文档库 最新最全的文档下载
当前位置:文档库 › 选修3-5动量定理修正版

选修3-5动量定理修正版

选修3-5动量定理修正版
选修3-5动量定理修正版

一、动量(p )

1、定义:物体的质量及运动速度的乘积定义为该物体的动量。

p=mv (v :物体相对于地面的瞬时速度) 2、单位: 3、特征:

①动量是状态量,它与某一时刻相关;

②动量是矢量,方向与物体的速度方向相同。 4、意义:速度从运动学角度量化了机械运动的状态, 动量则从动力学角度量化了机械运动的状态。 5、动量大小与动能的关系:

注: ⑴恒定(不变)的矢量:大小和方向都不变 ⑵变化的矢量:大小和方向至少有一个要素发生变化 6、动量的变化量 ⑴定义: (矢量式,必须遵循矢量的运算法则) ⑵ΔP 是一个不同于P 1、P 2的新的矢量 ⑶

二、冲量(I )

1、定义:力与其作用时间的乘积定义为这个力对这个物体的冲量 。

I=Ft (F 为恒力) 2、单位: 3、特征:①冲量是过程量,它与某一段时间相关;②冲量是矢量,对于方向不变的力,力的冲量方向与该力的方向相同。 注:状态量和过程量

状态量:状态量描述某种物理状态,对应于时刻; 状态量有速度、动能、动量

过程量:过程量描述某个物理过程,过程量的发生需要一段时间或一个过程,对应于一段时间;

过程量有位移、功、冲量,速度的变化量、动量的变化量、动能的变化量

4、意义:冲量是力对时间的累积效应。

5、在F-t 图像中,图象与坐标轴所围成的“面积”在数值上等于力的冲量

6、合力的冲量(I 合)

⑴F 合为恒力时:I 合= F 合 t

⑵定理:物体在某运动过程中,合力对物体的冲量等于各个分力对物体冲量的矢量和

I 合=I 1+I 2+I

3+···

(矢量式

)

三、动量定理

1、两种表述:

在某个运动过程中,物体所受合力的冲量, (各个力的冲量的矢量和)

等于物体动量的变化量 2、两种表达式: I 合=ΔP

①F 合t=P 2-P 1

②I 1+I 2+I 3+????=P 2-P 1

各式都是矢量式,必须遵循矢量的运算法则 3、推论:

①I 合与P 同向:P 增大,物体做加速运动 ②I 合与P 反向:P 减小,物体做速减运动 ③ I 合=0:P 1=P 2 4、理解要点

⑴动量定理反映了力对时间的累积效果: 改变物体的动量

⑵因果性:合力的冲量是使物体动量发生变化的原因 ⑶同向性:ΔP 与I 合的方向相同

⑷决定性:ΔP 由I 合所决定,合力的冲量是物体动量变化的量度

⑸同过程性:ΔP 与I 合对应于同一个运动过程 5、动量定理的第三种表述:

物体所受合力等于物体动量的变化率

理解要点: 6、动量定理具有普遍适用性:

对于直线、曲线运动,恒力、变力,动量定理都适用,动量定理适用于任何动力学问题

【例题】

1、质量为m 的钢球从高处落下,以速率v 1碰地,碰撞时间t 极短,然后竖直向上弹回,离地的速率为v 2,求在碰撞过程中钢球对地面的平均作用力大小。

2、质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里,空气阻力不记,求:(1)沙对小球的平均阻力F ;(2)小球在沙坑里下落过程所受的总冲量I 。

【练习题】

一、选择题(不定项选择)

1.对于力的冲量的说法,正确的是( ) A .力越大,力的冲量就越大

B .作用在物体上的力大,力的冲量也不一定大

C .F 1与其作用时间t 1的乘积F 1t 1等于F 2与其作用时间t 2的乘积F 2t 2,则这两个冲量相同

D .静置于地面的物体受到水平推力F 的作用,经时间t 物体仍静止,则此推力的冲量为零

2.下列关于动量的说法中,正确的是( ) A .物体的动量改变,其速度大小一定改变 B .物体的动量改变,其速度方向一定改变

C .物体运动速度的大小不变,其动量一定不变

D .物体的运动状态改变,其动量一定改变

3.一个质量为m 的小钢球,以速度v 1竖直向下射到质量较大的水平钢板上,碰撞后被竖直向上弹出,速度大小为v 2,若v 1 = v 2 = v ,那么下列说法中正确的是

( )

A .因为v 1 = v 2,小钢球的动量没有变化

B .小钢球的动量变化了,大小是2mv ,方向竖直向上

C .小钢球的动量变化了,大小是2mv ,方向竖直向下

D .小钢球的动量变化了,大小是mv ,方向竖直向上

4.物体动量变化量的大小为5kg ·m/s ,这说明 ( ) A

B .物体的动量在增大

C .物体的动量大小也可能不变

D .物体的动量大小一定变化

5.质量为m 的钢球自高处落下,以速率v 1碰地,竖直向上弹回,碰撞时间极短,离地的速率为v 2。在碰撞过程中,地面对钢球的冲量方向和大小为( ) A .向下,m(v 1-v 2) B .向下,m(v 1+v 2) C .向上,m(v 1-v 2) D .向上,m(v 1+v 2) 6.如图所示,用弹簧片将在小球下的垫片打飞出去时,可以看到小球正好落在下面的凹 槽中,这是因为在垫片飞出的过程中A .垫片受到的打击力很大 B .小球受到的摩擦力很小 C .小球受到的摩擦力的冲量很小 D .小球的动量变化几乎为零

7.某物体以-定初速度沿粗糙斜面向上滑,

如果物体在上滑过程中受到的合冲量大小为I上,下滑过程中受到的合冲量大小为I,它们的大小相比较为 A .I 上> I

B .I 上

C .I 上=I 下

D .条件不足,无法判定 8.对下列几个物理现象的解释,正确的有

A .击钉时,不用橡皮锤仅仅是因为橡皮锤太轻

B .跳高时,在沙坑里填沙,是为了减小人落地时地面对人的冲量

C .在车内推车推不动,是因为外力冲量为零

D .初动量相同的两个物体受相同制动力作用,质量小的先停下来

9.质量相等的A 、B 两个物体,沿着倾角分别为α和β的两个光滑斜面,由静止从同一高度h 2开始下滑到同样的另一高度h 1 的过程中(如图所示),A 、B 两个物体相同的物理量是( )

A .所受重力的冲量

B .所受支持力的冲量

C .所受合力的冲量

D .动量改变量的大小

/kg m s ?222k

k p mE p E m

==

21()p p p ?

=--末初21()p m v v v v ?=??=--末初N S

? F

0 t 2

t 1 t

=P F t

??合,P F t P

t

????合决定了表示动量变化的快慢

《动量、冲量、动量定理》学案

10.三颗水平飞行的质量相同的子弹A 、B 、C 以相同速度分别射向甲、乙、丙三块竖直固定的木板。A 能穿过甲木板,B 嵌入乙木板,C 被丙木板反向弹回。上述情况木板受到的冲量最大的是 ( ) A .甲木板 B .乙木板

C .丙木板

D .三块一样大 11.一辆空车和一辆满载货物的同型号的汽车,在同一路面上以相同的速度向同一方向行驶.紧急刹车后

(即车轮不滚动只滑动) 那么 ( )

A .货车由于惯性大,滑行距离较大

B .货车由于受

的摩擦力较大,滑行距离较小

C .两辆车滑行的距离相同

D .两辆车滑

行的时间相同

12.一个质量为0.3kg 的小球,在光滑水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小为4m/s 。则碰撞前后墙对小球的冲量大小I 及碰撞过程中墙对小球做的功W 分别( ) A .I= 3 kg·m/s W = -3 J B .I= 0.6 kg·m/s W = -3 J C .I= 3 kg·m/s W = 7.8 J D .I= 0.6 kg·m/s W = 3 J 13.如图所示,PQS 是固定于竖直平面内的光滑的1/4圆周轨道,圆心O 在S 的正上方。在O 、P 两点各有一质量为m 的小物块a 和b ,从同时刻开始,a 自由下落,b 沿圆弧下滑。以下说法正确的是( )

A. a 比b 先到达S ,它们在S 点的动量不相等

B. a 与b 先到达S ,它们在S 点的动量不相等

C. a 比b 先到达S ,它们在S 点的动量相等

D.b 比a 先到达S ,它们在S 点的动量相等

二、填空题

1.以初速度20m /s 竖直向上抛出一个质量为0.5kg 的物体,不计空气阻力,g 取10m/s 2.则抛出后第1s 末物体的动量为______kg ·m/s ,抛出后第3s 末物体的动量为____kg ·m/s ,抛出3s 内该物体的动量变化量是_____kg ·m/s .(设向上为正方向)

2.质量为m 的物体放在水平面上,在水平外力F 的

作用下由静止开始运动,经时间t 撤去该力,若物体与水平面间的动摩擦因数为μ,则物体在水平面上一

共运动的时间为_______________。

3.质量为1k g的物体沿直线运动,其v -t 图象如图所示,则此物体前4s 和后4s 内受到的合外力冲量分别为 __________和_____________。 二、计算题 1、质量为m 的小球由高为H 的光滑固定斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是

多大? 2、以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少?

3、震惊世界的“9.11” 事件中,从录像可以看到波音客机切入大厦及大厦的坐塌过程.(1)设飞机质量为m 、速度为v ,撞机经历时间为t ,写出飞机对大厦撞击力的表达式.(2)撞击世贸大厦南楼的是波音767

飞机,波音767飞机总质量约150吨,机身长度为48.5m ,撞楼时速度约150m/s ,世贸大厦南楼宽63m ,飞机头部未从大楼穿出,可判断飞机在楼内运动距离约为机身长度,设飞机在楼内作匀减速运动,估算撞机时间及飞机对大厦撞击力。

专题:动量定理求解多过程问题 (全程法、分段法)

1、 质量为m=1kg 的小球由高h 1=0.45m 处自由下落,落到水平地面后,反跳的最大高度为h 2=0.2m ,从小球下落到反跳到最高点经历的时间为Δt=0.6s ,取g=10m/s 2

。求:小球撞击地面过程中,球对地面的平均压力的大小F 。

2、一个质量为m=2kg 的物体,在F 1=8N 的水平推力作用下,从静止开始沿水平面运动了t 1=5s ,然后推力减小为F 2=5N ,方向不变,物体又运动了t 2=4s 后撤去外力,物体再经 过t 3=6s 停下来。试求物体在水平面上所受的摩擦力。

3、一个质量为60kg 的杂技演员练习走钢丝时使用安全带,当此人走到安全带上端的固定点的正下方时不慎落下,下落5m 时安全带被拉直,此后又经过0.5s 的缓冲,人的速度变为零,求这0.5s 内安全带对人的平均拉力多大?(g 取10m/s 2)

专题:动量定理求解流体问题(微元法) 流体:分为气体流、液体流、粒子流

1、如图所示,一个下面装有轮子的贮气瓶停放在光滑的水平地面上,顶端与竖直墙壁接触.现打开尾端阀门,气体往外喷出,设喷口面积为S ,气体密度为ρ ,气体往外喷出的速度为v ,求气体刚喷出时钢瓶顶端对竖直墙的作用力大小。

2.设水的密度为ρ,水枪口的截面积是S ,水的射速为v

,射到煤层速度变为零,求水对煤层的冲力.

m Q

O P

S

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

动量守恒定律碰撞与反冲

动量守恒定律碰撞与反冲Last revision on 21 December 2020

碰撞与反冲 【自主预习】 1.如果碰撞过程中机械能守恒,这样的碰撞叫做________。 2.如果碰撞过程中机械能不守恒,这样的碰撞叫做________。 3.一个运动的球与一个静止的球碰撞,如果碰撞之前球的运动速度与两球心的连线在________,碰撞之后两球的速度________会沿着这条直线。这种碰撞称为正碰,也叫________碰撞。 4.一个运动的球与一个静止的球碰撞,如果之前球的运动速度与两球心的连线不在同一条直线上,碰撞之后两球的速度都会________原来两球心的连线。这种碰撞称为________碰撞。 5.微观粒子相互接近时并不发生直接接触,因此微观粒子的碰撞又叫做 ________。 6. 弹性碰撞和非弹性碰撞 从能量是否变化的角度,碰撞可分为两类: (1)弹性碰撞:碰撞过程中机械能守恒。 (2)非弹性碰撞:碰撞过程中机械能不守恒。 说明:碰撞后,若两物体以相同的速度运动,此时损失的机械能最大。 7.弹性碰撞的规律 质量为m1的物体,以速度v1与原来静止的物体m2发生完全弹性碰撞,设碰撞后它们的速度分别为v′1和v′2,碰撞前后的速度方向均在同一直线上。 由动量守恒定律得m1v1=m1v′1+m2v′2 由机械能守恒定律得1 2 m1v21= 1 2 m1v′21+ 1 2 m2v′22 联立两方程解得 v′1=m1-m2 m1+m2 v1,v′2= 2m1 m1+m2 v1。 (2)推论 ①若m1=m2,则v′1=0,v′2=v1,即质量相等的两物体发生弹性碰撞将交换速度。惠更斯早年的实验研究的就是这种情况。 ②若m1m2,则v′1=v1,v′2=2v1,即质量极大的物体与质量极小的静止物体发生弹性碰撞,前者速度不变,后者以前者速度的2倍被撞出去。 ③若m1m2,则v′1=-v1,v′2=0,即质量极小的物体与质量极大的静止物体发生弹性碰撞,前者以原速度大小被反弹回去,后者仍静止。乒乓球落地反弹、台球碰到桌壁后反弹、篮球飞向篮板后弹回,都近似为这种情况。 【典型例题】 【例1】在光滑水平面上有三个完全相同的小球,它们成一条直线,2、3小球静止,并靠在一起,1球以速度v0射向它们,如图16-4-2所示。设碰撞中不损失机械能,则碰后三个小球的速度可能是( )

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

动量守恒定律,碰撞知识点总结

动量守恒定律,碰撞知识点总结 动量守恒定律 1.守恒条件 (1)系统不受外力或所受外力的合力为零,则系统动量守恒. (2)系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒. (3)当系统在某个方向上所受合力为零时,系统在该方向上动量守恒. 2.几种常见表述及表达式 (1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′). (2)Δp=0(系统总动量不变). (3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反). 其(1)的形式最常用,具体到实际应用时又有以下三种常见形式: ①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统). ②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与 各自质量成反比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非 弹性碰撞). 3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性. 4.应用动量守恒定律解题的步骤: (1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程); (2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒); (3)规定正方向,确定初、末状态动量; (4)由动量守恒定律列出方程; (5)代入数据,求出结果,必要时讨论说明. 碰撞现象 2.弹性碰撞的规律 两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律. 在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

最新高中物理动量定理专题训练答案

最新高中物理动量定理专题训练答案 一、高考物理精讲专题动量定理 1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211 222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上. 2.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停

高中物理动量定理试题经典及解析

高中物理动量定理试题经典及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

【2013真题汇编】第18专题 碰撞与动量守恒定律

第十七专题 碰撞与动量守恒定律 【 2013福建卷30 (2) 】将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在及短时间内以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是 。(填选项前的事母) A.0m v M B. 0M v m C. 0M v M m - D. 0m v M m - 【答案】D 【解析】根据动量守恒定律得:0)(0=--mv v m M ,所以火箭模型获得的速度大小是m M m v v -=0,选项D 正确。 【2013山东 38(2)】如图所示,光滑水平轨道上放置长木板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端,三者质量分别为kg 2=A m 、kg 1=B m 、kg 2=C m 。开始时C 静止,A 、B 一起以s /m 5=0v 的速度匀速向右运动,A 与C 发生碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞。求A 与C 发生碰撞后瞬间A 的速度大小。 解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰后瞬间A 的速度为v A ,C 的速度为v C ,以向右为正方向,由动量守恒定律得 C C A A A v m v m v m +=0 A 与 B 在摩擦力作用下达到共同速度,设共同速度为v AB , 由动量守恒定律得 AB B A B A A v m m v m v m )+(=+0 A 与 B 达到共同速度后恰好不再与 C 碰撞,应满足C AB v v = 联立上式,代入数据得 s /m 2=A v 【2013江苏 12 C (3)】如图所示,进行太空行走的宇航员A 和B 的质量分别为80kg 和100kg ,他们携手远离空间站,相对空间站的速度为0。 1m/ s 。 A 将B 向空间站方向轻推后,A 的速度变为0。2m/ s ,求此时B 的速度大小和方向。

高中物理动量定理解题技巧讲解及练习题(含答案)

高中物理动量定理解题技巧讲解及练习题(含答案) 一、高考物理精讲专题动量定理 1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】 (1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则: 212 h gt = 解得 6s t = 对礼花弹从发射到抛到最高点,由动量定理 00()0Ft mg t t -+= 其中 00.2s t = 解得 1550N F = (2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得 1122m v m v = 由能量守恒定律得 2211221122E m v m v = + 其中 121 4m m = 12m m m =+ 联立解得 1120m/s v =

230m/s v = 之后两物块做平抛运动,则 竖直方向有 212 h gt = 水平方向有 12s v t v t =+ 由以上各式联立解得 s=900m 2.在距地面20m 高处,某人以20m/s 的速度水平抛出一质量为1kg 的物体,不计空气阻力(g 取10m /s 2)。求 (1)物体从抛出到落到地面过程重力的冲量; (2)落地时物体的动量。 【答案】(1)20N ?s ,方向竖直向下(2 )m/s ?, 与水平方向的夹角为45° 【解析】 【详解】 (1)物体做平抛运动,则有: 212 h gt = 解得: t =2s 则物体从抛出到落到地面过程重力的冲量 I=mgt =1×10×2=20N?s 方向竖直向下。 (2)在竖直方向,根据动量定理得 I=p y -0。 可得,物体落地时竖直方向的分动量 p y =20kg?m/s 物体落地时水平方向的分动量 p x =mv 0=1×20=20kg?m/s 故落地时物体的动量 m/s p = =? 设落地时动量与水平方向的夹角为θ,则 1y x p tan p θ= = θ=45°

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

动量守恒定律-碰撞问题试卷

动量守恒定律-碰撞问题试卷

考点23动量守恒定律碰撞问题考点名片 考点细研究:(1)动量守恒定律处理系统内物体的相互作用;(2)碰撞、打击、反冲等“瞬间作用”问题。其中考查到的如:2016年全国卷Ⅰ第35题(2)、2016年全国卷Ⅲ第35题(2)、2016年天津高考第9题(1)、2015年福建高考第30题(2)、2015年北京高考第17题、2015年山东高考第39题(2)、2014年重庆高考第4题、2014年福建高考第30题(2)、2014年江苏高考第12题C(3)、2014年安徽高考第24题、2013年天津高考第2题、2013年福建高考第30题等。高考对本考点的考查以识记、理解为主,试题难度不大。 备考正能量:预计今后高考仍以选择题和计算题为主要命题形式,以物理知识在生活中的应用为命题热点,灵活考查动量守恒定律及其应用,难度可能加大。 一、基础与经典 1. 如图所示,在光滑水平面上,用等大反向的力F1、F2分别同时作用于A、B两个静止的物体上。已知m A

答案 A 解析选取A、B两个物体组成的系统为研究对象,根据动量定理,整个运动过程中,系统所受的合外力为零,所以动量改变量为零。初始时刻系统静止,总动量为零,最后粘合体的动量也为零,即粘合体静止,选项A正确。 2.关于系统动量守恒的条件,下列说法正确的是() A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒 C.只要系统所受的合外力为零,系统动量就守恒 D.系统中所有物体的加速度为零时,系统的总动量一定守恒 答案 C 解析动量守恒的条件是系统不受外力或所受合外力为零,与系统内是否存在摩擦力无关,与系统中物体是否具有加速度无关,故A、B选项错误,C选项正确;所有物体加速度为零时,各物体速度恒定,动量恒定,总动量只能说不变,不能说守恒,D选项错误。 3. 质量为m的甲物块以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定在甲物块上。另一质量也为m的乙物块以4 m/s的速度与甲相向运动,如图所示。则() A.甲、乙两物块在压缩弹簧过程中,由于弹力作用,系统动量不守恒 B.当两物块相距最近时,甲物块的速率为零 C.当甲物块的速率为1 m/s时,乙物块的速率可能为2 m/s,也可能为0

第2节质点系的角动量定理及角动量守恒定律

第5.2节 质点系的角动量定理及角动量守恒定律 5.2.1离心调速器模型如图所示.由转轴上方向下看,质量为m 的小球在水平面内绕AB 逆时针作匀速圆周运动,当角速度为ω时,杆张开α角.杆长为l .杆与转轴在B 点相交.求(1)作用在小球上的各力对A 点、B 点及AB 轴的力矩.(2)小球在图示位置对A 点、B 点及AB 轴的角动量.杆质量不计 解:(本题中A 点的位置不明确,A 点应与两小球同 高度) 以A 点为坐标原点建立坐标系,x 轴向右,y 轴向上,z 轴垂直于纸面向外。 左侧小球: 受力:j mg W ?-= ,)?cos ?(sin j i T T αα+= 位失:相对于A 点:i l r A ?sin α-= 相对于B 点:T T l j i l r B -=+-=)?cos ?(sin αα 速度:小球绕y 轴作匀速圆周运动,速率为:αωωsin l r v == 在图中所示位置:k l k v v ?sin ?αω== 重力矩: ?)?(?)?(?sin )?()?cos ?(sin ?sin )?()?sin (=?=?==-?+-=?==-?-=?=j j j j k mgl j mg j i l W r k mgl j mg i l W r B A AB B B A A ττταααταατ 拉力T 的力矩: 0?)?(?)?(0 ?2sin ?cos sin )?cos ?(sin )?sin (2 1=?=?==?-=?=-=-=+?-=?=j j j j T T T l T r k lT k lT j i T i l T r B A AB B B A A τττταααααατ 角动量: j m l j j L j j L L m l m l L j i m l k m l j i l v m r L j m l k m l i l v m r L B A AB B B B A A ?sin ?)?(?)?(sin sin sin cos ||) ?sin ?sin cos (?sin )?cos ?(sin ?sin ?sin )?sin (222 42222222αωαωαααωαααωαωαααωαωα=?=?==+=+-=?+-=?==?-=?=

高中物理动量定理专题(问题详解)-word

动量和动量定理的应用 知识点一——冲量(I) 要点诠释: 1.定义:力F和作用时间的乘积,叫做力的冲量。 2.公式: 3.单位: 4.方向:冲量是矢量,方向是由力F的方向决定。 5.注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力,无论是力的方向还是大小发生变化时,都不能用直接求出 1.推导: 设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 可得, 即 (为末动量,P为初动量) 2.动量定理:物体所受合外力的冲量等于物体的动量变化。 3.公式: 或 4.注意事项: ①动量定理的表达式是矢量式,在应用时要注意规定正方向; ②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; ④不仅适用于宏观物体的低速运动,也适用与微观物体的高速运动。 5.应用: 在动量变化一定的条件下,力的作用时间越短,得到的作用力就越大,因此在需要增 大作用力时,可尽量缩短作用时间,如打击、碰撞等由于作用时间短,作用力都较大,如冲压工件; 在动量变化一定的条件下,力的作用时间越长,得到的作用力就越小,因此在需要减 小作用力时,可尽量延长作用时间,如利用海绵或弹簧的缓冲作用来延长作用时间,从而减小作用力,再如安全气囊等。 规律方法指导 1.动量定理和牛顿第二定律的比较 (1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式, 即:物体所受的合外力等于物体动量的变化率。 (3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4.应用动量定理解题的步骤 ①选取研究对象; ②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1.关于冲量,下列说法中正确的是() A.冲量是物体动量变化的原因 B.作用在静止的物体上力的冲量一定为零 C.动量越大的物体受到的冲量越大 D.冲量的方向就是物体合力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化,A对;只要有力作用在物体上,

动量定理及动量守恒定律专题复习附参考答案

动量定理及动量守恒定律专题复习 一、知识梳理 1、深刻理解动量的概念 (1)定义:物体的质量和速度的乘积叫做动量:p =mv (2)动量是描述物体运动状态的一个状态量,它与时刻相对应。 (3)动量是矢量,它的方向和速度的方向相同。 (4)动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。 (5)动量的变化:0p p p t -=?.由于动量为矢量,则求解动量的 变化时,其运算遵循平行四边形定则。 A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。 B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。 (6)动量与动能的关系:k mE P 2=,注意动量是矢量,动能是标 量,动量改变,动能不一定改变,但动能改变动量是一定要变的。 2、深刻理解冲量的概念 (1)定义:力和力的作用时间的乘积叫做冲量:I =Ft

(2)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。 (3)冲量是矢量,它的方向由力的方向决定(不能说和力的方向相同)。如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。 (4)高中阶段只要求会用I=Ft 计算恒力的冲量。对于变力的冲量,高中阶段只能利用动量定理通过物体的动量变化来求。 (5)要注意的是:冲量和功不同。恒力在一段时间内可能不作功,但一定有冲量。特别是力作用在静止的物体上也有冲量。 3、深刻理解动量定理 (1).动量定理:物体所受合外力的冲量等于物体的动量变化。既I =Δp (2)动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。这里所说的冲量必须是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。 (3)动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。 (4)现代物理学把力定义为物体动量的变化率:t P F ??=(牛顿第

高中物理动量定理专题训练答案(1)

高中物理动量定理专题训练答案(1) 一、高考物理精讲专题动量定理 1.2022年将在我国举办第二十四届冬奥会,跳台滑雪是其中最具观赏性的项目之一.某滑道示意图如下,长直助滑道AB 与弯曲滑道BC 平滑衔接,滑道BC 高h =10 m ,C 是半径R =20 m 圆弧的最低点,质量m =60 kg 的运动员从A 处由静止开始匀加速下滑,加速度a =4.5 m/s 2,到达B 点时速度v B =30 m/s .取重力加速度g =10 m/s 2. (1)求长直助滑道AB 的长度L ; (2)求运动员在AB 段所受合外力的冲量的I 大小; (3)若不计BC 段的阻力,画出运动员经过C 点时的受力图,并求其所受支持力F N 的大小. 【答案】(1)100m (2)1800N s ?(3)3 900 N 【解析】 (1)已知AB 段的初末速度,则利用运动学公式可以求解斜面的长度,即 2202v v aL -= 可解得:2201002v v L m a -== (2)根据动量定理可知合外力的冲量等于动量的该变量所以 01800B I mv N s =-=? (3)小球在最低点的受力如图所示 由牛顿第二定律可得:2C v N mg m R -= 从B 运动到C 由动能定理可知: 221122 C B mgh mv mv =-

解得;3900N N = 故本题答案是:(1)100L m = (2)1800I N s =? (3)3900N N = 点睛:本题考查了动能定理和圆周运动,会利用动能定理求解最低点的速度,并利用牛顿第二定律求解最低点受到的支持力大小. 2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰 撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求: (1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小; (3)小球B 运动到最高点C 时对轨道的压力; 【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】 (1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s (2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒: A B Mv Mv mv =+ 222111222 A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s (3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒: 2211222 B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R '+= 解得:F N =4N 由牛顿第三定律知,F N '=F N =4N 小球对轨道的压力的大小为3N ,方向竖直向上.

高中物理选修3-5碰撞与动量守恒经典题型计算题练习有答案

动量守恒定律 1、(16分)如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求 (1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍; (2)物块与水平轨道BC 间的动摩擦因数μ。 答案:(1)设物块的质量为m ,其开始下落处的位置距BC 的竖直高度为h ,到达B 点时的速度为v ,小车圆弧轨道半径为R 。由机械能守恒定律,有 22 1mv mgh = ① 根据牛顿第二定律,有R v m mg mg 2 9=- ② 解得h =4R ③ 即物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的4倍。 (2)设物块与BC 间的滑动摩擦力的大小为F ,物块滑到C 点时与小车的共同速度为 v ′,物块在小车上由B 运动到C 的过程中小车对地面的位移大小为s 。依题意,小车的质量为3m ,BC 长度为10R 。由滑动摩擦定律,有 mg F μ= ④ 由动量守恒定律,有'+=v m m mv )3( ⑤ 对物块、小车分别应用动能定理,有 222 1 21)10(mv mv s R F -'=+- ⑥ 0)3(2 1 2-'= v m Fs ⑦ 解得3.0=μ ⑧ 2、(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=15 m,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求 (1) 物块在车面上滑行的时间t; (2) 要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。

高中物理动量定理解题技巧及练习题及解析

高中物理动量定理解题技巧及练习题及解析 一、高考物理精讲专题动量定理 1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。 【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】 (1)设运动过程中摩擦阻力做的总功为W ,则 W =-kmgL -2kmgL =-3kmgL 即整个过程中摩擦阻力所做的总功为-3kmgL 。 (2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得 mv 1=2mv 2 22101122 kmgL mv mv -= - 2 21(2)0(2)2 k m gL m v -=- 由以上各式得 010v kgL = 所以人给第一辆车水平冲量的大小 010I mv m kgL == 2.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。(忽略发射底座高度,不计空气阻力,g 取10m/s 2) (1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力) (2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略

电磁感应中动量定理和动量守恒定律的运用

高考物理电磁感应中动量定理和动量守恒定律的运用 (1)如图1所示,半径为r的两半圆形光滑金属导轨并列竖直放置,在轨道左侧上方MN间接有阻值为R0的电阻,整个轨道处在竖直向下的磁感应强度为B的匀强磁场中,两轨道间距为L,一电阻也为R0质量为m的金属棒ab从MN处由静止释放经时间t到达轨道最低点cd时的速度为v,不计摩擦。求:(1)棒从ab到cd过程中通过棒的电量。 (2)棒在cd处的加速度。 (2)如图2所示,在光滑的水平面上,有一垂直向下的匀强磁场分布在宽度为L的区域内,现有一个边长为a(a﹤L)的正方形闭合线圈以初速度v0垂直磁场边界滑过磁场后,速度为v(v﹤v0),那么线圈 A.完全进入磁场中时的速度大于(v0+v)/2 B.完全进入磁场中时的速度等于(v0+v)/2 C.完全进入磁场中时的速度小于(v0+v)/2 D.以上情况均有可能 (3)在水平光滑等距的金属导轨上有一定值电阻R,导轨宽d电阻不计,导体棒AB垂直于导轨放置,质量为m ,整个装置处于垂直导轨平面向上的匀强磁场中,磁感应强度为B.现给导体棒一水平初速度v0,求AB 在导轨上滑行的距离. (4)如图3所示,在水平面上有两条导电导轨MN、PQ,导轨间距为d,匀强磁场垂直于导轨所在的平面向里,磁感应强度的大小为B,两根完全相同的金属杆1、2间隔一定的距离摆开放在导轨上,且与导轨垂直。它们的电阻均为R,两杆与导轨接触良好,导轨电阻不计,金属杆的摩擦不计。杆1以初速度v0滑向杆2,为使两杆不相碰,则杆2固定与不固定两种情况下,最初摆放两杆时的最少距离之比为: A.1:1 B.1:2 C.2:1 D.1:1 5:如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高。ab、cd是质量均为m的金属棒,现让ab从离水平轨道h 高处由静止下滑,设导轨足够长。试求: (1)ab、cd棒的最终速度;(2)全过程中感应电流产生的焦耳热。

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力 远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A以速度v 1向质量为m 2的静止物体B 运动,B的左端连有轻弹簧。在Ⅰ位置A 、B刚好接触,弹簧开始被压缩,A开始减速,B 开始加速;到Ⅱ位置A、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A、B 开始远离,弹簧 开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21 v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹性碰撞。由动量守恒和能量守恒可以证明A、B 的最终速度分别为:12 1121212112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能,部 分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 1121v m m m v v +='='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 21212122121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运 / /

高三物理碰撞与动量守恒

《碰撞与动量守恒》复习课 一、教学目的 1、复习巩固动量定理 2、复习巩固应用动量守恒定律解答相关问题的基本思路和方法 3、掌握处理相对滑动问题的基本思路和方法 二、教学重点 1、 本节知识结构的建立 2、 物理情景分析和物理规律的选用 三、教学难点 物理情景分析和物理规律的选用 四、教学过程 本章知识结构 〖引导学生回顾本章内容,建立相关知识网络(见下表)〗 典型举例 问题一:动量定理的应用 例1:质量为m 的钢珠从高出沙坑表面H 米处由静止自由下落,不考虑空气阻力,掉入沙坑后停止,如图所示,已知钢珠在沙坑中受到沙的平均阻力是f ,则钢珠在沙内运动时间为多少? 分析:此题给学生后,先要引导学生分清两个运动过程:一是在空气中的自由落体运动,二是在沙坑中的减速运动。学生可能会想到应用牛顿运动定律和运动学公式进行分段求解,此时不急于否定学生的想法,应该给予肯定。在此基础上,可以引导学生应用全过程动量定理来答题。然后学生自己思考讨论,动手作答,老师给出答案。 设钢珠在空中下落时间为t 1,在沙坑中运动时间为t 2,则: 在空中下落,有H= 2121gt ,得t 1= g H 2, 对全过程有:mg(t 1 +t 2)-f t 2=0-0 得: mg f gH m t -= 22

巩固:蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回

到离水平网面5.0m 高处。已知运动员与网接触的时间为1.2s 。若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。(g=10m/s 2) 〖学生自练,老师巡回辅导,给出答案N 3 105.1?,学生自评〗 例2:一根弹簧上端固定,下端系着质量为m 的物体A ,物体A 静止时的位置为P 处,再用细绳将质量也为m 的物体B 挂在物体A 的下面,平衡后将细绳剪断,如果物体A 回到P 点处时的速率为V ,此时物体B 的下落速度大小为u ,不计弹簧的质量和空气阻力,则这段时间里弹簧的弹力对物体A 的冲量大小为多少? 分析:引导学生分析,绳子剪断后,B 加速下降,A 加速上升,当A 回到P 点时,A 的速度达到最大值。尤其要强调的是本题中所求的是弹簧的弹力对物体A 的冲量,所以要分析清楚A 上升过程中 A 的受力情况。 解:取向上方向为正, 对B :-mgt=-mu ○ 1 对A :I 弹-mgt=mv ○ 2 两式联立得I 弹=m (v +u ) 问题二:动量守恒定律的应用 例3:质量为 M 的气球上有一质量为 m 的猴子,气球和猴子静止在离地高为 h 的空中。从气球上放下一架不计质量的软梯,为使猴子沿软梯安全滑至地面,则软梯至少应为多长? 分析:此题为前面习题课中出现过的人船模型,注意引导学生分析物理情景,合理选择物理规律。 设下降过程中,气球上升高度为H ,由题意知猴子下落高度为h , 取猴子和气球为系统,系统所受合外力为零,所以在竖直方向动量守恒,由动量守恒定律得:M ·H=m ·h ,解得M mh H = 所以软梯长度至少为M h m M H h L )(+=+= 例4:一质量为M 的木块放在光滑的水平桌面上处于静止状态,一颗质量为m 的子弹以速度v 0沿水平方向击中木块,并留在其中与木块共同运动,则子弹对木块的冲量大小是: A 、mv 0 ; B 、m M mMv +0 ; C 、mv 0-m M mv +0 ;D 、mv 0-m M v m +02 分析:题中要求子弹对木块的冲量大小,可以利用动量定理求解,即只需求出木块获得 的动量大小即可。 对子弹和木块所组成的系统,满足动量守恒条件,根据动量守恒定律得: mv 0=(M+m )v 解得:m M mv v += ,由动量定理知子弹对木块的冲量大小为 m M Mmv Mv I += =0

相关文档
相关文档 最新文档