 极小值-2,极大值3 C.极小值-1,极大值3 D. 极小值-2,极大值2 9. 对于R 上可导的任意函数()f x ,若满足' (1)()0x f x -≥,则必有( ) A (0)(2)2(1)f f f +< B (0)(2)2(1)f f f +≤ C (0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +> 10.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0

相关文档
相关文档 最新文档