文档库 最新最全的文档下载
当前位置:文档库 › 浅谈用复变函数理论证明代数学基本定理

浅谈用复变函数理论证明代数学基本定理

浅谈用复变函数理论证明代数学基本定理
浅谈用复变函数理论证明代数学基本定理

摘要

伴随漫长的解方程历史探索中,数学家得出一元多次方程解与次数关系的代数学基本定理,一直以来,学者们给出了不同的方法来证明这个定理。代数学基本定理在代数学中占有非常重要的地位,这篇论文将叙述代数学基本定理的内容,并用复变函数理论中的刘维尔定理、儒歇定理、辐角原理、最大模原理、最小模原理、留数定理、柯西定理来证明代数学基本定理,并对这些证明方法进行说明、比较与总结。

关键词:代数学基本定理;辐角原理;最大模原理;最小模原理

Abstract

With a long history of exploration in the solution of equations, mathematicians come to a dollar many times the relationship between the number of equations and the fundamental theorem of algebra, has been, have given different ways to prove the theorem. Fundamental theorem of algebra in the algebra plays a very important position, this paper will describe the contents of the fundamental theorem of algebra and complex function theory with the Liouville theorem, Confucianism break theorem, argument principle, maximum modulus principle, the minimum Modulus principle, residue theorem, Cauchy's Theorem to prove the fundamental theorem of algebra, and the proof are described, compared and summarized.

Keywords:Fundamental theorem of algebra; Argument principle; maximum modulus principle; minimum modulus principle

目录

前言 (1)

1代数学基本定理的第一种陈述方式的证明 (1)

1.1利用刘维尔定理证明 (1)

1.1.1刘维尔定理 (1)

1.1.2 证明过程 (1)

1.2利用最大模定理证明 (2)

1.2.1最大模原理 (2)

1.2.2 证明过程 (2)

1.3利用最小模定理证明 (3)

1.3.1最小模原理 (3)

1.3.2 证明过程 (3)

1.4利用柯西定理证明 (4)

1.4.1柯西定理 (4)

1.4.2 证明过程 (4)

2代数学基本定理的第二种陈述方式的证明 (5)

2.1利用儒歇定理证明 (5)

2.1.1儒歇定理 (5)

2.1.2 证明过程 (6)

2.2利用辐角原理证明 (6)

2.2.1辐角原理 (6)

2.2.2 证明过程 (6)

2.3利用留数定理证明 (7)

2.3.1留数定理 (7)

2.3.2 证明过程 (8)

参考文献 (9)

致谢 (9)

浅谈用复变函数理论证明代数学基本定理

前言

代数学基本定理在代数学中占有十分重要的地位。代数学基本定理的第一种陈述方式为:“任何一个一元n 次多项式0111...)(a z a z a z a z p n n n n ++++=--在复数域内至少有一根”,它的第二种陈述方式为:“任何一个一元n 次多项式0111...)(a z a z a z a z p n n n n ++++=--在复数域内有n 个根,重根按重数计算”,这两种陈述方式实际上是等价的。此定理若用代数的方法证明,有些将是极其复杂的。但是,如果我们将复数域理解为复平面,将)(z p n 的根理解为它在复平面上的零点,那么我们就可以借助复变函数的理论去证明代数学基本定理。这种证明方法比较简洁,方法也有多种,本文提出几种证明方法,其中个别方法在常见的复变函数的教材中已有涉及,如用刘维尔定理和儒歇定理证明代数学基本定理,但仍是有一些方法在复变函数教材中并未涉及。本论文将对利用复变函数中的相关定理证明代数学基本定理作进一步的探讨。

1代数学基本定理的第一种陈述方式的证明 1.1利用刘维尔定理证明 1.1.1刘维尔定理

刘维尔定理:有界整函数必为常数。

证明:()f z 是有界整函数,即(0,)M ?∈+∞,使得z C ?∈,()f z M <

0z C ?∈,(0,)ρ?∈+∞,()f z 在}

{

0z z z ρ-≤上解析

∴0()f z M ρ'≤

令ρ→+∞,可见0z C ?∈,0()0f z '=,从而()f z 在C 上恒等于常数。 1.1.2 证明过程

假设)(z p 在z 平面上无零点

令011

1...)(a z a z

a z a z p n n n n ++++=--为整函数 且当∞→z 时,∞→+

++

=-)...()(01n

n n n

z

a z

a a z z p

对)

()(z p z f =

而言,是整函数

又0)(lim z =∞

→z f

∴)(z f 在C 上有界

由刘维尔定理:)(z f 为常数,与)(z p 不是常数矛盾

∴一元n 次方程在C 内至少有一个根。

刘维尔定理应用非常广泛。用刘维尔定理做证明题时常见的方法有两种:一种是利用反证法来证明,另一种是构造辅助函数来证明。而在刘维尔定理证明代数学基本定理的过程中巧妙地把这两种方法结合了起来。它的证明思路很清晰:利用反证法,并构造辅助函数)

(1)(z p z f =

,由)(z f 为整函数且在C 上有界,得到)(z f 为常数,这与假

设相比得出矛盾,从而得出结论一元n 次方程在C 内至少有一个根。它的证明过程也很简洁,很容易让初学者理解和掌握。 1.2利用最大模定理证明 1.2.1最大模原理

最大模原理:设函数)(z f 在区域D 内解析,且恒不为常数,则()f z 在区域D 内任意点都取不到最大值。

证明:假定()f z 在D 内不恒等于一常数,那么1()D f D =是一区域 设()f z 在0z D ∈达到极大值

显然,001()w f z D =∈,而且0w 必有一充分小的邻域包含在1D 内 于是在这邻域内可找到一点w '满足0w w '>

从而在D 内有一点z '满足()w f z ''=以及0()()f z f z '>,这与所设矛盾 因此()f z 在D 内恒等于一常数。 1.2.2 证明过程

假设n n n a z

a z z p +++=-...)(1

1在z 平面上没有零点,即0)(≠z p

则)

()(z p z g =

在z 平面上解析

显然当R z =且R 充分大时

有n

n n

z

a z

a z z p +

++

=...1)(1n

n

n n

R R

a R

a R 2

1)...1(1≥

-

--

因此,在R z =上且R 充分大时,有n

R

z p z g 2)

(1)(≤

=

由最大模原理,有2m ax ()n

z R

g z R

=≤

特别地,在0=z 处,有2

)

0(1)0(2

R

g p a n ≥

==

而这对于充分大的R 显然不成立

这就说明了“)(z p 在z 平面上没有零点”的假设是不成立的 从而可以得到)(z p 在z 平面至少有一个零点 即一元n 次方程在C 内至少有一个根。 1.3利用最小模定理证明 1.3.1最小模原理

最小模原理:若区域D 内不恒为常数的解析函数)(z f ,在D 内的点0z 有0)(0≠z f ,则)(0z f 不可能是)(z f 在D 内的最小值。 1.3.2 证明过程

设n n n a z

a z z p +++=-...)(1

1 假设C z ∈?平面,有0)(≠z p ,并且0)0(≠=n a p 又因为)(z p 在C 平面上解析,且不为常数 所以由最小模原理知:

)(min ,0z p R R

z ≤>?只能在R z =上取得 (#)

另一方面,∞=∞

→)(lim z p z ,从而当R 充分大时,在R z =上有)0()(p a z p n =>,

则这与(#)式矛盾,所以假设不成立

即)(z p 在复平面C 上至少存在一个零点 亦即一元n 次方程在C 内至少有一个根。

最小模原理与最大模原理在证明代数学基本定理的时候的证明方法是极其相似的:首先都是假设一元n 次方程在C 内无零点,然后通过)(z f 在区域D 内某一点能取到最大值或最小值,但是)(z p 却不是常数,与定理的内容产生矛盾,从而得出一元n 次方程在C 内至少有一个根。这两个定理证明的关键之处是找到)(z f 在区域D 内能达到最大值或最小值的某一点,如果找到了这一点,那么我们所要解决的问题就会迎刃而解了。 1.4利用柯西定理证明 1.4.1柯西定理

柯西定理:设函数)(z f 在整个z 平面上的单连通区域D 内解析,C 为D 内任何一条简单闭合曲线,那么0)(=?dz z f c

1.4.2 证明过程

设011

1...)(a z a z

a z a z p n n n n ++++=--,其中1≥n ,0≠n a 假设)(z p 在z 平面上无零点,即对任意z ,有0)(≠z p

于是

)

()('

z p z p 在z 平面解析,由柯西定理0)

()('

=?

dz z p z p c

(其中C 是圆周R z =) (1)

另一方面,

)

()('

z p z p =

11

11

2

11......)1(a z a z a z a a z

a n z

na n n n

n n n n n ++++++-+-----

)

1...11()

1

1...111(011

11n

n n n n n n n z

a a z

a a z z a a n z a a n

n n +++

+

+-+

=---

)](1[2

z q n +=

其中函数)(z q 满足当∞→z 时,一致趋于零。 又因为i dz z c

π21

=?

所以

?

?

=≤c

R

z c

z

z d z q dz z

z q )()(max )(

0)(max 2→==z q R

z π,当∞→=R z (2)

故n dz z

z q z

dz i

c

c

R =+

?

?

→])([1

lim

π

比较)1(与)2(得0=n ,这与定理的条件矛盾 所以)(z p 在平面上至少有一个零点 即一元n 次方程在C 内至少有一个根。

以上四种证明方法均采用反证法,假设一元n 次方程在C 内无零点,通过证明,得到的结论都是代数学基本定理的第一种陈述方式:“一元n 次方程在C 内至少有一个根”。 2代数学基本定理的第二种陈述方式的证明 2.1利用儒歇定理证明 2.1.1儒歇定理

儒歇定理:设D 是在复平面上的一个有界区域,其边界C 是一条或有限条简单闭合曲线。设函数)(z f 及)(z g 在D 及C 所组成的闭区域D 上解析,并且在C 上,()()g z f z <,那么在D 上,)(z f 及)()(z g z f +的零点的个数相同。

证明:由于在C 上,()()g z f z <,可见)(z f 及)()(z g z f +在C 上都没有零点。如果N 及N '分别是)(z f 及)()(z g z f +在D 内的零点的个数,那么有

2arg ()c N f z π=?, 2arg[()()]c N f z g z π'=?+

()

arg ()arg[1]

()c c g z f z f z =?+?+

下面证明N N '=,为此只需证明c ()arg[1]0()

g z f z ?+

=

当z C ∈时,)()(z f z g <,从而点)

()(1z f z g w +

=,总在w 平面上的圆盘11<-w 内,当

z 在j C 上连续变动一周时,w arg 从起始值连续变动仍然回到它的起始值(不围绕0=w ),亦即()arg[1]0

()

j

c g z f z ?+

=,

于是()arg[1]0()

c g z f z ?+

=得证,从而定理得证。

2.1.2 证明过程

设0111...)(a z a z a z a z p n n n n ++++=-- 令n n z a z f =)(,0111...)(a z a z a z g n n +++=--

当在充分大的圆周R z =上时(不妨取110...m ax 1,n n a a a R a -??+++??

>??????

011

1011

1......)(a R a R

a a z a z

a z g n n n n +++=+++≤----

1

120(...)()n n n a a a R

f z ---≤+++<

由儒歇定理:)()()(z g z f z p +=与)(z g 在C 内部有相同个数的零点,即n 个零点

∴原方程在C 内有且仅有n 个根

这个证明的突破点在于取110...m ax 1,n n a a a R a -??+++??

>??

????,

之后就能顺利地得到()()

g z f z <,

然后由儒歇定理就能得到结论:原方程在C 内有且仅有n 个根。

2.2利用辐角原理证明 2.2.1辐角原理

辐角原理:设)(z f 在闭围线C 上解析,在其内部除了n 个极点外解析,在C 上不为零,而在C 的内部有m 个零点,而一个n 级极点算作n 个极点。

)a 它们在C 的内部均解析,且连续到C )b 在C 上,)

()(z w z f >

则函数)(z f 与)()(z w z f +在C 的内部有同样多(n 级算作n 个)的零点。 2.2.2 证明过程

设n n n a z

a z a z p +++=-...)(1

10(00≠a ) 显然,()p z 有唯一奇点∞,它是()p z 的n 级极点,即lim ()z p z →∞

=∞,所以,作一个

充分大的圆R z C =:,R 充分大,则()p z 的所有零点都在C 内,设()p z 的全部零点个

数为M ,由辐角原理'

1

()2()

c

p z M dz ni

p z =

?(其中R z c =:)

下面需证:n M = 显然,由上式有

'

1()2()

c

p z dz M ni

p z =-? (*)

表示函数

'

()()

p z p z 关于无穷远点的留数

而10()(...)()n

n n

a a p z z a z z z

z

=+

++

=Φ '

'

()()()()

()

p z n z n z p z z

z z

Φ=

+

=

+ψΦ

其中)(z ψ以无穷远点为不低于2级的零点。从上式可知'

()()

p z p z 关于无穷远点的留数为

n -,因此,由(*)可知,n M =,即证。

2.3利用留数定理证明 2.

3.1留数定理

留数定理:设D 是在复平面上的一个有界区域,其边界是一条或有限条简单闭合曲线C 。设函数()f z 在D 内除去有孤立奇点1z ,2z ,…,n z 外,在每一点都解析,并且它在C 上

每一点也解析。那么我们有1

()2R e (,)n

k k c

f z dz i s f z π==∑?,这里沿C 的积分是按照关于区

域D 的正向取的。

证明:以D 内每一个孤立奇点k z 为心,作圆k r ,使以它为边界的闭圆盘上每一点都在D 内,并且使任意两个这样的闭圆盘彼此无公共点。从D 中除去以这些k r 为边界的闭圆盘得一区域G ,其边界是C 以及k r 。在G 及其边界所组成的闭区域G 上,()f z 解析。因此根

据柯西定理, 1()()n

k c

rk

f z dz f z dz ==

∑??

,这里沿C 的积分是按照关于区域D 的正向取的,

沿k r 的积分是按反时针方向取的。根据留数的定义,由此可立即推出

1

()2R e (,)n

k k c

f z dz i s f z π==∑?

2.3.2 证明过程

设0111...)(a z a z a z a z p n n n n ++++=--

由∞=∞

→)(lim z p z 知,存在正数R ,当R z ≥时,有()1p z >

这就是说)(z p 的根只可能在圆盘z R <之内,又因为)(z p 在z R <内解析

由留数定理得:'

1

()2()

c

p z N dz i

p z π=?,R z C =:,N 表示)(z p 在z R <内部的零点

个数

另一方面,根据在无穷远点的留数定义,有'

()R e ()

z p z s

p z =∞

=

'

1()2()

c

p z dz i

p z π?

=N -

而当z R >时,∞=z 为

'

()()

p z p z 的可去奇点

于是有

'

()()()

p z n p z p z z

=

+,其中()p z 的最高次幂为2

-z

所以,'

()R e ()

z p z s

n p z =∞

=-,因此有n N =

故)(z p 在复平面上有且仅有n 个根

这三种证明方法都是采用直接证明的方法,得出代数学基本定理的第二种陈述方式:“一元n 次方程在C 内有且仅有n 个根”。这些证明方法各有长处,在具体应用的时候可以做出适当的选择,快速有效地解决问题。

参考文献

[1]钟玉泉.复变函数论[M].北京:高等教育出版社,1998

[2]余家荣.复变函数论[M].北京:高等教育出版社,2007

[3]杨露.代数学基本定理的推广[J].烟台师范学院学报(自然科学版),2000,16(2):150-152

[4]宫兆刚.复变函数理论证明代数学基本定理的几种方法[J].衡阳师范学院学报,2007年6月第28卷第3期

[5]张庆.利用复变函数的理论证明代数学基本定理[J].河北职工大学学报,1999年5月首卷第1期

[6]刘洪旭.代数学基本定理的引申及证明[J].辽宁师专学报,2006年12月第8卷第4期

[7]刘喜兰.代数学基本定理的几种非代数证明[J].雁北师院学报,1996年12月第12卷第6期

致谢

感谢老师的悉心指导!

复变函数测试题及答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,50 75100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

代数基本定理

[科目] 数学 [关键词] 代数/基本定理/复数/根 [文件] sxbj110.doc [标题] 代数基本定理 [内容] 代数基本定理 代数基本定理﹝Fundamental Theorem of Algebra﹞是指:对于复数域,每个次数不少于1的复系数多项式在复数域中至少有一根。由此推出,一个n次复系数多项式在复数域内有且只有n个根,重根按重数计算。 这个定理的最原始思想是印度数学家婆什迦罗﹝1114-1185?﹞在1150年提出的。他提出了一元二次方程的求根公式,发现了负数作为方程根的可能性,并开始触及方程根的个数,即一元二次方程有两个根。婆什迦罗把此想法称为《丽罗娃提》﹝Lilavati﹞,这个词原意是“美丽”,也是他女儿的名字。 1629年荷兰数学家吉拉尔在《代数新发现》中提出他的猜测,并断言n次多项式方程有n个根,但是没有给出证明。 1637年笛卡儿﹝1596-1650﹞在他的《几何学》的第三卷中提出:一个多少次的方程便有多少个根,包括他不承认的虚根与负根。 欧拉在1742年12月15日在给朋友的一封信中明确地提出:任意次数的实系数多项式都能够分解成一次和二次因式的乘积。达朗贝尔、拉格朗日和欧拉都曾试过证明此定理,可惜证明并不完全。高斯在1799年给出了第一个实质证明,但仍欠严格。后来他又给出另外三个证明﹝1814-1815,1816,1848-1850﹞,而“代数基本定理”一名亦被认为是高斯提出的。 高斯研究代数基本定理的方法开创了探讨数学中存在性问题的新途径。20世纪以前,代数学所研究的对象都是建立在实数域或复数域之上,因此代数基本定理在当时曾起到核心的作用。

近世代数基础练习题

1.证明:在环R 到环R 的一个同态满射φ之下,R 的一个子环S 的象S 是R 的一个子环。 证明: S 为R 的一个子环, ∴0∈S , 而0=(0)φ∈S , 故S 非空。 对,a b ?∈S ,?,a b ∈S ,使得a =()a φ,b =()b φ 由于S 是环R 的子环,故a b S -∈,ab S ∈ ∴ a b -=()a φ-()b φ=()a b φ-S ∈ a b = ()a φ()b φ=()ab φS ∈ 故S 是R 的一个子环。 2. 证明:在环R 到环R 的一个同态满射φ之下, R 的一个子环S 的逆象S 是R 的一个子环。 证明: S 为R 的子环, ∴0∈S , 而0=(0)φ∈S , ∴0∈S ,故S 非空。 对?,a b ∈S ,?,a b ∈S ,使得 a =()a φ,b =()b φ, 由于S 是环R 的子环, 故 a b -=()a φ-()b φ=()a b φ-S ∈ a b =()a φ()b φ=()ab φS ∈ ∴a b S -∈,ab S ∈ 故S 是R 的一个子环。 3.证明:在环R 到环R 的一个同态满射φ之下,R 的一个理想A 的象A 是R 的一个理想。 证明: A 为R 的理想,∴ 0A ∈,,而0=(0)φ∈A ,故A 非空。 对,a b A ?∈,r R ?∈, ?,a b ∈A ,r R ∈ 使得 ()a a φ=,()b b φ=,()r r φ= 由于A 是环R 的一个理想,故 a b A -∈,ra A ∈,ar A ∈

∴ a b -=()a φ-()b φ=()a b φ-A ∈ ra =()r φ()a φ=()ra A φ∈, ar =()a φ()r φ=()ar A φ∈ 故 A 是环R 的一个理想。 4.证明:在环R 到环R 的一个同态满射φ之下,R 的一个理想A 的逆象A 是R 的一个理想。 证明: A 为环R 的理想,∴0∈A , 而0=φ(0)∈A , ∴0∈A, 故A 非空。 对于?,a b ∈A ,?r R ∈,?,a b ∈A ,r R ∈ 使得 ()a a φ=,()b b φ=,()r r φ= 由于A 是环R 的理想, 故 a -b ∈A ,ar A ∈,ra A ∈。 a -b =()a φ-()b φ=()a b φ-A ∈ r a =()r φ()a φ=()ra φ∈A , ar =()a φ()r φ=()ar φA ∈ ∴a b A -∈,ra A ∈,ar A ∈, 故 A 是R 的一个理想。

近世代数的基础知识

近世代数的基础知识 初等代数、高等代数与线性代数都称为经典代数(Classical algebra),它的研究对象主要就是代数方程与线性方程组)。近世代数(modern algebra)又称为抽象代数(abstract algebra),它的研究对象就是代数系,所谓代数系,就是由一个集合与定义在这个集合中的一种或若干种运算所构成的一个系统。近世代数主要包括:群论、环论与域论等几个方面的理论,其中群论就是基础。下面,我们首先简要回顾一下集合、映射与整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。 3.1 集合、映射、二元运算与整数 3.1.1 集合 集合就是指一些对象的总体,这些对象称为集合的元或元素。“元素a 就是集合A 的元”记作“A x ∈”,反之,“A a ?”表示“x 不就是集合A 的元”。 设有两个集合A 与B,若对A 中的任意一个元素a (记作A a ∈?)均有B a ∈,则称A 就是B 的子集,记作B A ?。若B A ?且A B ?,即A 与B 有完全相同的元素,则称它们相等,记作B A =。若B A ?,但B A ≠,则称A 就是B 的真子集,或称B 真包含A,记作B A ?。 不含任何元素的集合叫空集,空集就是任何一个集合的子集。 集合的表示方法通常有两种:一种就是直接列出所有的元素,另一种就是规定元素所具有的性质。例如: {}c b a A ,,=; {})(x p x S =,其中)(x p 表示元素x 具有的性质。 本文中常用的集合及记号有: 整数集合{}Λ,3,2,1,0±±±=Z ; 非零整数集合{}{}Λ,3,2,10\±±±==* Z Z ; 正整数(自然数)集合{}Λ,3,2,1=+Z ; 有理数集合Q,实数集合R,复数集合C 等。 一个集合A 的元素个数用A 表示。当A 中有有限个元素时,称为有限集,否则称为无限集。用∞=A 表示A 就是无限集,∞

复变函数_期末试卷及答案

一、单项选择题(本大题共15小题,每小题2分,共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括 号内。错选、多选或未选均无分。 1.下列复数中,位于第三象限的复数是( ) A. 12i + B. 12i -- C. 12i - D. 12i -+ 2.下列等式中,不成立的等式是( ) 3.下列命题中,正确..的是( ) A. 1z >表示圆的内部 B. Re()0z >表示上半平面 C. 0arg 4 z π << 表示角形区域 D. Im()0z <表示上半平面 4.关于0 lim z z z z ω→=+下列命题正确的是( ) A.0ω= B. ω不存在 C.1ω=- D. 1ω= 5.下列函数中,在整个复平面上解析的函数是( ) 6.在复平面上,下列命题中,正确..的是( ) A. cos z 是有界函数 B. 2 2Lnz Lnz = 7 .在下列复数中,使得z e i =成立的是( ) 8.已知3 1z i =+,则下列正确的是( ) 9.积分 ||342z dz z =-??的值为( ) A. 8i π B.2 C. 2i π D. 4i π 10.设C 为正向圆周||4z =, 则10()z C e dz z i π-??等于( ) A. 1 10! B. 210! i π C. 29! i π D. 29! i π- 11.以下关于级数的命题不正确的是( ) A.级数0327n n i ∞ =+?? ?? ?∑是绝对收敛的 B.级数 212 (1)n n i n n ∞ =??+ ?-??∑是收敛的 C. 在收敛圆内,幂级数绝对收敛 D.在收敛圆周上,条件收敛 12.0=z 是函数(1cos ) z e z z -的( ) A. 可去奇点 B.一级极点 C.二级极点 D. 三级极点

13年《基础代数》复习题

基础代数》复习题 0.概念:群中元素的阶数; 正规子群; 商群;单群;(左、右) 理想;商环;分式环;整环;环的特征;模;域;代数元; (1)写出所有不同构的 18、 36 阶交换群。 写出所有不同构的p 2 阶群,P 为奇素数。 (1)证明 56 阶群有正规的 Sylow 2-子群或者有正规 的 Sylow 7- 子群。 2)证明 p 2q 阶群不是单群。 3)设是 p, q 是不同的素数, 证明 pq 阶群都有正规的 Sylow 子群. 4. 证明任意 2p 阶群都同构于循环群或者二面体群。 5.判断下面的命题是否正确?对正确的请加以证明;对不 正确的请举出反例说明。 (1)在有限群中,如果 a 与b 共轭,c 与d 共轭,那么ac 与 bd 共轭。 (2)如果H 是G 的正规子群,K 是H 的正规子群,那么K 是 G 的正规子群。 ⑶ 设Z(G)是有限群G 的中心,并且G/Z(G)是循环群,那 么 G 是交换群。 (4)设G 是有限群,那么对它的阶数|G|的每个因子n, G 都 有n 阶子群。 1. 求二面体群的全部子群、正规子群。 2. 3.

(5)设G是有限群,G的任意指数为2、3的子群都是G的 正规子群。 6.用GL(n,q)和SL(n,q)分别表示有限域 GF(q)上n维向量 空间上全体可逆线性变换、行列式为1的全体可逆线性变换所构成的群.O (1)分别求GL(n,q)和SL(n,q)的阶数。 (2)分别求GL(n,q)和SL(n,q)的中心。 7.设M2(F)是域F上全体2级矩阵按矩阵的加法、乘法所构 成的环。 (1)求M2(F)的所有左理想和右理想。 ⑵求M2(F)的所有理想。 &设G是有限群,P是其阶数|G|的最小素因子,证明 任意指数为P的子群都是G的正规子群。 9 .设G是有限群,如果Aut G = 1 ,那么G的阶数为1 10.求5次交错群、4次对称群的所有不共轭的子群 11叙述群同态基本定理、Sylow定理、同构定理. 12.试给出G的子群H是正规子群的几个等价条件 13求在模18剩余类环乙8 中的所有零因子、幕零元 14设G是有限群,P是其阶数|G|的最小素因子,证明任意阶数为P 的正规子群包含在 G的中心中。 15设a是有限域F=GF(2)上多项式x3+x + 1的根, (1)求扩域F(a)作为有限域F上线性空间的一组基; (2)化简(a4+a3+a2+a+1)(a中1)Section A 之所以不把二氧化碳列为污染物,是因为二氧化碳是大气的天然成份,植

《复变函数》-期末试卷及答案(A卷)

《复变函数》试卷 第1页(共4页) 《复变函数》试卷 第2页(共4页) XXXX 学院2016—2017学年度第一学期期末考试 复变函数 试卷 一、单项选择题(本大题共10小题,每题3分,共30分,请从每题备选项中选出唯一符合题干要求的选项,并将其前面的字母填在题中括号内。) 1. =)i Re(z ( ) A.)i Re(z - B.)i Im(z C.z Im - D.z Im 2. 函数2 ) (z z f =在复平面上 ( ) A.处处不连续 B. 处处连续,处处不可导 C.处处连续,仅在点0= z 处可导 D.处处连续,仅在点0=z 处解析 3.设复数a 与b 有且仅有一个模为1,则b a b a --1的值 ( ) A.大于1 B.等于1 C.小于1 D.无穷大 4. 设x y z f y x z i )(i +-=+=,,则=')(z f ( ) A.i 1+ B.i C.1- D.0 5.设C 是正向圆周 1=z ,i 2sin π=?dz z z C n ,则整数n 等于 ( ) A.1- B.0 C.1 D.2 6.0=z 是2 1 )( z e z f z -=的 ( ) A.1阶极点 B.2阶极点 C. 可去奇点 D.本性奇点 7.幂级数!2)1(0 n z n n n n ∑∞ =-的和函数是 ( ) A.z e - B.2 z e C.2 z e - D.z sin 8.设C 是正向圆周 2=z ,则 =?C z dz 2 ( ) A.0 B.i 2π- C.i π D.i 2π 9.设函数)(z f 在)0( 00+∞≤<<-

线性代数基本定理-新版.pdf

线性代数基本定理一、矩阵的运算 1.不可逆矩阵的运算不满足消去律AB=O,A 也可以不等于 O 11-1-1?è???÷1-1-11?è???÷=0000?è?? ? ÷ 2.矩阵不可交换 (A+B)2=A 2+AB+BA+B 2 (AB)k =ABABABAB ...A B 3.常被忽略的矩阵运算规则 (A+B)T =A T +B T (l A)T =l A T

4.反称矩阵对角线元素全为0 4.矩阵逆运算的简便运算 (diag(a 1,a 2 ,...,a n ))-1=diag( 1 a 1 , 1 a 2 ,..., 1 a n ) (kA)-1=1 k A-1 方法 1.特殊矩阵的乘法 A.对角矩阵乘以对角矩阵,结果仍为对角矩阵。且: B.上三角矩阵乘以上三角矩阵,结果为上三角矩阵2.矩阵等价的判断 A@B?R(A)=R(B) 任何矩阵等价于其标准型

3.左乘初等矩阵为行变换,右乘初等矩阵为列变换如:m*n 的矩阵,左乘 m 阶为行变换,右乘 n 阶为列变换 4. 给矩阵多项式求矩阵的逆或证明某个矩阵可逆如:A 2 -A-2I =O ,证明(A+2I)可逆。把2I 项挪到等式右边,左边凑出含有 A+2I 的一个多项式, 在确保A 平方项与 A 项的系数分别为原式的系数情况下,看I 项多加或少加了几个。5.矩阵的分块进行计算加法:分块方法完全相同 矩阵乘法(以A*B 为例):A 的列的分法要与B 行的分法一 致,如: 如红线所示:左边矩阵列分块在第 2列与第3列之间,那么,右边矩阵分 块在第二行与第三行之间 1-1003-1000100002-1 é? êêêêù?úúúú1000-1000013-1021 4 é? ê êêêù? úúúú

复变函数经典例题

第一章例题 例1.1试问函数把平面上的下列曲线分别变成平面上的何种曲线? (1)以原点为心,2为半径,在第一象项里的圆弧; (2)倾角的直线; (3)双曲线。 解设,则 因此 (1)在平面上对应的图形为:以原点为心,4为半径,在上半平面的半圆周。(2)在平面上对应的图形为:射线。 (3)因,故,在平面上对应的图形为:直线 。 例1.2设在点连续,且,则在点的某以邻域内恒不为0. 证因在点连续,则,只要,就有 特别,取,则由上面的不等式得 因此,在邻域内就恒不为0。 例1.3设 试证在原点无极限,从而在原点不连续。

证令变点,则 从而(沿正实轴) 而沿第一象限的平分角线,时,。 故在原点无确定的极限,从而在原点不连续。 第二章例题 例2.1在平面上处处不可微 证易知该函数在平面上处处连续。但 当时,极限不存在。因取实数趋于0时,起极限为1,取纯虚数而趋于零时,其极限为-1。故处处不可微。 例 2.2函数在满足定理2.1的条件,但在不可微。 证因。故 但

在时无极限,这是因让沿射线随 而趋于零,即知上式趋于一个与有关的值。 例2.3讨论的解析性 解因, 故 要使条件成立,必有,故只在可微,从而,处处不解析。例2.4讨论的可微性和解析性 解因, 故 要使条件成立,必有,故只在直线上可微,从而,处处不解析。 例2.5讨论的可微性和解析性,并求。 解因, 而 在复平面上处处连续且满足条件,从而在平面上处处可微,也处处解析。且 。 例2.6设确定在从原点起沿负实轴割破了的平面上且,试求 之值。 解设,则

由代入得 解得:,从而 。 例2.7设则 且的主值为。 例2.8考查下列二函数有哪些支点 (a) (b) 解(a)作一条内部含0但不含1的简单闭曲线, 当沿正方向绕行一周时,的辐角得到增量,的辐角没有改变, 即 从而 故的终值较初值增加了一个因子,发生了变化,可见0是的支点。同理1 也是其支点。 任何异于0,1的有限点都不可能是支点。因若设是含但不含0,1的简

代数学基础学习笔记

代数学基础学习笔记 第一章 代数基本概念
习题解答与提示(P54)
1. 如果群 G 中,对任意元素 a,b 有(ab) =a b ,则 G 为交换群. 证明: 对任意 a,b G,由结合律我们可得到 (ab) =a(ba)b, a b =a(ab)b 再由已知条件以及消去律得到 ba=ab, 由此可见群 G 为交换群.
2 2 2
2
2
2
2. 如果群 G 中,每个元素 a 都适合 a =e, 则 G 为交换群. 证明: [方法 1] 对任意 a,b G, ba=bae=ba(ab) =ba(ab)(ab) =ba b(ab)=beb(ab)=b (ab)=e(ab)=ab 因此 G 为交换群. [方法 2] 对任意 a,b G, a b =e=(ab) , 由上一题的结论可知 G 为交换群.
1
2 2 2 2 2 2
2

代数学基础学习笔记
3. 设 G 是一非空的有限集合,其中定义了一个乘法 ab,适合 条件: (1) (2) (3) a(bc)=(ab)c; 由 ab=ac 推出 a=c; 由 ac=bc 推出 a=b;
证明 G 在该乘法下成一群. 证明:[方法 1] 设 G={a1,a2,…,an},k 是 1,2,…,n 中某一个数字,由(2) 可知若 i j(I,j=1,2,…,n),有 akai ak aj------------<1> aiak aj ak------------<2> 再由乘法的封闭性可知 G={a1,a2,…,an}={aka1, aka2,…, akan}------------<3> G={a1,a2,…,an}={a1ak, a2ak,…, anak}------------<4> 由<1>和<3>知对任意 at G, 存在 am G,使得 akam=at. 由<2>和<4>知对任意 at G, 存在 as G,使得 asak=at. 由下一题的结论可知 G 在该乘法下成一群.
下面用另一种方法证明,这种方法看起来有些长但思
2

复变函数试题及答案

成绩 西安交通大学考试题 课程复变函数(A) 系别考试日期 2007 年 7 月 5 日专业班号 姓名学号期中期末 1. 填空(每题3分, 2. 共30分) 1.= 2.=0是函数的 (说出类型,如果是极点,则要说明阶数) 3. ,则= 4. 5. 函数在处的转动角为 6. 幂级数的收敛半径为 =____________ 7. 8.设C为包围原点在内的任一条简单正向封闭曲线,则 9.函数在复平面上的所有有限奇点处留数的和为___________ 10. 二.判断题(每题3分,共30分) 1.在解析。【】 2.在点可微,则在解析。【】 3.是周期函数。【】 4.每一个幂函数在它的收敛圆周上处处收敛。【】 5.设级数收敛,而发散,则的收敛半径为1。【】 6.能在圆环域展开成洛朗级数。【】 7.为大于1的正整数, 成立。【】 8.如果函数在解析,那末映射在具有保角性。【】 9.如果是内的调和函数,则是内的解析函数。【】10.。【】三.(8分)为调和函数,求的值,并求出解析函数。 四.(8分)求在圆环域和内的洛朗展开式。 五.(8分)计算积分。 六.(8分)设,其中C为圆周的正向,求。 七.(8分)求将带形区域映射成单位圆的共形映射。

复变函数与积分变换(A)的参考答案与评分标准 (2007.7.5) 一.填空(各3分) 1. ; 2. 三级极点; 3. ; 4. 0 ; 5. 0 ; 6. ; 7. ; 8. 0; 9. 0 ;10. 。 二.判断1.错;2.错;3.正确; 4. 错;5.正确;6.错; 7.错;8. 错;9. 正确;10. 错。 三(8分) 解: 1)在 -----4分 2) 在 --4分 四.(8分) 解:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有一个一级极点 -2+i, 故 --------3分 --------6分 故 ---------8分 五.(8分) 解: -------3分 由于1+i在所围的圆域内, 故 -------8分 六. (8分) 解:利用指数函数映射的特点以及上半平面到单位圆的分式线性映射,可以得到 (映射不唯一,写出任何一个都算对) 七.(8分) 解:对方程两端做拉氏变换: 代入初始条件,得 --------4分 故, ---------8分(用留数做也可以) 复变函数 (A)的参考答案与评分标准 (2007.7.5) 一.填空(各3分)1. ;2. 三级极点;3. ; 4. 0 ;5. 0 ;6. ;7. ;8. 0 ; 9. 0 ; 10. 0。 二.判断1.错;2.错;3.正确;4. 错;5.正确;6.错;7.错;8. 错;9. 正确;10. 错。 三.(8分) 解:因为是调和函数,则有 ,即故 ---------2分 1) 当时, , 由C-R方程, , 则 , 又由 ,故 , 所以。 则 ----------3分 2) 当时, , 由C-R方程, , 则 , 又由 ,故 , 所以。 则

代数学基本定理

代数学基本定理:任何复系数一元n次多项式方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算).代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。 代数学基本定理说明,任何复系数一元n次多项式方程在复数域上至少有一根。 由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。 有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。 尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在[1] 。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。 2证明历史 代数基本定理在代数乃至整个数学中起着基础作用。据说,关于代数学基本定理的证明,现有200多种证法。迄今为止,该定理尚无纯代数方法的证明。大数学家J.P. 塞尔曾经指出:代数基本定理的所有证明本质上都是拓扑的。美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。 该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯分析,证明仍然很不严格的。 代数基本定理的第一个严格证明通常认为是高斯给出的(1799年在哥廷根大学的博士论文),基本思想如下: 设为n次实系数多项式,记,考虑方根: 即与 这里与分别表示oxy坐标平面上的两条曲线C1、C2,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出,即,因此z0便是方程的一个根,这个论证具有高度的创造性,但从现代的标准看依然是不严格的,因为他依靠了曲线的图形,证明它们必然相交,而这些图形是比较复杂,正中隐含了很多需要验证的拓扑结论等等。 高斯后来又给出了另外三个证法,其中第四个证法是他71岁公布的,并且在这个证明中他允许多项式的系数是复数。 3证明方法 所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。 定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式 就是一个实系数多项式,如果z是q(z)的根,那么z或它的共轭复数就是p(z)的根。 许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有: 复分析证明

复变函数测试题及答案

第一章 复 数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( )

(A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 i (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z

(C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 0) Im()Im(z z -) 1 1.设) 2)(3() 3)(2)(1(i i i i i z ++--+= ,则=z 2.设)2)(32(i i z +--=,则=z arg 3.设4 3)arg(,5π = -=i z z ,则=z

代数与代数基本定理的历史

代数与代数基本定理的历史 1.关于代数的故事 在十九世纪以前,代数被理解为关于方程的科学。十九世纪,法国数学家伽罗华(Evaristr Galois)开创群论以后,代数不再以方程为中心,而是以各种代数结构为中心。作为中学数学课程的代数,其中心内容就是方程理论。代数的发展是和方程分不开的。代数对于算术来说,是一个巨大的进步,代数和算术的主要区别说在于前者引入了未知量,根据问题的条件列同方程,然后解方程求出未知量,我们举一个例子:一个乘以3,再除以5,等于60,求这个数。算术求法(公元1200年左右伊斯兰教的数学家们就是这样解的:既然这个数的3/5是60,那么它的1/5就是20一个数的1/5是20那么这个数是20的5倍,即100。代数解法:设某数为x ,则可见代数解法与算术思路不同。各有自己的一套规则,代数解法比较简单明了。古埃及人、巴比伦人在一些实际计算问题已使用过代数的方法。据说,1858年苏格兰有一位古董收藏家兰德在非洲的尼罗河边买了一卷公元前1600年左右遗留下来的古埃及的纸莎草卷,他惊奇地发现,这卷草卷中有一些含有未知数的数学问题(当然都是用象形文字表示的)。例如有一个问题翻译成数学语言是: “啊哈,它的全部,它的1/7,其和等于19。” 如果用x表示这个问题中的求知数,就得到方程,解这个方程,得到。令人惊奇的是,虽然古埃及人没有我们今天所使用的方程的表示和解法,却成功得到解决了这个答数。我国古代的代数研究在世界上一直处于领先地位,在经典数学著作《九章算术》中,除了方程外,还有开平方、开立方、正负数的不同表示法和正负数的加减法则等代数的最基本问题,到宋、元时代,我国对代数的研究达到了高峰。贾宪等的高次方程数值解方法,秦九韶的联立一次同余式解法,李治的列方程一般方法,朱世杰的多元高次方程组解法,及其有限级数求和的“招差法公式”,都早于欧洲几百年。“代数学”这个名称,在我国是1859年正式开始使用的,来自拉丁文(Algebra),它又是从阿拉伯文变来的,其中有一段曲折的历史。公元825年左右,花拉子模的数学家阿尔——花拉子模写了一本书《Kitabaljabr-W’al-mugabala》意思是“整理”和“对比”,这本书的阿拉伯文版已经失传,但12世纪的一册拉丁文译本却流传到今,在这个译本中,把“aljabr”译成拉丁语“Aljebra”,并作为一门学科,它的课题最首要的就是用字母表示的式子的变形和解方程的规则方程。我国清代数学李善兰,1859年编译西方代数时,把“Algebra”译成了“代数学”。从些,“代数”这个名词便一直在我国沿用下来。 2.代数基本定理 任何n(n>0)次多项式在复数域中至少有一个根。一元一次方程有且只有一个根,一元二次方程在复数域中有且只有两个根,因此,人们自然研究一元n次方程在复数域中有几个根。此外,当初的积分运算中采用部分分式法也引起了与此有关的问题:是不是任何一个实系数多项式都能分解成一次因式的积,或分解成实系数的一次因式和二次因式的积?这样的分解,关键证明代数基本定理。代数基本定理的第一个证明是法国数学家达朗贝尔给出的,但他的证明是首先默认了数学分析中一条明显的引理:定义在有限闭区间上的连续函数一定在某一点取得最小值,而这个引理在达朗贝尔的研究100年以后才得到证明。接着,欧拉也给出了一个证明,但有缺陷,拉格朗日于1772年又重新证明了代数基本定理,后经高斯分析,发现他的证法中把实数的尚未证明其真实性的各种性质应用了,所以该证明仍然是很不严格的。1799年,高斯在他的博士论文中第一个严格证明了代数基本定理,其基本思路如下:设f (z)为n次实系数多项式,记z = x + yi (x, y为实数),考察方程:f (x + yi) = u (x, y) + v (x, y)i = 0即u (x, y) = 0与v (x, y) = 0分别表示oxy坐标平面上的两条曲线,于是通过对曲线作定性的研究,他证明了这两条曲线必有一个交点,从而得出u (a, b) = v (a, b) = 0即f (a + bi) = 0,故此便是代数方程f (z)的一个根。这个论证具有

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

初中代数基础知识试题-123

一、 填空题 1. 一个数等于它倒数的4倍,这个数是__________. 2. 已知:| x | = 3,| y | = 2,且 xy <0,那么 x + y =__________. 3. 16的平方根是_________. 4. 用四舍五入法,对200626取近似值,保留四个有效数字是2006261≈_________. 5. 如果 a = 1 +2,b=211 -,那么a 与b 的关系是_________. 6. 如果单项式 b y x 2223与87y x a -是同类项,那么=+b a _________. 7. 若代数式1 ||)1)(2(-+-x x x 的值为零,那么x 的取值应为_________. 8. 某商品原价为 a 元,因需求量大,经营者连续两次提价,每次提价10%,后因市场 物价调整,又一次降价20%,降价后这种商品的价格是_________. 9. 计算:=?÷4 21245])[(a a a __________. 10. 因式分解:a 3 + a 2b – ab 2 – b 3 =_________. 11. 在实数范围内分解因式:9x 2 + 6x – 4 =________. 12. 化简:=+-÷-b a b a b ab 2 22 )(____________. 13. 化简:=---n m n m 1)(____________. 14. 计算:=--12134 ____________. 15. 如果| y – 3 | + (2x – 4)2 = 0,,那么2x – y =____________. 16. 如果 x = 1是方程x 2 + kx + k -5 = 0的一个根,那么 k =____________. 17. 若???-==25y x 是方程组? ??==+n xy m y x 的一个解,那么这个方程组的另一个解是____________. 18. 分式方程11 14=--x x 的解是____________. 19. 分式方程25211322=-+-x x x x ,设y x x =-1 2,那么原方程可化为关于y 的整式方程是____________. 20. 无理方程x x =-2的解是____________.

代数基本定理的几种证明

2014-3050-021 本科毕业论文(设计) 代数基本定理的几种证明 学生姓名:黄容 学号:1050501021 系院:数学系 专业:数学与应用数学 指导教师:覃跃海讲师 提交日期:2014年4月27日

毕业论文基本要求 1.毕业论文的撰写应结合专业学习,选取具有创新价值和实践意义的论题. 2.论文篇幅一般为理科以3000至5000字为宜. 3.论文应观点明确,中心突出,论据充分,数据可靠,层次分明,逻辑清楚,文字流畅,结构严谨. 4.论文字体规范按《广东第二师范学院本科生毕业论文管理办法(试行)》和“论文样板”执行. 5.论文应书写工整,标点正确,用微机打印后,装订成册.

本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果.对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明.本人完全意识到本声明的法律结果由本人承担. 学生签名: 时间:年月日 关于论文(设计)使用授权的说明 本人完全了解广东第二师范学院关于收集、保存、使用学位论文的规定,即: 1.按照学校要求提交学位论文的印刷本和电子版本; 2.学校有权保存学位论文的印刷本和电子版,并提供目录检索与阅览服务,在校园网上提供服务; 3.学校可以采用影印、缩印、数字化或其它复制手段保存论文; 本人同意上述规定. 学生签名: 时间:年月

摘要 代数基本定理是代数学上一个重要的定理,甚至在整个数学上都起着基础作用.最早在1629年由荷兰数学家吉拉尔在他的论著《代数新发现》提出, 然而没有给出证明.1637年迪卡儿也都提出这个定理,但同样没有给出证明.一直到一百年多后, 于1746年达朗贝尔才给出第一个证明.到十八世纪后半叶,欧拉等人也给出一些证明,然而这些证明都不够严格,都先是假设了一些条件,然后才得出证明.直到1799年高斯才给出了第一个实质的证明.在二十世纪以前该定理对于代数学都是起着核心的作用,因为代数学所研究的对象都是建立在复数域上的, 因此也就之称为代数基本定理.然而直到现在该定理却还是没有纯代数证法,用纯代数证明该定理却是十分困难的,很多人相信根本不存在纯代数的证法.不过后来随着复变理论的发展,该定理已成为其他一些定理的推论了,用复函数理论可以很完美的证明了.现在据说也已经有了两百多种证法. 虽然前人已做了很多研究,但从多方面知识总结这些证明还是很有意义的.本论文基于多项式、柯西积分定理、儒歇定理、刘维尔定理、最大模定理和最小模定理这几个方面介绍了代数基本定理的几种证法. [关键词]:代数基本定理;多项式;柯西积分定理;儒歇定理;刘维尔定理

相关文档
相关文档 最新文档