文档库 最新最全的文档下载
当前位置:文档库 › 槽轮机构运动学仿真

槽轮机构运动学仿真

槽轮机构运动学仿真
槽轮机构运动学仿真

湖南农业大学工学院

课程设计说明书

课程名称:机械CAD/CAM课程设计

题目名称:槽轮机构运动学仿真

班级:20 11 级机制专业四班

姓名:

学号:

指导教师:

评定成绩:

教师评语:

指导老师签名:

20 年月日

目录

摘要 (1)

关键词 (1)

1 槽轮机构的结构组成和工作原理 (1)

2 零件三维实体模型建立的方法 (1)

2.1 主动转盘三维实体模型建立的方法 (1)

2.2 从动槽轮三维实体模型建立的方法 (3)

2.3 其他零件三维实体模型建立的方法 (4)

3 装配模型建立的方法和步骤 (6)

4 建立装配模型的运动仿真 (9)

5 装配模型的运动仿真分析 (13)

6 装配模型的运动仿真分析结论 (15)

7 装配模型图集 (16)

7.1 总成图 (16)

7.2 爆炸图 (16)

7.3 零件图 (17)

7.4 主动转盘工程图 (18)

8 总结 (19)

参考文献.......................................... (19)

槽轮机构运动学仿真

学生:

(工学院,11-机制4班,学号)

摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。

关键词:槽轮机构;间歇运动;运动仿真

1、槽轮机构的结构组成和工作原理

槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。

2、零件三维实体模型建立的方法

2.1、主动转盘三维实体模型建立的方法

②选择模板

④拉伸

2.2、从动槽轮三维实体模型建立的方法

②选择模板

2.3、其他零件三维实体模型建立的方法

3、装配模型建立的方法和步骤

4、建立装配模型的运动仿真

5、装配模型的运动仿真分析

打开“测量”,新建测量,测量槽轮边沿上一点“PNT0”,的位置,速度,加速度以及槽轮转动的角位移,角速度,角加速度。如图所示

选择结果集中“AnalysisDefinition1”,依次选择各测量数据输出图表。

6、装配模型的运动仿真分析结论

通过槽轮机构运动仿真输出的图形可以看出槽轮做间歇运动,速度和加速度(角速度和角加速度)周期相同,而位置的周期是他们周期的2倍,其变化规律与实际情况相符合。

运用Pro/E的机构运动仿真功能对槽轮机构进行仿真,具有很多的优越性,它不但能使机构的造型形象化、可视化,而且也使整个仿真过程更加准确、形象、生动。

基于Pro/E的机构运动仿真已经进入了可视化仿真以及虚拟现实仿真技术的新阶段,它是未来计算机仿真的发展方向。

7、装配模型图集7.1、总成图

7.2、爆炸图

7.3、零件图

7.4、主动转盘工程图

平衡吊的动力学与运动学仿真

平衡吊的运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1 绪论 1.1 平衡吊的概要平衡吊是的主要结构是平行四边形连杆机构的放大形态和螺母升降结构,通过外力的作用下达到重物的上升和下降的目的,平衡吊可以满足重物随时停留在需要的工作区域。比其他的吊装设备更具有优越性,它比一般吊装设备更加的灵活,从而更加的精准,与机械手相比等其他吊装设备比,其结构更加得合理,性能较好,广泛的使用于重工业的生产中,在机床厂中更是被用作吊装作业,在小型企业装卸货物,例如码头的施工,集装箱的搬运,非常适合于作业区域窄,时间间隔短的作业方式。其极大减少了人力使用,有效地节约了人力资源。平衡吊在市场上主要常见的有3 种,机械式,气动式,液压式,机械式,顾名思义,通过外力的使用,使其达到升降的目的,主要在生产,搬运的的领域中常见,后期,更是添加了电动装置,优化了他的配置,有效地提高了生产效率。气动式平衡吊主要是对于气压的控制原理实现升降功能的我们成为气动式平衡吊,液压式,主要是根据液压系统来设置的,在大多数重工业生产地使用广泛。现在主要使用的为气动式平衡吊,主要省力,都是自动化进行的,按照平衡吊臂的类型还可以将平衡吊分为通用和专用类型,他们各有各的特色,相对于大型的吊车来说,其缺点是工作的行程围较小,区域局限化。 平衡吊的种类及其特点:液压平衡吊的特点:液压平衡吊有3 大类,有级,单级,无级变速的,他们通过不同的油路控制来达到不同的工作地点; 气动平衡吊的特点:体积不大,比一般的平衡吊具有灵活的特色;电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点的特点,一般为定速转动; Cad(2D)+solidworks(3D) 图纸整套免费获取,需要的 加QQ1162401387 1.2 平衡吊的结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成的,其中的几个臂件通过平行四边形连杆机构构成的。在外力的作用下起到升降重物的作用。

动力学主要仿真软件

车辆动力学主要仿真软件 I960年,美国通用汽车公司研制了动力学软件DYNA主要解决多自由度 无约束的机械系统的动力学问题,进行车辆的“质量一弹簧一阻尼”模型分析。作为第一代计算机辅助设计系统的代表,对于解决具有约束的机械系统的动力学问题,工作量依然巨大,而且没有提供求解静力学和运动学问题的简便形式。 随着多体动力学的谨生和发展,机械系统运动学和动力学软件同时得到了迅速的发展。1973年,美国密西根大学的N.Orlandeo和,研制的ADAM 软件,能够简单分析二维和三维、开环或闭环机构的运动学、动力学问题,侧重于解决复杂系统的动力学问题,并应用GEAR刚性积分算法,采用稀疏矩阵技术提高计算效率° 1977年,美国Iowa大学在,研究了广义坐标分类、奇异值分解等算法并编制了DADS软件,能够顺利解决柔性体、反馈元件的空间机构运动学和动力学问题。随后,人们在机械系统动力学、运动学的分析软件中加入了一些功能模块,使其可以包含柔性体、控制器等特殊元件的机械系统。 德国航天局DLF早在20世纪70年代,Willi Kort tm教授领导的团队就开始从事MBS软件的开发,先后使用的MBS软件有Fadyna (1977)、MEDYNA1984),以及最终享誉业界的SIMPAC( 1990).随着计算机硬件和数值积分技术的迅速发展,以及欧洲航空航天事业需求的增长,DLR决定停止开发基于频域求解技术的MED YN软件,并致力于基于时域数值积分技术的发展。1985年由DLR开发的相对坐标系递归算法的SIMPACI软件问世,并很快应用到欧洲航空航天工业,掀起了多体动力学领域的一次算法革命。 同时,DLR首次在SIMPAC嗽件中将多刚体动力学和有限元分析技术结合起来,开创了多体系统动力学由多刚体向刚柔混合系统的发展。另外,由于SIMPACI算法技术的优势,成功地将控制系统和多体计算技术结合起来,发

机构运动仿真基本知识

机构仿真是PROE的功能模块之一。PROE能做的仿真内容还算比较好,不过用好的兄弟不多。当然真正专做仿真分析的兄弟,估计都用Ansys去了。但是,Ansys研究起来可比PROE麻烦多了。所以,学会PROE的仿真,在很多时候还是有用的。我再发一份学习笔记,并整理一下,当个基础教程吧。希望能对学习 仿真的兄弟有所帮助。 术语 创建机构前,应熟悉下列术语在PROE中的定义:主体(Body) - 一个元件或彼此无相对运动的一组元件,主体内DOF=0。 连接(Connections) - 定义并约束相对运动的主体之间的关系。 自由度(Degrees of Freedom) - 允许的机械系统运动。连接的作用是约束主体之间的相对运动,减少系统可能的总自由度。 拖动(Dragging) - 在屏幕上用鼠标拾取并移动机构。 动态(Dynamics) - 研究机构在受力后的运动。 执行电动机(Force Motor) - 作用于旋转轴或平移轴上(引起运动)的力。 齿轮副连接(Gear Pair Connection) - 应用到两连接轴的速度约束。 基础(Ground) - 不移动的主体。其它主体相对于基础运动。 机构(Joints) - 特定的连接类型(例如销钉机构、滑块机构和球机构)。 运动(Kinematics) - 研究机构的运动,而不考虑移动机构所需的力。 环连接(Loop Connection) - 添加到运动环中的最后一个连接。 运动(Motion) - 主体受电动机或负荷作用时的移动方式。 放置约束(Placement Constraint) - 组件中放置元件并限制该元件在组件中运动 的图元。 回放(Playback) - 记录并重放分析运行的结果。 伺服电动机(Servo Motor) - 定义一个主体相对于另一个主体运动的方式。可在机构或几何图元上放置电动机,并可指定主体间的位置、速度或加速度运动。LCS - 与主体相关的局部坐标系。LCS 是与主体中定义的第一个零件相关的缺 省坐标系。 UCS - 用户坐标系。 WCS - 全局坐标系。组件的全局坐标系,它包括用于组件及该组件内所有主体 的全局坐标系。 运动分析的定义 在满足伺服电动机轮廓和机构连接、凸轮从动机构、槽从动机构或齿轮副连接的要求的情况下,模拟机构的运动。运动分析不考虑受力,它模拟除质量和力之外的运动的所有方面。因此,运动分析不能使用执行电动机,也不必为机构指定质量属性。运动分析忽略模型中的所有动态图元,如弹簧、阻尼器、重力、力/力矩以及执行电动机等,所有动态图元都不影响运动分析结果。

iNVENTOR 运动仿真分析

第1章运动仿真 本章重点 应力分析的一般步骤 边界条件的创建 查看分析结果 报告的生成和分析 本章典型效果图 1.1机构模块简介 在进行机械设计时,建立模型后设计者往往需要通过虚拟的手段,在电脑上模拟所设计的机构,来达到在虚拟的环境中模拟现实机构运动的目的。对于提高设计效率降低成本有很大的作用。Pro/ engineer 中“机构”模块是专门用来进行运动仿真和动态分析的模块。 PROE的运动仿真与动态分析功能集成在“机构”模块中,包括Mechanism design(机械设计)和Mechanism dynamics(机械动态)两个方面的分析功能。 使用“机械设计”分析功能相当于进行机械运动仿真,使用“机械设计”分析功能来创建某种机构,定

可以测量诸如位置、速度、加速度等运动特征,可以通过图形直观的显示这些测量量。也可创建轨迹曲线和运动包络,用物理方法描述运动。 使用“机械动态”分析功能可在机构上定义重力,力和力矩,弹簧,阻尼等等特征。可以设置机构的材料,密度等特征,使其更加接近现实中的结构,到达真实的模拟现实的目的。 如果单纯的研究机构的运动,而不涉及质量,重力等参数,只需要使用“机械设计”分析功能即可,即进行运动分析,如果还需要更进一步分析机构受重力,外界输入的力和力矩,阻尼等等的影响,则必须使用“机械设计”来进行静态分析,动态分析等等。 1.2总体界面及使用环境 在装配环境下定义机构的连接方式后,单击菜单栏菜单“应用程序”→“机构”,如图1-1所示。系统进入机构模块环境,呈现图1-2所示的机构模块主界面:菜单栏增加如图1-3所示的“机构”下拉菜单,模型树增加了如图1-4所示“机构”一项内容,窗口右边出现如图1-5所示的工具栏图标。下拉菜单的每一个选项与工具栏每一个图标相对应。用户既可以通过菜单选择进行相关操作。也可以直接点击快捷工具栏图标进行操作。 图1-1 由装配环境进入机构环境图

机构运动创新设计..

课程设计报告 学生姓名:________________ 学号:_________________ 学院: ______________________________________________ 班级: ______________________________________________ 题目: _______________ 机构运动创新设计______________

2015年1月5日 目录 、概述................................. 1 .....................................................

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2 、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3 、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D 机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行 机构运行。实验内容与步骤

曲柄连杆机构运动学仿真

课程设计任务书

目录 1 绪论 (1) 1.1CATIA V5软件介绍 (1) 1.2ADAMS软件介绍 (1) 1.3S IM D ESIGNER软件介绍 (2) 1.4本次课程设计的主要内容及目的 (2) 2 曲柄连杆机构的建模 (3) 2.1活塞的建模 (3) 2.2活塞销的建模 (5) 2.3连杆的建模 (5) 2.4曲轴的建模 (6) 2.5汽缸体的建模 (8) 3 曲柄连杆机构的装配 (10) 3.1将各部件导入CATIA装配模块并利用约束命令确定位置关系 (10) 4 曲柄连杆机构导入ADAMS (14) 4.1曲柄连杆机构各个零部件之间运动副分析 (14) 4.2曲柄连杆机构各个零部件之间运动副建立 (14) 4.3曲柄连杆机构导入ADAMS (16) 5 曲柄连杆机构的运动学分析 (17) 结束语 (21) 参考文献 (22)

1 绪论 1.1 CATIA V5软件介绍 CATIA V5(Computer-graphics Aided Three-dimensional Interactive Application)是法国Dassault公司于1975年开发的一套完整的3D CAD/CAM/CAE一体化软件。它的内容涵盖了产品概念设计、工业设计、三维建模、分析计算、动态模拟与仿真、工程图的生成、生产加工成产品的全过程,其中还包括了大量的电缆和管道布线、各种模具设计与分析、人机交换等实用模块。CATIA V5不但能保证企业内部设计部门之间的协同设计功能而且还可以提供企业整个集成的设计流程和端对端的解决方案。CATIA V5大量应用于航空航天、汽车及摩托车行业、机械、电子、家电与3C产业、NC加工等领域。 由于其功能的强大而完美,CATIA V5已经成为三维CAD/CAM领域的一面旗帜和争相遵从的标准,特别是在航空航天、汽车及摩托车领域。法国的幻影2000系列战斗机就是使用CATIA V5进行设计的一个典范;波音777客机则使用CATIA V5实现了无图纸设计。另外,CATIA V5还用于制造米其林轮胎、伊莱克斯电冰箱和洗衣机、3M公司的粘合剂等。CATIA V5不仅给用户提供了详细的解决方案,而且具有先进的开发性、集成性及灵活性。 CATIA V5的主要功能有:三维几何图形设计、二维工程蓝图绘制、复杂空间曲面设计与验证、三维计算机辅助加工制造、加工轨迹模拟、机构设计及运动分析、标准零件管理。 1.2 ADAMS软件介绍 ADAMS即机械系统动力学自动分析(Automatic Dynamic Analysis of Mechanical Systems),该软件是美国MDI公司(Mechanical Dynamics Inc.)开发的虚拟样机分析软件。目前,ADAMS己经被全世界各行各业的数百家主要制造商采用。根据1999年机械系统动态仿真分析软件国际市场份额的统计资料,ADAMS软件销售总额近八千万美元、占据了51%的份额。 ADAMS软件使用交互式图形环境和零件库、约束库、力库,创建完全参数化的机械系统几何模型,其求解器采用多刚体系统动力学理论中的拉格郎日方程方法,建立系统动力学方程,对虚拟机械系统进行静力学、运动学和动力学分析,输出位移、速度、加速度和反作用力曲线。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、

平衡吊的动力学与运动学仿真

平衡吊得运动学与动力学仿真 作者:** 指导老师:** ********** *************** 1绪论 1、1平衡吊得概要 平衡吊就是得主要结构就是平行四边形连杆机构得放大形态与螺母升降结构,通过外力得作用下达到重物得上升与下降得目得,平衡吊可以满足重物随时停留在需要得工作区域内。比其她得吊装设备更具有优越性,它比一般吊装设备更加得灵活,从而更加得精准,与机械手相比等其她吊装设备比,其结构更加得合理,性能较好,广泛得使用于重工业得生产中,在机床厂中更就是被用作吊装作业,在小型企业装卸货物,例如码头得施工,集装箱得搬运,非常适合于作业区域窄,时间间隔短得作业方式。其极大减少了人力使用,有效地节约了人力资源。 平衡吊在市场上主要常见得有3种,机械式,气动式,液压式,机械式,顾名思义,通过外力得使用,使其达到升降得目得,主要在生产,搬运得得领域中常见,后期,更就是添加了电动装置,优化了她得配置,有效地提高了生产效率。气动式平衡吊主要就是对于气压得控制原理实现升降功能得我们成为气动式平衡吊,液压式,主要就是根据液压系统来设置得,在大多数重工业生产地使用广泛。现在主要使用得为气动式平衡吊,主要省力,都就是自动化进行得,按照平衡吊臂得类型还可以将平衡吊分为通用与专用类型,她们各有各得特色,相对于大型得吊车来说,其缺点就是工作得行程范围较小,区域局限化。 平衡吊得种类及其特点: 液压平衡吊得特点:液压平衡吊有3大类,有级,单级,无级变速得,她们通过不同得油路控制来达到不同得工作地点; 气动平衡吊得特点:体积不大,比一般得平衡吊具有灵活得特色; 电动平衡吊:又称为机械式平衡吊,具有控制重物在任意指定地点得特点,一般为定速转动; Cad(2D)+solidworks(3D)图纸整套免费获取,需要得 加QQ1162401387 1、2平衡吊得结构 平衡吊主要有大小臂,起重臂,短臂,电机,立柱,丝杆螺母传动副构成得,其中得几个臂件通过平行四边形连杆机构构成得。在外力得作用下起到升降重物得作用。

槽轮机构运动学仿真

湖南农业大学工学院 课程设计说明书 课程名称:机械CAD/CAM课程设计 题目名称:槽轮机构运动学仿真 班级:20 11 级机制专业四班 姓名: 学号: 指导教师: 评定成绩: 教师评语: 指导老师签名: 20 年月日

目录 摘要 (1) 关键词 (1) 1 槽轮机构的结构组成和工作原理 (1) 2 零件三维实体模型建立的方法 (1) 2.1 主动转盘三维实体模型建立的方法 (1) 2.2 从动槽轮三维实体模型建立的方法 (3) 2.3 其他零件三维实体模型建立的方法 (4) 3 装配模型建立的方法和步骤 (6) 4 建立装配模型的运动仿真 (9) 5 装配模型的运动仿真分析 (13) 6 装配模型的运动仿真分析结论 (15) 7 装配模型图集 (16) 7.1 总成图 (16) 7.2 爆炸图 (16) 7.3 零件图 (17) 7.4 主动转盘工程图 (18) 8 总结 (19) 参考文献.......................................... (19)

槽轮机构运动学仿真 学生: (工学院,11-机制4班,学号) 摘要:槽轮机构是将主动拨盘的连续转动转化为从动槽轮的间歇转动,以达到间歇进给、转位和分度等工作要求。运用Pro/E软件对槽轮机构进行三维实体建模及装配,并运用模块进行运动仿真分析,得出机构的角速度、角加速度随时间变化的曲线。 关键词:槽轮机构;间歇运动;运动仿真 1、槽轮机构的结构组成和工作原理 槽轮机构由槽轮和圆柱销组成的单向间歇运动机构,又称马尔他机构。它常被用来将主动件的连续转动转换成从动件的带有停歇的单向周期性转动。槽轮机构有外啮合和内啮合以及球面槽轮等。外啮合槽轮机构的槽轮和转臂转向相反,而内啮合则相同,球面槽轮可在两相交轴之间进行间歇传动。槽轮机构典型结构由主动转盘、从动槽轮和机架组成。 2、零件三维实体模型建立的方法 2.1、主动转盘三维实体模型建立的方法 ②选择模板

仿人机器人运动学和动力学分析

国防科学技术大学 硕士学位论文 仿人机器人运动学和动力学分析 姓名:王建文 申请学位级别:硕士 专业:模式识别与智能系统 指导教师:马宏绪 20031101

能力;目前,ASIMO代表着仿人机器人研究的最高水平,见图卜2。2000年,索尼公司也推出了自己研制的仿人机器人SDR一3X,2002年又研制出了SDR一4X,见图卜3。日本东京大学也一直在进行仿人机器人的研究,与Kawada工学院合作相继研制成功了H5、H6和H7仿人机器人,其中H6机器人高1.37米,体重55公斤,具有35个自由度,目前正在开发名为Isamu的新一代仿人机器人,其身高1.5米,体重55公斤,具有32个自由度。日本科学技术振兴机构也在从事PINO机器人的研究,PINO高0.75米,采用29个电机驱动,见图卜4。日本Waseda大学一直在从事仿人机器人研究计划,研制的wL系列仿人机器人和WENDY机器人在机器人界有很大的影响,至今已投入100多万美元,仍在研究之中。Tohoku大学研制的Saika3机器人高1.27米,重47公斤,具有30个自由度。美国的MIT和剑桥马萨诸塞技术学院等单位也一直在从事仿人机器人研究。德国、英国和韩国等也有很多单位在进行类似的研究。 图卜1P2机器人图卜2ASIMO机器人图1.3SDR-4X机器人图1-4PINO机器人 图卜5第一代机器人图l-6第二代机器人图1.7第三代机器人图1—8第四代机器人 在国家“863”高技术计划和自然科学基金的资助下,国内也开展了仿人机器人的研究工作。目前,国内主要有国防科技大学、哈尔滨工业大学和北京理工大学等单位从事仿人机器人的研究。国防科技大学机器人实验室研制机器人已有10余年的历史,该实验室在这期间分四阶段推出了四代机器人,其中,2000年底推出的仿人机器入一“先行者”一是国内第一台仿人机器人。2003年6月,又成功研制了一台具有新型机械结构和运动特性的仿人机器人,这台机器人身高1.55米,体重63.5公斤,共有36个自由度,脚踝有力 第2页

UG运动仿真教程

运动仿真 本章主要内容: z运动仿真的工作界面 z运动模型管理 z连杆特性和运动副 z机构载荷 z运动分析 9.1 运动仿真的工作界面 本章主要介绍UG/CAE模块中运动仿真的功能。运动仿真是UG/CAE(Computer Aided Engineering)模块中的主要部分,它能对任何二维或三维机构进行复杂的运动学分析、动力分析和设计仿真。通过UG/Modeling的功能建立一个三维实体模型,利用UG/Motion的功能给三维实体模型的各个部件赋予一定的运动学特性,再在各个部件之间设立一定的连接关系既可建立一个运动仿真模型。UG/Motion的功能可以对运动机构进行大量的装配分析工作、运动合理性分析工作,诸如干涉检查、轨迹包络等,得到大量运动机构的运动参数。通过对这个运动仿真模型进行运动学或动力学运动分析就可以验证该运动机构设计的合理性,并且可以利用图形输出各个部件的位移、坐标、加速度、速度和力的变化情况,对运动机构进行优化。 运动仿真功能的实现步骤为: 1.建立一个运动分析场景; 2.进行运动模型的构建,包括设置每个零件的连杆特性,设置两个连杆间的运动副和添加机构载荷; 3.进行运动参数的设置,提交运动仿真模型数据,同时进行运动仿真动画的输出和运动过程的控制; 4.运动分析结果的数据输出和表格、变化曲线输出,人为的进行机构运动特性的分析。 9.1.1 打开运动仿真主界面 在进行运动仿真之前,先要打开UG/Motion(运动仿真)的主界面。在UG的主界面中选择菜单命令【Application】→【Motion】,如图9-1所示。

图9-1 打开UG/Motion操作界面 选择该菜单命令后,系统将会自动打开UG/Motion的主界面,同时弹出运动仿真的工具栏。 9.1.2 运动仿真工作界面介绍 点击Application/Motion后UG界面将作一定的变化,系统将会自动的打开UG/Motion 的主界面。该界面分为三个部分:运动仿真工具栏部分、运动场景导航窗口和绘图区,如图9-2所示。 图9-2 UG/Motion 主界面 运动仿真工具栏部分主要是UG/Motion各项功能的快捷按钮,运动场景导航窗口部分主要是显示当前操作下处于工作状态的各个运动场景的信息。运动仿真工具栏区又分为四个模块:连杆特性和运动副模块、载荷模块、运动分析模块以及运动模型管理模块,如图9-3所示。

机构运动创新设计..

课程设计报告 学生姓名:学号: 学院: 班级: 题目: 机构运动创新设计 指导教师:苏天一 2015 年 1 月5日

目录 一、概述 1 二、课程设计目的 1 三、课程设计要求和内容 1 四、原始数据及技术参数 2 五、设计原理及设备 2 六、机构自由度计算 5 七、机构动力分析与计算 7 八、机构运动分析与计算 9 十、参考文献 12

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况 二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行

QJ1E47FMD发动机运动学及动力学仿真计算

QJ147FMD发动机运动学及动力学仿真计算 一、QJ147FMD发动机的参数: 标定转速:6000r/min 曲轴半径:19.6mm 连杆长度:80mm 缸径:47mm 曲柄连杆比:0.245 二、曲柄连杆机构再ADAMS软件中的仿真计算: 上图是燃气的爆发压力和往复惯性力以及合力的曲线图。 上图是用ADAMS软件仿真计算出的往复惯性力和理论计算的比较图。粉色——理论计算,蓝色——仿真计算。理论计算:max=745N,min=-1230N; 仿真计算:max=546.6316N,min=-901.3991N. 出现上诉的原因个人理解是: (1)仿真计算的往复加速度=理论计算的往复加速度,那么产生仿真计算所得到的往复惯性力和理论计算所得到的往复惯性力之所以不同的原因就在于往复质量的计算;(2)在理论计算中,往复质量的计算是由活塞组的质量+连杆小头的质量,而在小头质量的换算过程中教科书上介绍的方法一般有两种,即两质量和三质量系统来等效代替

连杆。并且可以确定的是用三质量系统来代替两质量系统计算的更为精确只是计算起来比较困难。那么我们可以推想如果可以的话用四质量系统来代替连杆所得到的结果应该比三质量系统来代替连杆是不是更为精确?如果答案是肯定的,那么我们就有理由相信:用无数个质量点来代替连杆系统所计算得到的结果将会比2质量系统来代替连杆计算的精度要高很多,这一点用ADAMS软件可以轻松的做到。(3)现在我们来做一个对比,即同一个连杆用两质量系统和三质量系统分别来代替的时候,同一个连杆在换算到连杆小头质量是如何变化的?很容易想到用三质量系统来代替连杆的时候换算到连杆小头的质量应该比两质量换算到连杆小头的质量要小,那么我们有理由相信:当用无数个质量点来代替连杆的时候,换算到连杆小头的质量要比教科书上按两质量系统来代替连杆换算到连杆小头出的往复质量要小。(4)由于摩托车的发动机的转速很高,所以他的往复加速度很大。我们这次所研究的发动机的加速度的数量级:几千。可见,当往复质量减少1%时,则往复惯性力将减少几十牛。(这也是我们在设计高速发动机的时候要注意减少往复惯性质量的原因,而我们按照理论公式来计算的时候,实际上已经人为的增大了往复质量。)由以上的分析,我们有理由认为用ADAMS仿真软件来进行计算,所得到的结果比按纯理论方法所计算的更为精确。 三、主轴径的受力分析: (1)我们用ADAMS软件,将所研究的发动机的轴径作为刚体并且还考虑到了轴承的安装位置以及曲柄系统的质心位置的影响之后所得到的曲轴主轴径的受力分析图。 上图是曲轴的两个轴径受力的极坐标图。

机构运动学仿真

机构运动学仿真 1 机构三维模型的导入 将在solidworks中或其他三维建模软件中装配好的机构装配体以parasolid 格式保存,打开ADAMS,显示如下界面: 选择Create a new model,点击OK,建立一个新的模型,在Model name选项可命名该机构的名称,ADAMS不支持中文,亦不支持中文路径,因此导入、保存文件时文件夹及机构的命名均应以英文表示。 在ADAMS界面做上角File选项,单击Import选项,显示如下对话框: 在File Type栏选择文件格式为Parasolid,在File To Read右侧空白栏,单击鼠标右键,选择Browse查找parasolid文件,在此应注意,文件所存的文件夹必

须是英文命名,不能存于桌面。图示如下: 在Model Name栏,可自己命名,亦可右键Pick,然后点击ADAMS界面左上角的名字。完成后,点击OK,模型即成功导入。 ADAMS左侧主工具箱最下面的Render可实现模型的虚实转换,具体操作一下便知,还有图标Icons和网格Grid,在此不再赘述。 2 机构运动学模型的建立 2.1 设置零件材料和重命名 机构三维模型导入后,首先应设置各个零件的材料属性,若不设置,系统会默认一个值,但大部分时候运行时会出现错误,因此在此建议先设定材料属性,具体操作如下: 点击左上角的Edit,选择Modify,出现如下所示对话框:

双击模型的名字Model_1,列表会出现各个零件的名字,左键单击选择零件,点击OK,弹出对话框: Body栏显示的是模型的名字,在Category栏可选择模型的名字和位置、质量属性,初始速度和位置等几个选项,最常用的是更改零件的名字和更改零件的材料。零件质量属性的修改有三种方式,图示为User Input(用户自输入),用于ADAMS的材料库无法准确描述所用材料时,常用的是 在Material Type栏,右键单击,选择Browse,在弹出的材料库中选择所需要的材料。 另外,亦可直接右键单击零件,在弹出的菜单中选择Modify修改材料属性和Rename修改零件名字,在零件较多时,需对各个零件命名以便于区分。否则,单靠系统默认的命名将难于区分,易产生错误。

基于ADAMS的并联机器人运动学和动力学仿真

第22卷第8期计算机仿真2005年8月文章编号:1006—9348(2005)08—0181—05 基于ADAMS的并联机器人运动学和动力学仿真 游世明,陈思忠,梁贺明 (北京理工大学机械与车辆工程学院,北京100081) 摘要:应用机械系统动力学仿真分析软件ADAMS,建立了Stewart型并联机构的虚拟样机模型,包括对并联机器人各部件的筒化方法、在ADAMS中的模型描述及仿真过程控制,并利用该虚拟样机模型对并联机器人进行了运动学和动力学分析。为并联机器人系统的设计、制造和模拟运动作业提供了理论依据和主要参数。实现了在计算机上通过使用CAE仿真软件来对并联机器人的运动和动力性能进行分析,为并联机器人的设计提供了一套有效的分析方法。 关键词:并联机器人;运动学;动力学;虚拟样机 中图分类号:TP391.9文献标识码:A KinematicsandDynamicsSimulationofPMTBasedOnADAMS YOUShi—ming,CHENSi—zhong,LIANGHe—ming (SchoolofMechanicalandVehicleEngineering,BeijingInstituteofTechnology,Bering100081,China)ABSTRACT:ThispaperusesmechanicdynamicanalysissoftwareADAMStobuildavirtualprototypeoftheStewartParallelKinematicsMachineTool,givesthedetailofsimplifiedmethodofmodel,ADAMSdescriptionofmodel,controlofsimulatingprocess.ThevirtualprototypingmodelofthePMTprovidesthetheoreticfoundationandmainparametersforthesystemdesign,productionandapplicationinexperiment.ItshowsthesimulationforthekinematicsanddynamicsofPMT,realizesaneffectivemethodfortheengineeringdesignwiththeCAEsoftwareoncomputer. KEYWORDS:Parallelkinematicsmachinetool;Kinematics;Dynamics;Virtualprototype 1引言 1965年,德国学者Stewart提出了一种新型的、6自由度并联机器人平台机构,称为Stewart平台。由于并联机器人平台不仅能够灵活地实现六个自由度的三维空间运动,而且具有结构稳定、承载能力强、误差小、位置精度高、响应快等一系列突出优点,其应用日益广泛,应用领域不断拓展,使得并联机器人也成为国际上备受关注的研究领域之一。目前,对并联机器人运动学和动力学分析多采用的是解析法。但其动平台空间运动是很难直观想象的,工作空间又十分复杂,所以有必要建立适当的模型并进行仿真。本文从仿真分析的角度,应用ADAMS软件对其进行建模、仿真、分析,为并联机器人的研究提供了一种新的方法。 2并联机构及其仿真简介 Stewart型并联机器人平台由上下两个平台和6个并联收稿日期:2004一04—28的、可独立自由伸缩的杆件组成,伸缩杆和平台之间通过球铰链A1,A2,A3,A4,A,,A6和虎克铰曰1,日2,马,曰。,曰5,眈连接,其结构原理如图1所示。如果将下平台作为基础平台(定平台),以伸缩杆的位移作为输入变量,则可以控制上平台(动平台)的空间位移和姿态。实际机构中通过改变六根可以伸缩的伺服油缸长度来实现机器人动平台的运动,即沿x、y、z轴的平移和绕x、y、z轴的转动,这六个基本运动分别称为纵向(Surge)、横向(Sway)、垂直(Heave)、横滚(Roll)、俯仰(Pitch)、偏航(Yaw)IlJ。 其运动仿真的应用领域,大致可以分为四个方面:(1)训练、教育:主要用于飞行模拟器,训练飞行员等专业人员;(2)试验、实验:在模拟环境下,测试飞机、船舶、潜艇、航天器、汽车等运动载体中的相关仪器设备,本课题即是对用于测试汽车悬架和轮胎性能的实验台的前期仿真设计;(3)娱乐:用于体感模拟娱乐机等。 在并联机构的研究中,理想的仿真应能满足以下要求:建模快速简洁、模型逼真、三维动画以及便于通过调整参数来优化设计。对于并联机器人的运动学和动力学计算,包括正解和逆解。利用ADAMS软件可以将这几项工作结合起来, 一】8】一  万方数据万方数据

运动仿真技术经验

精心整理 一SW 运动仿真 1.简介 二十世纪八十年代以来,设计工程中首次使用计算机辅助工程(CAE )方法后,有限元分析(FEA )就成了最先被广泛采用的模拟工具。多年来,该工具帮助设计者在研究新产品的结构性能时节约了大量时间。 由于机械产品日渐复杂,不断加剧的竞争加快了新设计方案投入市场的速度。设计者迫切感到必须使模拟超出FEA 的局限范围,除使用FEA 模拟结构性能外,还需要在构建物理原型之前确定新产品的运动学和动力学性能。 用。 2.装配当几何体发生改变时,可在几秒内更新所有结果。图4为急回机构中滑杆和驱动连杆之间的干涉。 图4急回机构中滑杆和驱动连杆之间的干涉 运动模拟可在短时间内对任何复杂程度的机构进行分析,可能包含刚性连接装置、弹簧、阻尼器和接触面组。如雪地车前悬架、健身器、CD 驱动器等的运动。 图5复杂机构的运动仿真 除机构分析外,设计者还可通过将运动轨迹转换成CAD 几何体,将运动模拟用于机构合成。例如,设计一个沿着导轨移动滑杆的凸轮,用运动仿真生成该凸轮的轮廓。首先将所需滑杆位置表达为时间和滑杆在旋转凸轮上移动轨迹的函数,然后将轨迹路径转换为CAD 几何体,以创建凸轮轮廓。 图6滑杆沿导轨移动的位移函数

图7滑杆沿旋转盘移动绘制的凸轮轮廓 设计者还可将运动轨迹用于很多用途,例如,验证工业机器人的运动、测试工具路径以获取选择机器人大小所需的信息,以及确定功率要求。 图8工业机器人在多个位置之间的移动 运动模拟的另外一项重要应用是模拟零部件之间的碰撞和接触,以研究零部件之间可能形成的缝隙,得出机构的精确结果。例如,通过模拟碰撞和接触,可以研究阀提升机构中凸轮和曲线仪(摇杆)之间可能形成的缝隙。 3.将运动仿真与FEA结合 想了解运动仿真和FEA在机构仿真中如何结合使用,首先要了解每种方法的基本假设。 FEA是一种用于结构分析的数字技术,已成为研究结构的主导CAE方法。它可以分析任何固定支撑的弹性物体的行为,此处弹性是指物体可变性。如图8所示托架,在静态载荷作用下会变形, 形。FEA FEA (1 点反作用力和惯性力。在此步骤中,所有机构连接装置均视为刚性实体。图13中的曲线为曲柄转动一周连杆上接点的反作用力。 图13曲柄转动一周连杆上接点的反作用力 (2).找出与连杆接点上最大反作用力相对应的机构位置。因为施加最大载荷情况下进行的分析将得到连杆所承受的最大应力。如有必要,可选择多个位置进行分析。 图14与连杆上最大反作用力相对应的位置 (3).将这些反作用力载荷以及惯性载荷从CAD装配体传输到连杆CAD零件模型。 (4).作用于从装配体分离出来的连杆上的载荷包括接点反作用力和惯性力,如图15所示。

管道机器人运动学分析与变径机构仿真

MECHANICAL ENGINEER 机械工程师 管道机器人运动学分析与变径机构仿真 史继新1a,1b,刘芙蓉1a,1b,胡啸2,袁显宝1a,1b,陈保家1a,1b,李响1a,1b (1.三峡大学 a.湖北省水电机械设备设计与维护重点实验室;b.机械与动力学院,湖北宜昌443002;2.中核武汉核电运行技 术股份有限公司,武汉430223) 摘要:基于对核电站压力容器和主管道接管内部检查的需要,研发了一种多履带可变径式管道检查机器人。分析机器人四种不同的运动情况,得出机器人履带轮角速度和机器人在管道内旋转速度及行走线速度的函数,建立了机器人在管道内的运动学模型。针对机器人可变径机构,建立力学模型,得出变径机构中弹簧的理论数据,并运用Inventor运动仿真分析验证了其合理性。 关键词:管道机器人;运动学模型;变径机构;Inventor运动仿真 中图分类号:TP242.3;TH122文献标志码:粤文章编号:员园园圆原圆猿猿猿(圆园员9)04原园014原园3 Kinematics Analysis and Variable Diameter Mechanism Simulation of Pipeline Robot SHI Jixin1a,1b,LIU Furong1a,1b,HU Xiao2,YUAN Xianbao1a,1b,CHEN Baojia1a,1b,LI Xiang1a,1b (1.China Three Gorges University a.Hubei Key Laboratory of Hydroelectric Machinery Design&Maintenance;b.College of Mechanical and Power Engineering,Yichang443002,China;2.China Nuclear Power Operation Technology Co.,Ltd.,Wuhan430223,China) Abstract院Based on the need for internal inspection of nuclear power plant pressure vessels and main pipelines,a multi-track variable-diameter pipeline inspection robot is developed.The four different motions of the robot are analyzed,and the angular velocity of the robot crawler wheel and the rotation speed of the robot in the pipeline and the traveling linear velocity are obtained.The kinematics model of the robot in the pipeline is established.For the robot variable diameter mechanism,the mechanical model is established,the theoretical data of the spring in the variable diameter mechanism is calculated,and the rationality is verified by Inventor motion simulation analysis. Keywords:pipeline robot;kinematics model;variable diameter mechanism;Inventor motion simulation 0引言 随着核电厂运行时间的增加,各种规格管道内表面可能会出现一些问题需要实施检查与维修。因这些部位处于强辐射区,人员无法直接实施这些工作,必须开发具有行走功能的管道机器人携带摄像头完成核电厂管道检查工作。目前,发达国家对于管道机器人的研究处于领先地位[1]:德国ECA公司研制出一系列管道爬行机器人,在满足多尺寸规格管道的前提下,能搭载多种检测工具,其检查的管道范围从150耀2000mm;日本东京工业大学研制出Thes系列管道机器人[2];韩国汉城汉阳大学研制出双模块协作管道检测机器人[3]。中国在管道检查机器人领域起步较晚,北京德朗检视科技有限公司研发的DNC100、DNC150等管道爬行器,已在核电领域中得到运用;东华大学研制除了自主变位履带足管道机器人[4];上海交通大学针对煤气管道的检测,研制出煤气管道检测机器人样机[5]。 针对目前国内外传统机器人在面对垂直、微小、复杂管时,存在通行性能差、稳定性弱、牵引力不足等缺点。本项目所研制的多履带可变径式管道检查机器人,在机器人的机械结构、移动方式等方面做出改进,能适应150耀160mm管径的管道内部运动,分析了其管道内部运动的运动学模型和变径机构的力学模型,并针对变径机构进行了仿真分析,验证设计的合理性。 1管道检查机器人整体结构设计 为了满足核电厂管道内部检查的需要,机器人必须具备三项基本能力:1)机器人的速度调节能力;2)机器人的转向能力;3) 析, 构设计,如图1 道机器人具有三组履带轮, 很好的夹紧力。 立的电动机控制, 每组履带轮的独立运动, 节不同电动机的转速来使机器人顺利通过弯管。履带轮和主体之间的连杆机构配上弹簧的特性使机器人具有很好的管道适应能力,可以适应150耀160mm管道直径的运动。2运动学分析 机器人每组履带轮的角速度决定机器人整体的运动情况,因此本节根据机器人履带轮角速度和机器人整体运动情况的函数关系建立运动学模型。该模型的坐标系、关节变量和参数如图2所示。XY Z表示全局坐标参考系,并且xyz表示附接到管线检查机器人的中心的局部坐标系;i、j 和k是局部坐标系的单位矢量。无论机器人如何移动,x轴 图1管道机器人 三维模型 1.履带轮组 2.变径机构 3.主体 3 2 1 基金项目:国家自然科学基金(11805112);湖北省教育厅 科学技术研究计划重点项目(D2*******);湖北省水电机械 设备设计与维护重点实验室开放基金项目(2016KJX15、 2017KJX04) 14 圆园员9年第4期网址:https://www.wendangku.net/doc/1a8458222.html,电邮:hrbengineer@https://www.wendangku.net/doc/1a8458222.html,

相关文档