文档库 最新最全的文档下载
当前位置:文档库 › 第4、5部分:热学习题

第4、5部分:热学习题

第4、5部分:热学习题
第4、5部分:热学习题

第4部分 气体动理论

1.理想气体能达到平衡态的原因是[ ]

(A) 各处温度相同 (B) 各处压强相同

(C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 2. 如果氢气和氦气的温度相同, 物质的量也相同, 则这两种气体的[ ]

(A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D) 势能相等

3. 某气体的分子具有t 个平动自由度, r 个转动自由度, s 个振动自由度, 根据能均分定理知气体分子的平均总动能为[ ]

(A) kT t

21 (B) kT s r t 21)(++ (C) kT r 21 (D) kT s r t 2

1)2(++ 4. 在标准状态下, 体积比为2

1

21=V V 的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为[ ] (A)

2

1 (B) 3

5 (C) 6

5 (D)

10

3 5. 压强为p 、体积为V 的氢气(视为理想气体)的内能为[ ]

(A)

pV 25 (B) pV 23 (C) pV 2

1

(D) pV 6.温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系[ ]

(A)

k ε和k ε相同 (B) k ε相等而k ε不相等 (C)

k ε相等而k ε不相等 (D) k ε和k ε都不相等

7.两瓶不同种类的气体,分子平均平动动能相等,但气体密度不同,则[ ] (A) 温度和压强都相同 (B) 温度相同,压强不等 (C) 温度和压强都不同 (D) 温度相同,内能也一定相等

8.容器中储有1mol 理想气体,温度t =27℃,则分子平均平动动能的总和为[ ] (A) 3403 J (B) 3739.5 J (C) 2493 J (D) 6232.5 J

9.在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ]

(A) 速率为v 时的分子数 (B) 分子数随速率v 的变化

(C) 速率为v 的分子数占总分子数的百分比

(D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比

10.如图所示,在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为[ ]

(A) ?21d )(v v v v f (B) ?

2

1

d )(v v v v Nf

O

1

(C)

?2

1

d )(v v

v v v f (D)

?2

1

d )(v v

v v f

11.气缸内盛有一定量的氢气, 当温度不变而压强增大一倍时, 氢气分子的平均碰撞次数Z 和平均自由程λ的变化情况是[ ]

(A) Z 和都增大一倍 (B) Z 和都减为原来的一半 (C) Z 增大一倍减为原来的一半 (D) Z 减为原来的一半而增大一倍

12.一定量的理想气体, 在容积不变的条件下, 当温度降低时, 分子的平均碰撞次数Z 和平均自由程λ的变化情况是[ ]

(A) Z 减小λ不变 (B) Z 不变λ减小 (C) Z 和λ都减小 (D) Z 和λ都不变 二、填空题

1.容器中储有氧气,温度t =27℃,则氧分子的平均平动动能=平ω__________,平均转动动能

=转___________,平均动能=动___________。

2. 理想气体在平衡状态下,速率区间v ~ v + d v 内的分子数为 . 3.f (v )是理想气体分子在平衡状态下的速率分布函数, 则式

?2

1

d )(v v

v v f 的物理意义是: .

4. 如图所示氢气分子和氧气分子在相同温度下的麦克斯韦速率分布曲线.则氢气 分子的最概然速率为______________,氧分子的最概然速率为____________.

5.如图所示曲线为处于同一温度T 时氦(相对原子量4)、氖(相对原子量20) 和氩(相对原子量40)三种气体分子的速率分布曲线.其中 曲线(a )是 气分子的速率分布曲线;

曲线(c )是 气分子的速率分布曲线.

5部分 热力学基础

一、选择题 1. 功的计算式A p V V =

?d 适用于[ ]

(A) 理想气体 (B) 等压过程 (C) 准静态过程 (D) 任何过程

2. 一定质量的理想气体经历了下列哪一个变化过程后, 它的内能是增大的[ ]

(A) 等温压缩 (B) 等体降压 (C) 等压压缩 (D) 等压膨胀

3. 一定量的理想气体从初态),(T V 开始, 先绝热膨胀到体积为2V , 然后经

O

)

s

1-

O

等容过程使温度恢复到T , 最后经等温压缩到体积V ,如图所示.在这个 循环中, 气体必然[ ]

(A) 内能增加 (B) 内能减少 (C) 向外界放热 (D) 对外界做功 4. 根据热力学第二定律可知, 下列说法中唯一正确的是[ ]

(A) 功可以全部转换为热, 但热不能全部转换为功

(B) 热量可以从高温物体传到低温物体, 但不能从低温物体传到高温物体 (C) 不可逆过程就是不能沿相反方向进行的过程 (D) 一切自发过程都是不可逆过程

5. “理想气体和单一热源接触作等温膨胀时, 吸收的热量全部用来对外做功.”对此说法, 有以下几种评论, 哪一

种是正确的[ ]

(A) 不违反热力学第一定律, 但违反热力学第二定律

(B) 不违反热力学第二定律, 但违反热力学第一定律 (C) 不违反热力学第一定律, 也不违反热力学第二定律 (D) 违反热力学第一定律, 也违反热力学第二定律

6. 如图所示,如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a '',那么循环abcda 与

da c b a ''所做的功和热机效率变化情况是[ ]

(A) 净功增大,效率提高 (B) 净功增大,效率降低 (C) 净功和效率都不变 (D) 净功增大,效率不变

7. 在图中,I c II 为理想气体绝热过程,I a II 和I b II 是任意过程.

此两任意过程中气体做功与吸收热量的情况是[ ] (A) I a II 过程放热,做负功;I b II 过程放热,做负功

(B) I a II 过程吸热,做负功;I b II 过程放热,做负功 (C) I a II 过程吸热,做正功;I b II 过程吸热,做负功

(D) I a II 过程放热,做正功;I b II 过程吸热,做正功

8. 某理想气体分别进行了如图所示的两个卡诺循环:I(abcda )和II(a'b'c'd'a'),

且两个循环曲线所围面积相等.设循环I 的效率为η,每次循环在高温热源 处吸 的热量为Q ,循环II 的效率为η',每次循环在高温热源处吸的热量 为Q ',则[ ]

(A) Q Q '<'<,ηη (B) Q Q '>'<,ηη (C) Q Q '<'>,ηη (D) Q Q '>'>,ηη

二、填空题

1.一定量气体作卡诺循环, 在一个循环中, 从热源吸热1000 J, 对外做功300 J . 若冷凝器的温度为7?C, 则热源的温度为 .

2. 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分) 分别为1S 和2S ,则二者的大小关系是 .

3.一卡诺机(可逆的),低温热源的温度为C 27 ,热机效率为40%,其高温热源温度为 K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加 K . 4.一定量的理想气体,从A 状态),2(11V p 经历如图所示的直线过程变到B 状态)2,(11V p , 则AB 过程中系统做功___________, 内能改变△E =_________________.

5.一定量的理想气体经历acb 过程时吸热550 J ,如图所示.则经历acbea 过程时,吸热为 .

6.如图所示,已知图中两部分的面积分别为S 1和S 2.(1) 如果气体的膨胀过程为 a →1→b ,则气体对外做功A =________;(2) 如果气体进行a →1→b →2→a 的循环过程,则它对外做功A =_______________.

三、计算题

1.1mol 氧气由初态A(p 1,V 1)沿如下图所示的直线路径变到末态B(p 2,V 2),试求上述过程中,(1)气体对外界

所作的功;(2)内能的变化量;(3)从外界吸收的热量;(4)此过程的热容。(设氧气可视为理想气体,且C V =5R /2)

21

1

533m

-

p p p 2

1

2.1 mol 理想气体在温度400K 与300K 之间进行一卡诺循环,在400K 的等温线上,起始体积为0.001m 3,最后体积为0.005 m 3。试求气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量。 3. 比热容比=γ 1.40的理想气体,进行如图所示的abca 循环,

状态a 的温度为300 K .

(1) 求状态b 、c

的温度;

(2) 计算各过程中气体所吸收的热量、气体所做的功和气体内能的增量; (3) 求循环效率.

4.一系统由如图所示的A 状态沿ACB 到达B 状态,有334J 热量传递给系统,

而系统对外做功126J .

(1)若沿曲线ADB 时,系统做功42J ,问有多少热量传递给系统;(2)当系统由B 沿曲线BEA 返回A 时,外界对系统做功为84J ,问系统是吸收还是放热?传递热量多少?

5.有1mol 单原子理想气体沿如图所示的折线由状态1变化到状态2,又由状态2变化到状态3,求: (1)过程1→2、2→3中气体对外界所做的功; (2)过程1→2、2→3中气体从外界吸收的热量. 6.如图8所示abcda 为1mol 单原子理想气体进行的循环过程,求循环过程中气体从外界吸收的热量和对外作的净功及循环效率.

)3O

V

3)

2p 1

p 1

V 12V 1

高中物理《热学》3.5典型例题分析

§3.5 典型例题分析 例1、绷紧的肥皂薄膜有两个平行的边界,线AB 将薄膜分隔成两部分(如图3-5-1)。为了演示液体的表面张力现象,刺破左边的膜,线AB 受到表面张力作 用被拉紧,试求此时线的张力。两平行边之间的距离为d ,线AB 的长度为l (l >πd/2),肥皂液的表面张力系数为σ。 解:刺破左边的膜以后,线会在右边膜的作用下形状相应发生变化(两侧都有膜时,线的形状不确定),不难推测,在l >πd/2的情况下,线会形成长度为 ) 2/(21 d l x π-=的两条直线段和半径为d/2的半圆, 如图3-5-2所示。线在C 、D 两处的拉力及各处都垂直于该弧线的表面张力的共同作用下处于平衡状态,显然 ∑=i f T 2 式中为在弧线上任取一小段所受的表面张力,∑i f 指各小段所受表面张力的合力,如图3-5-2所示,在弧线上取对称的两小段,长度均为r △θ,与x 轴的夹角均为方θ,显然 θσ??==r f f 221 而这两个力的合力必定沿x 轴方向,(他们垂直x 轴方向分力的合力为零),这样 θθσ??==cos 221r f f x x 所以 图3-5-1 图3-5-2

∑∑==?=d r r f i σσθθσ24cos 2 因此d T σ= 说明对本题要注意薄膜有上下两层表面层,都会受到表面张力的作用。 例2、在水平放置的平玻璃板上倒一些水银,由于重力和表面张力的影响,水银近似呈圆饼形状(侧面向外凸出),过圆盘轴线的竖直截面如图3-5-3所示。为了计算方便,水银和玻璃的接触角可按180o计算,已知水银密度 33106.13m kg ?=ρ,水银的表面张力系数m N a 49.0=。当圆饼的半径很大时,试估算厚度h 的数值大约是多少(取一位有效数字)? 分析:取圆饼侧面处宽度为△x ,高为h 的面元△S ,图3-5-3所示。由于重力而产生的水银对△S 侧压力F ,由F 作用使圆饼外凸。但是在水银与空气接触的表面层中,由于表面张力的作用使水银表面有收缩到尽可能小的趋势。上下两层表面张力的合力的水平分量必与F 反向,且大小相等。△S 两侧表面张力43,f f 可认为等值反向的。 解: x gh S p F ?= ??=2121 ρ F f f =+21cos θ x gh x a ?= +?221 )cos 1(ρθ g a h ρθ)cos 1(2+= 由于0<θ<90o,有 m h m 3 3104103--?<

工程热力学(第五版)第4章练习题

第4章 理想气体热力过程及气体压缩 4.1 本章基本要求 熟练掌握定容、定压、定温、绝热、多变过程中状态参数p 、v 、T 、?u 、?h 、?s 的计算,过程量Q 、W 的计算,以及上述过程在p -v 、T -s 图上的表示。 4.2 本章重点 结合热力学第一定律,计算四个基本热力过程、多变过程中的状态参数和过程参数及在p -v 、T -s 图上表示。本章的学习应以多做练习题为主,并一定注意要在求出结果后,在p -v 、T -s 图上进行检验。 4.3 例 题 例1.2kg 空气分别经过定温膨胀和绝热膨胀的可逆过程,如图4.1,从初态1p =9.807bar,1t =300C 膨胀到终态容积为初态容积的5倍,试计算不同过程中空气的终态参数,对外所做的功和交换的热量以及过程中内能、焓、熵的变化量。 图4.1 解:将空气取作闭口系 对可逆定温过程1-2,由过程中的参数关系,得 bar v v p p 961.15 1807.92112=?== 按理想气体状态方程,得111p RT v = =0.1677kg m /3

125v v ==0.8385kg m /3 12T T ==573K 2t =300C 气体对外作的膨胀功及交换的热量为 1 211ln V V V p Q W T T ===529.4kJ 过程中内能、焓、熵的变化量为 12U ?=0 12H ?=0 12S ?=1 T Q T =0.9239kJ /K 或12S ?=mRln 1 2V V =0.9238kJ /K 对可逆绝热过程1-2′, 由可逆绝热过程参数间关系可得 k v v p p )(2 11'2= 其中22'v v ==0.8385kg m /3 故 4.12)5 1(807.9'=p =1.03bar R v p T '''222==301K '2t =28C 气体对外所做的功及交换的热量为 )(1 1)(11'212211T T mR k V p V p k W s --=--==390.3kJ 0'=s Q 过程中内能、焓、熵的变化量为 kJ T T mc U v 1.390)(1212''-=-=? 或kJ W U 3.390212'-=-=? kJ T T mc H p 2.546)(1212''-=-=? '12S ?=0 例2. 1kg 空气多变过程中吸取41.87kJ 的热量时,将使其容积增大10倍,压力降低8倍,求:过程中空气的内能变化量,空气对外所做的膨胀功及技术功。

热力学作业题答案

第二章 2-1.使用下述方法计算1kmol 甲烷贮存在体积为0.1246m 3、温度为50℃的容器中产生的压力:(1)理想气体方程;(2)R-K 方程;(3)普遍化关系式。 解:甲烷的摩尔体积V =0.1246 m 3/1kmol=124.6 cm 3/mol 查附录二得甲烷的临界参数:T c =190.6K P c =4.600MPa V c =99 cm 3/mol ω=0.008 (1) 理想气体方程 P=RT/V=8.314×323.15/124.6×10-6=21.56MPa (2) R-K 方程 2 2.52 2.560.52 6 8.314190.60.427480.42748 3.2224.610 c c R T a Pa m K mol P -?===???? 531 68.314190.60.08664 0.08664 2.985104.610 c c RT b m mol P --?===??? ∴() 0.5RT a P V b T V V b = --+ ()()50.555 8.314323.15 3.222 12.46 2.98510323.1512.461012.46 2.98510---?= - -???+? =19.04MPa (3) 普遍化关系式 323.15190.6 1.695r c T T T === 124.699 1.259r c V V V ===<2 ∴利用普压法计算,01Z Z Z ω=+ ∵ c r ZRT P P P V = = ∴ c r PV Z P RT = 654.61012.46100.21338.314323.15 c r r r PV Z P P P RT -???===? 迭代:令Z 0=1→P r0=4.687 又Tr=1.695,查附录三得:Z 0=0.8938 Z 1=0.4623 01Z Z Z ω=+=0.8938+0.008×0.4623=0.8975 此时,P=P c P r =4.6×4.687=21.56MPa 同理,取Z 1=0.8975 依上述过程计算,直至计算出的相邻的两个Z 值相差很小,迭代结束,得Z 和P 的值。 ∴ P=19.22MPa 2-4.将压力为2.03MPa 、温度为477K 条件下的2.83m 3NH 3压缩到0.142 m 3,若压缩后温度448.6K ,则其压力为若干?分别用下述方法计算:(1)Vander Waals 方程;(2)Redlich-Kwang 方程;(3)Peng-Robinson

2019中考物理经典易错题100例-热学部分

2019中考物理经典易错题100例-热学部分 一、物理概念(物理量):比热(C)、热量(Q)、燃烧值(q)、内能、温度(t)。 二、实验仪器:温度计、体温计。 三、物理规律:光在均匀介质中沿直线传播的规律,光的反射定律,平面镜成像规律,光的折射规律,凸透镜成像规律,物态变化规律,内能改变的方法,热量计算公式: Q=cmDt及燃烧值计算Q=qm,分子运动论。 第一类:相关物理量的习题: 例1:把一杯酒精倒掉一半,则剩下的酒精() A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 [解析]:比热是物质的一种特性。它与该种物体的质量大小无关;与该种物体的温度高低无关;与该种物体吸热还是放热也无关。这种物质一旦确定,它的比热就被确定。酒精的比热是2.4×103焦/(千克?℃),一瓶酒精是如此,一桶酒精也是如此。0℃的酒精和20℃的酒精的比热也相同。燃烧值是燃料的一种性质。它是指单位质量的某种燃烧完全燃烧所放出的热量。酒精的燃烧值是3.0×107焦/千克,它并不以酒精的质量多少而改变。质量多的酒精完全燃烧放出的热量多,但酒精的燃烧值并没有改变。所以本题的准确答案应是B。 例2:甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块()。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 [解析]:机械能包括动能、势能,两个冰块的质量相同,能够通过它们的速度大小、位置高度,判断它们的动能和势能的大小,判断物体内能大小的依据是温度和状态。根据题意,两个冰块均处于静止状态,它们的动能都是零,两冰块质量相同,乙冰块比甲冰块的位置高,乙冰块的重力势能大。结论是乙冰块的机械能大。两个冰块均为0℃,质量相同,物态相同,温度相同,所以从它们的内能也相同。选项B、C准确。 第二类:相关温度计的习题: 例1:两支内径粗细不同下端玻璃泡内水银量相等的合格温度计同时插入同一杯热水中,水银柱上升的高度和温度示数分别是() A. 上升高度一样,示数相等。 B. 内径细的升得高,它的示数变大。

第四、五章气体动理论和热力学的补充题

第三、四章 气体动理论及热力学习题 一、选择题 1.某理想气体状态变化时,内能随压强的变化关系如图中 直线AB 所示,则A 至B 变化过程为:( ) (A )等温过程 (B )等容过程 (C )等压过程 (D )绝热过程 2. 一定量的理想气体,处在某一初始状态,现在要使它的温度经过一系列状态变化后回到初始状态的温度,可能实现的过程为 ( ) (A )先保持压强不变而使它的体积膨胀,接着保持体积不变而增大压强; (B )先保持压强不变而使它的体积减小,接着保持体积不变而减小压强; (C )先保持体积不变而使它的压强增大,接着保持压强不变而使它体积膨胀; (D )先保持体积不变而使它的压强减小,接着保持压强不变而使它体积膨胀。 3. 压强、体积和温度都相同(常温条件)的氧气和氦气在等压过程中吸收了相等的热量,它们对外作的功之比为 ( ) (A )1:1; (B )5:9; (C )5:7; (D )9:5。 4. 一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为0p ,右边为真空,今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是( ) (A )0p ; (B )0p /2; (C )02p γ; (D )γ2/0p 。 )/(v p C C =γ 5. 在V p 图上有两条曲线abc 和adc ,由此可以得出以下结论: ( ) (A )其中一条是绝热线,另一条是等温线; (B )两个过程吸收的热量相同; (C )两个过程中系统对外作的功相等; (D )两个过程中系统的内能变化相同。 6. 一定量的理想气体向真空作自由膨胀,体积由1V 增至2V ,此过程中气体的( ) (A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。 7. 一热机由温度为727℃的高温热源吸热,向温度为527 ℃的低温热源放热,若热机在最

人教版初中物理经典易错题--热学部分

初三物理《热学》易错题分析 一:常规易错题 1:把一杯酒精倒掉一半,则剩下的酒精() A. 比热不变,燃烧值变为原来的一半 B.比热和燃烧值均不变 C. 比热变为原来的一半,燃烧值不变 D.比热和燃烧值均变为原来的一半 2:甲、乙两个冰块的质量相同,温度均为0℃。甲冰块位于地面静止,乙冰块停止在10米高处,这两个冰块()。 A. 机械能一样大 B.乙的机械能大 C.内能一样大 D. 乙的内能大 3:两支内径粗细不同下端玻璃泡内水银量相等的合格温度计同时插入同一杯热水中,水银柱上升的高度和温度示数分别是() A. 上升高度一样,示数相等。 B. 内径细的升得高,它的示数变大。 C. 内径粗的升得低,但两支温度计的示数相同。 D. 内径粗的升得高,示数也大。 4下列说法中正确的是() A. 某一物体温度降低的多,放出热量就多。 B.温度高的物体比温度低的物体含有热量多。 C. 温度总是从物体热的部分传递至冷的部分。 D.深秋秧苗过夜要灌满水,是因为水的温度高。 5:一个带盖的水箱里盛有一些0℃的冰和水,把它搬到大气压为1标准大气压0℃的教室里,经过一段时间后,水箱里()。 A. 都变成冰了,连水气也没有 B.都变成水了,同时也有水气 C. 只有冰和水,不会有水气 D.冰、水和水气都存在 6:下列现象中,不可能发生的是() A. 水的沸点低于或高于100℃ B. 湿衣服放在温度低的地方比放在温度高的地方干得快 C. -5℃的冰块放在0℃的水中会溶化 D. 物体吸收热量温度保持不变 7:质量和初温相同的两个物体() A吸收相同热量后,比热大的物体温度较高B.放出相同的热量后比热小的物体温度较低 C. 吸收相同的热量后,比热较小的物体可以传热给比热较大的物体 D. 放出相同的热量后,比热较大的物体可以向比热较小的物体传播 8:指明下列事物中内能改变的方法:⑴一盆热水放在室内,一会儿就凉了________;⑵高温高压的气体,迅速膨胀,对外做功,温度降低________;⑶铁块在火炉中加热,一会热得发红________;⑷电烙铁通电后,温度升高________;⑸用打气筒给车胎打气,过一会儿筒壁变热。⑹两手互相摩擦取暖________。 9:甲、乙两金属球,质量相等,初温相同,先将甲球投入冷水中,待热平衡后水温升高t℃,取出甲球(设热量与水均无损失),再迅速把乙球投入水中,这杯水热平衡后水温又升高t℃,设甲、乙两球的比热分别为C甲和C乙,则有() A. C甲=C乙 B.C甲>C乙 C.C甲

(完整版)热学经典题目归纳附答案

热学经典题目归纳 一、解答题 1.(2019·山东高三开学考试)如图所示,内高H=1.5、内壁光滑的导热气缸固定在水 平面上,横截面积S=0.01m2、质量可忽略的活塞封闭了一定质量的理想气体。外界温度为300K时,缸内气体压强p1=1.0×105Pa,气柱长L0=0.6m。大气压强恒为p0=1.0×105Pa。现用力缓慢向上拉动活塞。 (1)当F=500N时,气柱的长度。 (2)保持拉力F=500N不变,当外界温度为多少时,可以恰好把活塞拉出? 【答案】(1)1.2m;(2)375K 【解析】 【详解】 (1)对活塞进行受力分析 P1S+F=P0S. 其中P1为F=500N时气缸内气体压强 P1=0.5×104Pa. 由题意可知,气体的状态参量为 初态:P0=1.0×105Pa,V a=LS,T0=300K; 末态:P1=0.5×105Pa,V a=L1S,T0=300K; 由玻意耳定律得 P1V1=P0V0 即 P1L1S=P0L0S 代入数据解得 L1=1.2m<1.5m 其柱长1.2m

(2)汽缸中气体温度升高时活塞将向外移动,气体作等压变化 由盖吕萨克定律得 10V T =2 2 V T 其中V 2=HS . 解得: T 2=375K. 2.(2019·重庆市涪陵实验中学校高三月考)底面积S =40 cm 2、高l 0=15 cm 的圆柱形汽缸开口向上放置在水平地面上,开口处两侧有挡板,如图所示.缸内有一可自由移动的质量为2 kg 的活塞封闭了一定质量的理想气体,不可伸长的细线一端系在活塞上,另一端跨过两个定滑轮提着质量为10 kg 的物体A .开始时,气体温度t 1=7℃,活塞到缸底的距离l 1=10 cm ,物体A 的底部离地h 1=4 cm ,对汽缸内的气体缓慢加热使活塞缓慢上升.已知大气压p 0=1.0×105 Pa ,试求: (1)物体A 刚触地时,气体的温度; (2)活塞恰好到达汽缸顶部时,气体的温度. 【答案】(1)119℃ (2)278.25℃ 【解析】 【详解】 (1)初始活塞受力平衡: p 0S +mg =p 1S +T ,T =m A g 被封闭气体压强 p 1()A 0m m g p S -=+ =0.8×105 Pa 初状态, V 1=l 1S ,T 1=(273+7) K =280 K A 触地时 p 1=p 2, V 2=(l 1+h 1)S 气体做等压变化,

第八章 热力学作业(答案)

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0>?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真 空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. p 0

第四章 化学热力学作业题

1.用来焊接金属的铝热反应涉及Fe 2O 3被金属Al 还原的反应 2 Al(s) + Fe 2O 3(s)→Al 2O 3(s) + 2 Fe(s), 试计算298K 时该反应的 。已知,Fe 2O 3 (s)和Al 2O 3(s)的 分别为-1676 KJ?mol -1和-824.2 KJ?mol -1。 2.已知298K 时,乙烯加H 2生成乙烷的反应焓变 ,乙烷的摩尔燃烧热 ,CO 2的摩尔生成热 ,H 2O 的摩尔生成热 。试计算乙烯的摩尔生成热。(52.7 KJ?mol -1) 3.已知下列热化学方程式: 12326.27);(3)(2)(3)(-?=?+→+mol kJ rH g CO s Fe g CO s O Fe m θ ① 1243326.58);()(2)()(3-?-=?+→+mol kJ rH g CO s O Fe g CO s O Fe m θ ② 12431.38);()(3)()(-?=?+→+mol kJ rH g CO s FeO g CO s O Fe m θ ③ 计算下列反应的 。 )()()()(2g CO s Fe g CO s FeO +→+ 4.碘钨灯泡外壳是用石英(SiO 2)制作的。试用热力学数据论证:“用玻璃取代石θm r H ?θm f H ?1 θm r 4.136-?-=?mol kJ H 162θm c 07.156),(-?-=?mol kJ g H C H 12θm f 5.393),(-?-=?mol kJ g CO H 12θm f 8.285),(-?-=?mol kJ l O H H θm r H ?

高中热学经典题集

热学试题集 一、选择题(在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确) 1.下列说法正确的是[] A.温度是物体内能大小的标志B.布朗运动反映分子无规则的运动 C.分子间距离减小时,分子势能一定增大D.分子势能最小时,分子间引力与斥力大小相等 2.关于分子势能,下列说法正确的是[] A.分子间表现为引力时,分子间距离越小,分子势能越大 B.分子间表现为斥力时,分子间距离越小,分子势能越大 C.物体在热胀冷缩时,分子势能发生变化 D.物体在做自由落体运动时,分子势能越来越小 3.关于分子力,下列说法中正确的是[] A.碎玻璃不能拼合在一起,说明分子间斥力起作用 B.将两块铅压紧以后能连成一块,说明分子间存在引力 C.水和酒精混合后的体积小于原来体积之和,说明分子间存在的引力 D.固体很难拉伸,也很难被压缩,说明分子间既有引力又有斥力 4.下面关于分子间的相互作用力的说法正确的是[] A.分子间的相互作用力是由组成分子的原子内部的带电粒子间的相互作用而引起的 B.分子间的相互作用力是引力还是斥力跟分子间的距离有关,当分子间距离较大时分子间就只有相互吸引的作用,当分子间距离较小时就只有相互推斥的作用 C.分子间的引力和斥力总是同时存在的 D.温度越高,分子间的相互作用力就越大 5.用r表示两个分子间的距离,Ep表示两个分子间的相互作用势能.当r=r0时两分子间的斥力等于引力.设两分子距离很远时Ep=0 [] A.当r>r0时,Ep随r的增大而增加B.当r<r0时,Ep随r的减小而增加 C.当r>r0时,Ep不随r而变D.当r=r0时,Ep=0 6.一定质量的理想气体,温度从0℃升高到t℃时,压强变化如图2-1所示,在这一过程中气体体积变化情况是[] 图2-1 A.不变B.增大C.减小D.无法确定 7.将一定质量的理想气体压缩,一次是等温压缩,一次是等压压缩,一次是绝热压缩,那么[] A.绝热压缩,气体的内能增加B.等压压缩,气体的内能增加 C.绝热压缩和等温压缩,气体内能均不变D.三个过程气体内能均有变化 8.如图2-2所示,0.5mol理想气体,从状态A变化到状态B,则气体在状态B时的温度为[] 图2-2

高等工程热力学作业

高等工程热力学作业(编程) 第三章实际气体状态方程 第四章实际气体导出热力学性质与过程 题目: 一、用PR方程计算制冷剂R290、R600a和混合制冷剂R290/R600a:50/50wt%的PVT性质。 二、用PR方程计算制冷剂R290、R600a和混合制冷剂R290/R600a的导出热力学性质焓和熵。 源程序: 1、牛顿迭代法求Z function Z=newton(A,B,Z) err=1e-6; for n=0:1000 f=Z^3-(1-B)*Z^2+Z*(A-2*B-3*B^2)-(A*B-B^2-B^3); Z=Z-f/(3*Z^2-2*(1-B)*Z+(A-2*B-3*B^2)); if(abs(f)

N1=[44.096 369.89 4.2512 0.1521]; N2=[58.122 407.81 3.6290 0.1840]; k1=0.37464+1.54226*N1(4)-0.26992*N1(4)^2; alpha1=(1+k1*(1-(T/N1(2))^0.5))^2; a1=0.45724*alpha1*R^2*N1(2)^2/N1(3)/10^6; aa1=0.45724*R^2*N1(2)^2/N1(3)/10^6*2*sqrt(alpha1)*(-k1/(2*sqrt(N1(2)*T))); b1=0.07780*R*N1(2)/N1(3)/10^6; k2=0.37464+1.54226*N2(4)-0.26992*N2(4)^2; alpha2=(1+k2*(1-(T/N2(2))^0.5))^2; a2=0.45724*alpha2*R^2*N2(2)^2/N2(3)/10^6; aa2=0.45724*R^2*N2(2)^2/N2(3)/10^6*2*sqrt(alpha2)*(-k2/(2*sqrt(N2(2)*T))); b2=0.07780*R*N2(2)/N2(3)/10^6; a3=0.25*a1+0.5*(1-0.01)*sqrt(a1*a2)+0.25*a2; aa3=0.25*aa1+0.5*(1-0.01)*1/2/sqrt(a1*a2)*(a1*aa2+a2*aa1)+0.25*aa2; b3=0.5*(b1+b2); a=[a1 a2 a3]; b=[b1 b2 b3]; beta=[aa1 aa2 aa3]; for i=1:3; A(i)=a(i)*p*10^6/(R^2*T^2); B(i)=b(i)*p*10^6/(R*T);

热学第六章课后习题答案

第六章热学答案 1. 解 :由致冷系数2122T T T A Q -== ε ()J T T AT Q 421221025.121 102731000?=-?=-= 2.解:锅炉温度K T 4832732101=+=,暖气系统温度K T 333273602=+=,蓄水池温度 K T 288273153=+=。kg 0.1燃料燃烧放出的热量为1Q 热机的工作效率1212111T T Q Q Q A -=-== η,向制冷机做功)1(1 21T T Q A -=,热机向暖气系统放热分别为11212Q T T A Q Q = -=;设制冷机的制冷系数3 2343T T T A A Q A Q -=-==ε, A T T T T T T T T T A Q ?-?-=-+ =3 22 1213234)1( 暖气系统得到热量为: 112322112421Q T T T T T Q T T Q Q Q ??? ? ??--+= +=1123231Q T T T T T ?-T -= cal 41049.115000483 333 288333288483?=???--= 3.解:(1)两个循环都工作与相同绝热线,且低温T 不变,故放热相同且都为2Q ,在第一个循环 过程中22 1212111Q A Q Q Q T T +- =-=- =η,2 122T T AT Q -=;在第二个循环过程中高温热源温度提高到3T 的循环过程中2223232111Q A Q Q Q T T +-=-=- =η,2 32 22T T T A Q -=;因此2 32 22122T T T A T T AT Q -=-= 解得()()K T T A A T T 473173373800 106.12733 211223=-?+=-+= (2)效率增大为:3.42473 273 1132=-=- =T T η % 4.解:热机效率 1211T T Q A -≤,当取等号时1Q 最小,此时1 211T T Q A -=,

热力学作业题

文科物理《热力学》习题(计算题) 第一章热平衡与温度(选两题:从1-1至1-4任选一题,1-5至1-7任选一题;多选不限) 温馨提示: 本章计算题解题时只需运用中学的知识,即理想气体状态方程。不过,解最后三道题时所用到的气体状态方程的形式为p = nkT。 1-1 定体气体温度计的测温气泡放入水的三相点管的槽内时,气体的压强为×103Pa。求: (1)用此温度计测量的温度时,气体的压强是多大 (2)当气体压强为×103Pa时,待测温度是多少K多少o C 解:视水蒸气为理想气体,视三相点温度约为0℃。P1V=nRT1,P2V=nRT2,P3V=nRT3 P2=(T2/T1)P1=*6650/=×103Pa. T3=(P3/P1)T1=*==℃. 1-2 自行车的车轮直径为71.12cm,内胎截面直径为3cm。在-3o C的天气里向空胎里打气。打气筒长30cm,截面半径1.5cm。打了20下,气打足了,问此时车胎内压强是多少设车胎内最后气体温度为7o C。 解:内胎体积V2=(∏*)*(∏**)= ㎝~3 打入空气V1=∏***30*20= ㎝~3 P1V1=nRT1,P2V2=nRT2 P2=(V1T2P1)/(V2T1)=*/*= 1-3 某柴油机的气缸充满空气,压缩前其中空气的温度为47o C,压强为×104Pa。当活塞急剧上升时,可把空气压缩到原体积的1/17,其时压强增大到×106Pa,求这时空气的温度(分别以K和o C表示)。 解:P1V1=nRT1,P2V2=nRT2, T2=P2V2T1/P1V1=+47)*425/*17)==℃. 1-4 一氢气球在20o C充气后,压强为,半径为1.5m。到夜晚时,温度降为10o C,气球半径缩为1.4m,其中氢气压强减为。求已经漏掉了多少氢气(提示:注意气压单位换算)。 解:1atm=101325Pa,P1=121590 Pa,P2= Pa T1= K,T2= K V1=4/3*∏***= m~3 V2=4/3*∏***= m~3 n1-n2=P1V1/RT1-P2V2/RT2= mol 1-5 目前可获得的极限真空度为×10-18atm。求在此真空度下1cm3空气内平均有多少个分子设温度为20 o C。 解:PV=nRT, n=×10-18*101325/1000000**=×10-24mol N=n*×1023≈25个 1-6 “火星探路者”航天器发回的1997年7月26日火星表面白天天气情况是:气压为(1bar=105Pa),温度为 o C,这是火星表面1cm3内平均有多少个分子 解:PV=nRT, n=(671/1000000**=×10-6mol N= n*×1023≈×1017个

经典热学题目解析

第一章温度例题 例题1:已知一个气球的体积为,充得温度的氢气。当温度升高到37时,原有压强和体积维持不变,只是跑掉部分氢气,其质量减少了0.052Kg。试求气球内氢气在、压强为P下的密度是什么? 解: 由,气体在两种条件下满足 (1) (2) 将代入(1)、(2)两式,得 时, 例题2:一个抽气机转速为400转/分,每分钟能够抽出气体。设容器的容积问经过多长时间后才能使容器的压强由降到 ?

解:将容器内的和抽出的气体看作一个系统,按等温过程处理。满足 其中 由于米/分,联立以上两式得 例题3:道尔顿提出一种温标:规定理想气体体积的相对增量正比于温度的增量,采用在标准大气压时,水的冰点温度为零度,沸点温度为100度,试用摄氏度t来表示道尔顿温标的温度。 解:设比例系数为,有 (1) 从(,)(,)积分得 (2) 另由等压条件,有 (3) 将代入(2)、(3)得

于是 第二章热力学第一定律例题 例题1:已知热力学系统在某一准静态过程中满足定值(其中为常数)。设压强由P1 到P2,体积由V1到V2。求过程中系统所作的功。 解: 例题2:已知系统进行某循环过程的过程曲线如图中ACBA所示,求此过程系统所作的功。解:利用体积功的几何意义求 =

例题3:讨论下列三个过程的正负. (1)等容降温过程: (2)等温压缩过程: (3)从某绝热线上一点开始,在绝热线左侧,至上而下与同一绝热线相交于另一点的任一过程: 由 例题4:质量,压强,温度氮气。先等体增压至。然后等温膨胀压强降至。最后等压压缩体积压缩一半。求整个过程中和,(氮 ) 解:(1)求,与过程无关

第4、5部分:热学习题

第4部分 气体动理论 1.理想气体能达到平衡态的原因是[ ] (A) 各处温度相同 (B) 各处压强相同 (C) 分子永恒运动并不断相互碰撞 (D) 各处分子的碰撞次数相同 2. 如果氢气和氦气的温度相同, 物质的量也相同, 则这两种气体的[ ] (A) 平均动能相等 (B) 平均平动动能相等 (C) 内能相等 (D) 势能相等 3. 某气体的分子具有t 个平动自由度, r 个转动自由度, s 个振动自由度, 根据能均分定理知气体分子的平均总动能为[ ] (A) kT t 21 (B) kT s r t 21)(++ (C) kT r 21 (D) kT s r t 2 1)2(++ 4. 在标准状态下, 体积比为2 1 21=V V 的氧气和氦气(均视为刚性分子理想气体)相混合, 则其混合气体中氧气和氦气的内能比为[ ] (A) 2 1 (B) 3 5 (C) 6 5 (D) 10 3 5. 压强为p 、体积为V 的氢气(视为理想气体)的内能为[ ] (A) pV 25 (B) pV 23 (C) pV 2 1 (D) pV 6.温度和压强均相同的氦气和氢气, 它们分子的平均动能k ε和平均平动动能k ε有如下关系[ ] (A) k ε和k ε相同 (B) k ε相等而k ε不相等 (C) k ε相等而k ε不相等 (D) k ε和k ε都不相等 7.两瓶不同种类的气体,分子平均平动动能相等,但气体密度不同,则[ ] (A) 温度和压强都相同 (B) 温度相同,压强不等 (C) 温度和压强都不同 (D) 温度相同,内能也一定相等 8.容器中储有1mol 理想气体,温度t =27℃,则分子平均平动动能的总和为[ ] (A) 3403 J (B) 3739.5 J (C) 2493 J (D) 6232.5 J 9.在一定速率v 附近麦克斯韦速率分布函数f (v )的物理意义是: 一定量的理想气体在给定温度下处于平衡态时的[ ] (A) 速率为v 时的分子数 (B) 分子数随速率v 的变化 (C) 速率为v 的分子数占总分子数的百分比 (D) 速率在v 附近单位速率区间内的分子数占总分子数的百分比 10.如图所示,在平衡态下, 理想气体分子速率区间v 1 ~ v 2内的分子数为[ ] (A) ?21d )(v v v v f (B) ? 2 1 d )(v v v v Nf O 1

力学与热学作业习题答案

力学与热学作业习题参考答案 第七章 7.1.3 某发动机飞轮在时间间隔t 内的角位移为 34at bt ct θ=+- (:rad,t :s).θ 球t 时刻的角速度和角加速度. [解 答] 34at bt ct θ=+- 23d a 3bt 4ct dt θ ω= =+- 2 d 6bt 12ct dt ωβ==- 7.1.7 飞机沿水平方向飞行,螺旋桨尖端所在半径为150cm ,发动机转速2000rev/min.(1)桨尖相对于飞机的线速率等于多少?(2)若飞机以250km/h 的速率飞行,计算桨尖相对于地面速度的大小,并定性说明桨尖的轨迹. [解 答] 取地球为基本参考系,飞机为运动参考系。 (1)研究桨头相对于运动参考系的运动: n R 1.5314.16(m /s) 30 πνω== ?=相 (2)研究桨头相对于基本参考系的运动: ,321.7(m /s) νννννν=+⊥∴==绝相牵相牵 绝 由于桨头同时参与两个运动:匀速直线运动和匀速圆周运

动。故桨头轨迹应是一个圆柱螺旋线。 7.2.2 在下面两种情况下求直圆锥体的总质量和质心位置.(1)圆锥体为均质;(2)密度为h 的函数: h (1),L ρρρ =-为正常数. [解 答] 建立如图坐标O-x,由对称轴分析知质心在x 轴上。 由 c dm dv dv dm dv dv x x x x ρρ=== ?????? 得: (1)L 2 c 2 (a /L)d 3L 14 a L 3 x x x ππ= = ? 质量 21 m v a L 3ρπρ == (2)L 200c 2 00 a h ()(1)d 4L L L(h=L ) h a 5(1)()d L L x x x x x x x ππρρπ??-==--??? 质量 22 000h a L m (1)()d a L L 4x x π ρπρπ=-?=? 7.3.5 一转动系统的转动惯量为2 I 8.0kg.m =,转速为41.9rad/s ω=,两制动闸瓦对轮的压力都为392N ,闸瓦与轮缘间的摩擦系数为 0.4μ=,轮半径为r 0.4m =,从开始制动到静止需要用多少时间? [解 答] z z z M I β=∑ z 2z z M 15.68(rad /s ) I β∴= =-∑ x

工程热力学第五版思考题答案

工程热力学第五版思考题答案【篇一:工程热力学课后作业答案第五版(全)】 kpa。(2)标准状n2的气体常数; 态下n2的比容和密度;(3) p?0.1mpa,t?500 解:热力系:储气罐。应用理想气体状态方程。 压送前储气罐中co2的质量 m1? p1v1rt1 ℃时的摩尔 容积mv。 解:(1)n2的气体常数 r? r0m?831428 =296.9j/(kg?k) 压送后储气罐中co2的质量 m2? p2v2rt2 (2)标准状态下n2的比容和密度 v? rtp? 296.9?273101325 根据题意 容积体积不变;r=188.9 =0.8m3/kg p1?pg1?b p2?pg2?b (1)(2)(3)(4) ?? 1v =1.25kg/m3 (3)p?0.1mpa,t?500℃时的摩尔容积mv mv = r0tp t1?t1?273 t2?t2?273 =64.27m3/kmol

压入的co2的质量 m?m1?m2? vp2p1 (?) rt2t1 (5) 2-3.把co2压送到容积3m 3 将(1)、(2)、(3)、(4)代入(5)式得 m=12.02kg 2-5当外界为标准状态时,一鼓风机每小时可送300 m3的 1 的储气罐里,起始表压力 pg1?30 kpa,终了表压力 pg2?0.3mpa,温度由t1=45℃ 增加到t2=70℃。试求被压入的co2的质量。当地大气 空气,如外界的温度增高到27℃,大气压降低到99.3kpa,而鼓风机每小时的送风量仍为300 m,问鼓风机送风量的质量改变多少?解:同上题 m?m1?m2? 3 气质量 m2? p2v2rt2 ? 7?105?8.5287?288 kg 压缩机每分钟充入空气量 m? pvrt ? 1?105?3287?288 kg 所需时间 vp2p130099.3101.325m2 19.83min ?1000(?)?(?? rt2t1287300273m =41.97kg

传热学经典试题

第一章概论 一、名词解释 1.热流量:单位时间内所传递的热量 2.热流密度:单位传热面上的热流量 3.导热:当物体内有温度差或两个不同温度的物体接触时,在物体各部分之间不发生相对位移的情况下,物质微粒(分子、原子或自由电子)的热运动传递了热量,这种现象被称为热传导,简称导热。 4.对流传热:流体流过固体壁时的热传递过程,就是热对流和导热联合用的热量传递过程,称为表面对流传热,简称对流传热。 5.辐射传热:物体不断向周围空间发出热辐射能,并被周围物体吸收。同时, 物体也不断接收周围物体辐射给它的热能。这样,物体发出和接收过程的综合结果产生了物体间通过热辐射而进行的热量传递,称为表面辐射传热,简称辐射传热。 6.总传热过程:热量从温度较高的流体经过固体壁传递给另一侧温度较低流体的过程,称为总传热过程,简称传热过程。 7.对流传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的对流传热量,单位为W/(m2?K)。对流传热系数表示对流传热能力的大小。 8.辐射传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的辐射传热量,单位为W/(m2?K)。辐射传热系数表示辐射传热能力的大小。 9.复合传热系数:单位时间内单位传热面当流体温度与壁面温度差为1K是的复合传热量,单位为W/(m2?K)。复合传热系数表示复合传热能力的大小。 10.总传热系数:总传热过程中热量传递能力的大小。数值上表示传热温差为1K 时,单位传热面积在单位时间内的传热量。 四、简答题 1 .试述三种热量传递基本方式的差别,并各举1?2个实际例子说明。 (提示:从三种热量传递基本方式的定义及特点来区分这三种热传递方式)

工程热力学习题答案第四章-

第四章 4-1 1kg 空气在可逆多变过程中吸热40kJ ,其容积增大为1102v v =,压力降低为 8/12p p =,设比热为定值,求过程中内能的变化、膨胀功、轴功以及焓和熵的变化。 解:热力系是1kg 空气 过程特征:多变过程) 10/1ln() 8/1ln()2/1ln()1/2ln(= =v v p p n =0.9 因为 T c q n ?= 内能变化为 R c v 25 = =717.5)/(K kg J ? v p c R c 57 27===1004.5)/(K kg J ? =n c ==--v v c n k n c 51=3587.5)/(K kg J ? n v v c qc T c u /=?=?=8×103J 膨胀功:u q w ?-==32 ×103 J 轴功:==nw w s 28.8 ×103 J 焓变:u k T c h p ?=?=?=1.4×8=11.2 ×103 J 熵变:1 2ln 12ln p p c v v c s v p +=?=0.82×103 )/(K kg J ? 4-2 有1kg 空气、初始状态为MPa p 5.01=,1501=t ℃,进行下列过程: (1)可逆绝热膨胀到MPa p 1.02=; (2)不可逆绝热膨胀到MPa p 1.02=,K T 3002=; (3)可逆等温膨胀到MPa p 1.02=; (4)可逆多变膨胀到MPa p 1.02=,多变指数2=n ; 试求上述各过程中的膨胀功及熵的变化,并将各过程的相对位置画在同一张v p -图和 s T -图上 解:热力系1kg 空气 (1) 膨胀功:

相关文档
相关文档 最新文档