文档库 最新最全的文档下载
当前位置:文档库 › 0601 动量定理

0601 动量定理

用动量定理解决电磁感应问题

应用动量定理解决电磁感应问题的思维起点 电磁感应部分历来是高考的重点、热点,出题时可将力学、电磁学等知识溶于一体,能很好地考查学生的理解、推理、分析综合及应用数学处理物理问题的能力.通过对近年高考题的研究,此部分结合动量定理的力电综合模型经常在高考题中出现。本文结合例题分析应用动量定理解决电磁感应问题的思维起点。 一、 以累积公式q=It 结合动量定理为思维起点 直导线在磁场中要受到安培力的作用,速度发生变化,安培力随之变化。通常直导线(或线框)的运动为非匀变速直线运动,不能用牛顿运动定律结合运动学公式解题,而动量定理适用于非匀变速直线运动。在时间△t 内安培力的冲量BLq t BLI t F =?=?,式中q 是通过导体截面的电量。利用该公式结合动量定理是解答此类问题思维起点。 例1.如图所示,在匀强磁场区域内与B 垂直的平面中有两根足够长的固定金属平行导轨,在它们上面横放两根平行导体棒构成矩形回路,长度为L ,质量为m ,电阻为R ,回路部分导轨电阻可忽略,棒与导轨无摩擦,开始时图中左侧导体棒静止,右侧导体棒具有向右的初速v 0,试求两棒之间距离增长量x 的上限。 析与解:当右棒运动时,产生感应电动势,两棒中有感 应电流通过,右棒受到安培力作用而减速,左棒受到安培力 作用而加速。当它们的速度相等时,它们之间的距离最大。 设它们的共同速度为v ,则据动量守恒定律可得: mv 0=2mv ,即02 1v v = 对于左棒应用动量定理可得: BILt= mv 所以,通过导体棒的电量q=It =BL mv 20 而q =R BLx t I 2= ? 由上述各式可得: x =220L B R mv 。 v

动量和动量定理(含答案)

专题动量和动量定理 【考情分析】 1.理解动量的的概念,知道冲量的意义; 2.理解动量,会计算一维动量变化; 3.理解动量变化和力之间的关系,会用来计算相关问题; 【重点知识梳理】 知识点一动量及动量变化量的理解 1.动量 (1)定义:运动物体的质量和速度的乘积叫作物体的动量,通常用p来表示。 (2)表达式:p=mv。 (3)单位:kg·m/s。 (4)标矢性:动量是矢量,其方向和速度方向相同。 2.动量、动能、动量变化量的比较 知识点二冲量、动量定理的理解及应用 1.冲量 1

(1)定义:力与力的作用时间的乘积叫作力的冲量。 公式:I=F·t。 (2)单位:冲量的单位是牛·秒,符号是N·s。 (3)方向:冲量是矢量,恒力冲量的方向与力的方向相同。 2.动量定理 (1)内容:物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量。 (2)表达式:Ft=Δp=p′-p。 (3)矢量性:动量变化量的方向与合外力的方向相同,可以在某一方向上应用动量定理。 【拓展提升】动量定理的理解 (1)方程左边是物体受到的所有力的总冲量,而不是某一个力的冲量。其中的F可以是恒力,也可以是变力,如果合外力是变力,则F是合外力在t时间内的平均值。 (2)动量定理说明的是合外力的冲量I合和动量的变化量Δp的关系,不仅I合与Δp大小相等而且Δp的方向与I合方向相同。 (3)动量定理的研究对象是单个物体或物体系统。系统的动量变化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和。而物体之间的作用力(内力),由大小相等、方向相反和等时性可知不会改变系统的总动量。 (4)动力学问题中的应用。在不涉及加速度和位移的情况下,研究运动和力的关系时,用动量定理求解一般较为方便。不需要考虑运动过程的细节。 【典型题分析】 高频考点一动量 【例1】(2018·江苏卷)如图所示,悬挂于竖直弹簧下端的小球质量为m,运动速度的大小为v,方向向下.经过时间t,小球的速度大小为v,方向变为向上.忽略空气阻力,重力加速度为g,求该运动过程中, 2

动量 动量定理

物理一轮复习学案 第四周(9.24—9.30)第四课时 动量动量定理 【考纲解读】 1.知道冲量、动量的概念,理解冲量和动量的矢量性. 2.掌握动量定理的内容及公式.会用动量定理求解问题 【重点难点】 1.冲量和动量的矢量性 2.应用动量定理求解问题 【知识结构】 一、动量冲量 1.动量 (1)定义:物体的质量与的乘积.(2)公式:p=. (3)单位:,符号:kg·m/s. (4)动量是矢量,其方向与的方向相同. 2.冲量 (1)定义:力和力的的乘积. (2)公式:I=,适用于求恒力的冲量.(3)方向:与相同. 二、动量定理 1.动量定理 (1)内容:物体所受合力的冲量等于物体的. (2)表达式:F·Δt=Δp=p′-p. (3)矢量性:动量变化量的方向与的方向相同,可以在某一方向上应用动量定理.2.动量、动能、动量的变化量的比较

例1.蹦极”运动中,长弹性绳的一端固定,另一端绑在人身上,人从几十米高处跳下,将蹦极过程简化为人沿竖直方向的运动,从绳恰好伸直,到人第一次下降至最低点的过程中,下列分析正确的是( ) A.绳对人的冲量始终向上,人的动量先增大后减小 B.绳对人的拉力始终做负功,人的动能一直减小 C.绳恰好伸直时,绳的弹性势能为零,人的动能最大 D.人在最低点时,绳对人的拉力等于人所受的重力 例2.如图所示,一高空作业的工人重为600N,系一条长为L=5m的安全带,若工人不慎跌落时安全带的缓冲时间t=1s,则安全带受的冲力是多少?(g取10m/s2) 【达标训练】 1.A、B两物体分别在F A、F B作用下沿同一直线运动,如图所示表示它们 的动量p随时间的变化规律。设A、B两物体所受冲量大小分别为I A、 I B,那么( ) A.F A>F B,方向相反 B.F A>F B,方向相同 C.I A>I B,方向相同 D.I A<I B,方向相反 2.从同样高度落下的玻璃杯,掉在水泥地上容易打碎,而掉在草地上 不容易打碎,下列说法正确的是( ) A.掉在水泥地上的玻璃杯动量小,而掉在草地上的玻璃杯动量大 B.掉在水泥地上的玻璃杯动量改变小,掉在草地上的玻璃杯动量改变大 C.掉在水泥地上的玻璃杯动量改变大,掉在草地上的玻璃杯动量改变小 D.掉在水泥地上的玻璃杯动量改变量与掉在草地上的玻璃杯动量改变量相等 3.高空作业须系安全带,如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动),此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m2gh t +mg B. m2gh t -mg C. m gh t +mg D. m gh t -mg 4.把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着纸带一起运动;若迅速拉动

动量定理 及答案

动量定理 赵卫斌 1. 动量 (1)运动物体的质量和速度的乘积叫做动量。即mv p =。 (2)式中的速度是瞬时速度,故动量是一个状态量,动量与动能的关系式k mE p 22=。 (3)动量是矢量:物体动量的方向与物体的瞬时速度方向相同,动量的运算应使用平行四边形定则,如果物体的运动变化前后的动量都在同一直线上,那么选定正方向后,动量的方向可以用正、负号表示,动量的运算就简化为代数运算了。 2. 冲量 (1)力和力的作用时间的乘积Ft (一般用I 表示:Ft I =),叫做该力的冲量。它反映了力对时间的积累过程,是一个过程量。 (2)冲量也是矢量,它的方向由力的方向决定,如果在作用时间内力的方向不变,冲量的方向就是力的方向。 3. 动量定理 物体所受合外力的冲量等于它的动量的变化:p p Ft -'=或mv v m Ft -'= (1)上述公式是一矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向。 (2)动量定理的研究对象可以是单个物体,也可以是物体系统,对物体系统,只需分析系统受的外力,不必考虑系统内力,系统内力的作用不改变整个系统的总动量。 (3)用牛顿第二定律和运动学公式能解的恒力作用下的匀变速直线运动的问题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。 但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力,对于变力,动量定理中的力F 应当理解为变力在作用时间内的平均值。 (4)根据ma F =得t p p t v v m ma F ?-'=?-'==即t p F ??=,这是牛顿第二定律的另一种表达形式:作用力F 等于物体动量的变化率t p ??。 (5)动量定理的研究对象是单个质点或由质点所构成的系统,当研究对象为质点系统时,动量定理中的动量应是该系统内所有质点在同一时刻动量的矢量和,而冲量是该系统内各个质点在同一物理过程中所受一切外力冲量的矢量和,不包括系统内各质点之间相互作用力(内力)的冲量,这是因为内为总是成对出现的,且大小相等,方向相反,故其内力的总冲量必定为零。 4. 应用动量定理解题的注意事项: (1)因为动量定理中的冲量为研究对象所受外力的总冲量,所以必须准确地选择研究对象,并进行全面的受力分析,画出受力图,如果在过程中外力有增减,还需进行多次受力分析。 (2)因为动量定理是矢量式,而多数情况下物体的运动是一维的,所以在应用动量定理前必须建立一个一维坐标,确定正方向,并在受力图中标出。在应用动量定理列式时,已知方向的动量、冲量均需带符号(与正方向一致时为正,反之为负),未知方向的动量、冲量通常先假

(完整版)动量、动量定理

[目标定位] 1.理解动量的概念,知道动量和动量变化量均为矢量,会计算一维情况下的动量变化量.2.知道冲量的概念,知道冲量是矢量.3.理解动量定理的确切含义,掌握其表达式.4.会用动量定理解释碰撞、缓冲等生活中的现象. 一、动量 1.定义 运动物体的质量和速度的乘积叫动量;公式p=m v;单位:千克·米/秒,符号:kg·m/s. 2.矢量性 方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量都用带有正、负号的数值表示,从而将矢量运算简化为代数运算(此时的正、负号仅代表方向,不代表大小).

深度思考 质量相同的两个物体动能相同,它们的动量也一定相同吗? 答案不一定.动量是矢量,有方向,而动能是标量,无方向.质量相同的两个物体动能相同,速度大小一定相同,但速度方向不一定相同.

例 1关于动量的概念,下列说法中正确的是()

A.动量大的物体,惯性一定大 B.动量大的物体,运动一定快 C.动量相同的物体,运动方向一定相同 D.动量相同的物体,动能也一定相同 解析物体的动量由质量及速度共同决定,动量大的物体质量不一定大,惯性也不一定大,A错;动量大的物体速度不一定大,B错;动量相同指的是动量的大小和方向都相同,而动量的方向就是物体运动的方向,故动量相同的物体运动方向一定相同,C对;有动量和动能的关系p=2mE k知,只有质量相同的物体动量相同时,动能才相同,故D错. 答案 C 动量与动能的区别与联系: (1)区别:动量是矢量,动能是标量,质量相同的两物体,动量相同时动能一定相同,但动能相同时,动量不一定相同. (2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=p2 2m或p=2mE k.

动量定理模块知识点总结

动量定理模块知识点总结 一、动量概念及其理解 (1)定义:物体的质量及其运动速度的乘积称为该物体的动量p=mv (2)特征:①动量是状态量,它与某一时刻相关; ②动量是矢量,其方向与物体运动速度的方向相同。 (3)意义:速度从运动学角度量化了机械运动的状态,动量则从动力学角度量化了机械运动的状态。 二、冲量概念及其理解 (1)定义:某个力与其作用时间的乘积称为该力的冲量I=F△t (2)特征:①冲量是过程量,它与某一段时间相关; ②冲量是矢量,对于恒力的冲量来说,其方向就是该力的方向。 (3)意义:冲量是力对时间的累积效应。对于质量确定的物体来说,合外力决定着其速度将变多快;合外力的冲量将决定着其速度将变多少。对于质量不确定的物体来说,合外力决定着其动量将变多快;合外力的冲量将决定着其动量将变多少。 三、动量定理:F ·t = m v 2 –m v 1 F·t是合外力的冲量,反映了合外力冲量是物体动量变化的原因. (1)动量定理公式中的F·t是合外力的冲量,是使研究对象动量发生变化的原因; (2)在所研究的物理过程中,如作用在物体上的各个外力作用时间相同,求合外力的冲量可先求所有力的合外力,再乘以时间,也可求出各个力的冲量再按矢量运算法则求所有力的会冲量; (3)如果作用在被研究对象上的各个外力的作用时间不同,就只能先求每个外力在相应时间内的冲量,然后再求所受外力冲量的矢量和. (4)要注意区分“合外力的冲量”和“某个力的冲量”,根据动量定理,是“合外力的冲量”等于动量的变化量,而不是“某个力的冲量”等于动量的变化量(注意)。

1.质量为m 的钢球自高处落下,以速率v 1碰地,竖直向上弹回,碰掸时间极短,离地的速率为v 2。在碰撞过程中,地面对钢球冲量的方向和大小为( D ) A 、向下,m(v 1-v 2) B 、向下,m(v 1+v 2) C 、向上,m(v 1-v 2) D 、向上,m(v 1+v 2) 2.一辆空车和一辆满载货物的同型号的汽车,在同一路面上以相同的速度向同一方向行驶.紧急刹车后(即车轮不滚动只滑动)那么 (C D ) A .货车由于惯性大,滑行距离较大 B .货车由于受的摩擦力较大,滑行距离较小 C .两辆车滑行的距离相同 D .两辆车滑行的时间相同 3.一个质量为0.3kg 的小球,在光滑水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小为4m/s 。则碰撞前后墙对小球的冲量大小I 及碰撞过程中墙对小球做的功W 分别为( A ) A .I= 3kg ·m/s W = -3J B .I= 0.6kg ·m/s W = -3J C .I= 3kg ·m/s W = 7.8J D .I= 0.6kg ·m/s W = 3J 4.如图1. 甲所示,一轻弹簧的两端分别与质量为m 1和m 2的两物块相连接,并且静止在光滑的水平面上.现使m 1瞬时获得水平向右的速度3m/s ,以此刻为时间零点,两物块的速度随时间变化的规律如图乙所示,从图象信息可得 ( B C ) A .在t 1、t 3时刻两物块达到共同速度1m/s 且弹簧都是处于压缩状态 B .从t 3到t 4时刻弹簧由伸长状态逐渐恢复原长 C .两物体的质量之比为m 1∶m 2 = 1∶2 D .在t 2时刻两物体的动量之比为P 1∶P 2 =1∶2 5. 一质量为m 的小球,以初速度v 0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即反方向弹回。已知反弹速度的大小是入射速度大小的 34,求在碰撞中斜面对小球的冲量大小。 解.小球在碰撞斜面前做平抛运动.设刚要碰撞斜面时小球速度为v 由题意,v 的方向与竖直线的夹角为30°,且水平分量仍为v 0,如右图.由此得v =2v 0 ① 碰撞过程中,小球速度由v 变为反向的.43v 碰撞时间极短, 可不计重力的冲量,由动量定理,斜面对小球的冲量为 mv v m I +=)43( ② 由①、②得 02 7mv I = ③ - v 甲 图1

知识讲解 动量 动量定理(基础)

物理总复习:动量 动量定理 编稿:刘学 【考纲要求】 1、理解动量的概念; 2、理解冲量的概念并会计算; 2、理解动量变化量的概念,会解决一维的问题; 3、理解动量定理,熟练应用动量定理解决问题。 【知识网络】 【考点梳理】 考点一、动量和冲量 1、动量 (1)定义:运动物体的质量与速度的乘积。 (2)表达式:p mv =。 单位:/kg m s ? (3)矢量性:动量是矢量,方向与速度方向相同,运算遵守平行四边形定则。 (4)动量的变化量:21p p p ?=-,p ?是矢量,方向与v ?一致。 (5)动量与动能的关系:22 21()222k mv p E mv m m === p =要点诠释:对“动量是矢量,方向与速度方向相同”的理解,如:做匀速圆周运动的物体速度的大小相等,动能相等(动能是标量),但动量不等,因为方向不同。对“p ?是矢量,方向与v ?一致”的理解,如:一个质量为m 的小钢球以速度v 竖直砸在钢板上,假设反弹速度也为v ,取向上为正方向,则速度的变化量为()2v v v v ?=--=,方向向上,动量的变化量为:2p mv ?=方向向上。 2、冲量

(1)定义:力与力的作用时间的乘积。 (2)表达式:I Ft = 单位: N s ? (3)冲量是矢量:它由力的方向决定 考点二、动量定理 (1)内容:物体所受的合外力的冲量等于它的动量的变化量。 (2)表达式:21Ft p p =- 或 Ft p =? (3)动量的变化率:根据牛顿第二定律 2121v v p p F ma m t t --===?? 即 p F t ?=?,这是动量的变化率,物体所受合外力等于动量的变化率。如平抛运动物体动量的变化率等于重力mg 。 要点诠释: (1)动量定理的研究对象可以是单个物体,也可以是物体系统。对物体系统,只需分析系统受的外力,不必考虑系统内力。系统内力的作用不改变整个系统的总动量。 (2)用牛顿第二定律和运动学公式能求解恒力作用下的匀变速直线运动的间题,凡不涉及加速度和位移的,用动量定理也能求解,且较为简便。 但是,动量定理不仅适用于恒定的力,也适用于随时间变化的力。对于变力,动量定理中的F 应当理解为变力在作用时间内的平均值。 (3)用动量定理解释的现象一般可分为两类:一类是物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。另一类是作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。分析问题时,要把哪个量一定哪个量变化搞清楚。 (4)应用I p =?求变力的冲量:如果物体受到变力作用,则不直接用I Ft =求变力的冲量,这时可以求出该力作用下的物体动量的变化p ?,等效代换变力的冲量I 。 (5)应用p Ft ?=求恒力作用下的曲线运动中物体动量的变化:曲线运动中物体速度方向时刻在改变,求动量变化21p p p ?=-需要应用矢量运算方法,比较复杂,如果作用力是恒力,可以求恒力的冲量,等效代换动量的变化。 【典型例题】 类型一、动量、动量变化量的计算 【高清课堂:动量 动量定理例1】 例1、质量为0.4kg 的小球沿光滑水平面以5m/s 的速度冲向墙壁,被墙以4m/s 的速度弹回,如图所示,求:这一过程中动量改变了多少?方向怎样? 举一反三 【变式】(2014 北京大兴模拟)篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( ) A .减小球对手的冲量 B .减小球对手的冲击力 C .减小球的动量变化量 D .减小球的动能变化量 举一反三

动量和动量定理的应用

动量和动量定理的应用 知识点一——冲量(I ) 要点诠释: 1. 定义:力F 和作用时间的乘积,叫做力的冲量。 2. 公式: 3. 单位: 4. 方向:冲量是矢量,方向是由力F 的方向决定。 5. 注意: ①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。 ②用公式求冲量,该力只能是恒力 1. 推导: 设一个质量为的物体,初速度为,在合力 F 的作用下,经过一段时间,速度变为 则物体的加速度 由牛顿第二定律 2. 动量定理:物体所受合外力的冲量等于物体的动量变化。 3. 公式:或 4. 注意事项: ②式中F 是指包含重力在内的合外力,可以是恒力也可以是变力。当合外力是变力时,F 应该是合外力在这段时间内的平均值; ③研究对象是单个物体或者系统; 规律方法指导 1. 动量定理和牛顿第二定律的比较 (1 )动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律 (2 )由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式,即:物体所受的合外力等于物体动量的变化率。 (3 )在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。 4. 应用动量定理解题的步骤 ①选取研究对象;

②确定所研究的物理过程及其始末状态; ③分析研究对象在所研究的物理过程中的受力情况; ④规定正方向,根据动量定理列式; ⑤解方程,统一单位,求得结果。 经典例题透析 类型一——对基本概念的理解 1. 关于冲量,下列说法中正确的是() A. 冲量是物体动量变化的原因 B. 作用在静止的物体上力的冲量一定为零 C. 动量越大的物体受到的冲量越大 D. 冲量的方向就是物体受力的方向 思路点拨:此题考察的主要是对概念的理解 解析:力作用一段时间便有了冲量,而力作用一段时间后物体的运动状态发生了变化,物体的动量也发生了变化,因此说冲量使物体的动量发生了变化, A 对; 只要有力作用在物体上,经历一段时间,这个力便有了冲量,与物体处于什么状态无关,B 错误;物体所受冲量大小与动量大小无关, C 错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故 D 错误。 答案:A 【变式】关于冲量和动量,下列说法中错误的是() A. 冲量是反映力和作用时间积累效果的物理量 B. 冲量是描述运动状态的物理 量 C. 冲量是物体动量变化的原因 D. 冲量的方向与动量的方向一致 答案:BD 点拨:冲量是过程量;冲量的方向与动量变化的方向一致。故BD 错误。 类型二——用动量定理解释两类现象 2. 玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不 易碎。这是为什么? 解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。 因为杯子是从同一高度落下,故动量变化相同。但杯子与地毯的作用时间远比杯子与水泥地面的作用时间长,所以地毯对杯子的作用力远比水泥地面对杯子的作用力小。所以玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。 3. 如图,把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是() A. 在缓慢拉动纸带时,重物和纸带间的摩擦力大

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

动量定理

动量定理 动量定理目录 动量定理(theorem of momentum)定义 实用理解 动量守恒定律的适用条件 推导过程推导 含义 特殊 动量定理与动能定理的区别:动量定理 动能定理 动量定理(theorem of momentum)定义 实用理解 动量守恒定律的适用条件 推导过程推导 含义 特殊 动量定理与动能定理的区别:动量定理 动能定理 展开 编辑本段动量定理(theorem of momentum) 定义 动力学的普遍定理之一。内容为物体动量的增量等于它所受

合外力的冲量即Ft=Δmv,或所有外力的冲量的矢量和。 [1]如果一个系统不受外力或所受外力的矢量和为零,那么 这个系统的总动量保持不变,这个结论叫做动量守恒定律。动量守恒定律是自然界中最重要最普遍的守恒定律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,它是一个实验规律,也可用牛顿第三定律和动量定理推导出来。 实用理解 如以m表示物体的质量,v1、v2 表示物体的初速度、末速度,I表示物体所受的冲量,则得mv2-mv1=I。式中三量都 为矢量,应按矢量运算;只在三量同向或反向时,可按代数量运算,同向为正,反向为负,动量定理可由牛顿第二定律推出,但其适用范围既包含宏观、低速物体,也适用于微观、高速物体。 动量守恒定律的适用条件 (1)系统不受外力或系统所受的外力的合力为零。(2) 系统所受外力的合力虽不为零,但比系统内力小得多。(3)系统所受外力的合力虽不为零,但在某个方向上的分量为零,则在该方向上系统的总动量保持不变——分动量守恒。注意:(1)区分内力和外力碰撞时两个物体之间一定有相 互作用力,由于这两个物体是属于同一个系统的,它们之间的力叫做内力;系统以外的物体施加的,叫做外力。(2)

12第十二章 动量矩定理

1 质点系对某轴的动量矩等于质点系中各质点的动量对同一轴之矩的代数和。 ( ) 2 刚体的质量是刚体平动时惯性大小的度量,刚体对某轴的转动惯量则是刚体绕该轴转动时惯性大小的度量。 ( ) 3 刚体对某轴的回转半径等于其质心到该轴的距离。( ) 4 如果作用于质点系上的所有外力对固定点O 的主矩不为零,那么,质点系的动量矩一定不守恒。( ) 5 如果质点系所受的力对某点(或轴)的矩恒为零,则质点系对该点(或轴)的动量矩不变。( ) 6 图中所示已知两个均质圆柱,半径均为R ,质量分别为2m 和3m ,重物的质量为1m 。重物向下运动的速度为V ,圆柱C 在斜面上只滚不滑,圆柱O 与绳子之间无引对滑动,则系统 对O 轴的动量矩为vR m R m vR m H o 12 232 ++=ω。( ) 7 图中已知均质圆轮的半径为R ,质量为m ,在水平面上作纯滚动,质心速度为C v ,则轮子对速度瞬心I 的动量矩为R mv H c I =。( ) 1 已知刚体质心C 到相互平行的z z 、'轴的距离分别为b a 、,刚体的质量为m ,对z 轴的转动惯量为z J ,则' z J 的计算公式为__________________。

A .2)(b a m z z ++='J J ; B .)(2 2b a m z z -+=' J J ; C.)(2 2b a m z z --=' J J 。 2 两匀质圆盘A 、B ,质量相等,半径相同,放在光滑水平面上,分别受到F 和' F 的作用,由静止开始运动,若' F F =,则任一瞬间两圆盘的动量相比较是_____________________。 A.B A p p >; B.B A p p <; C.B A p p =。 3 在一重W 的车轮的轮轴上绕有软绳,绳的一端作用一水平力P ,已知车轮的半径为R ,轮轴的半径为r ,车轮及轮轴对中心O 的回转半径为ρ,以及车轮与地面间的滑动摩擦系数为f ,绳重和滚阻皆不计。当车轮沿地面作平动时,力P 的值为_________________。 A.ρ/fWR P =; B.r fWR P /=; C.r fW P /ρ=;④ fW P =。

动量定理解变力问题

? (08年黄冈市期末)(15分)如图所示,两根平行金属导轨MN 、PQ 相距为d=1.0m , 导轨平面与水平面夹角为α=30°,导轨上端跨接一定值电阻R=1.6Ω,导轨电阻不计.整个装置处于方向垂直导轨平面向上、磁感应强度大小B=1T 的匀强磁场中.金属棒ef 垂直于MN 、PQ 静止放置,且与导轨保持良好接触,其长刚好为d 、质量m=0.1kg 、电阻r=0.4Ω,距导轨底端S 1=3.75m .另一根与金属棒平行放置的绝缘棒gh 长度也为d ,质量为,从轨道最低点以速度v 0=10m/s 沿轨道上滑并与金属棒发生正碰(碰撞时间极短),碰后金属棒沿导轨上滑S 2=0.2m 后再次静止,测得此过程中电阻R 上产生的电热为Q=0.2J .已知两棒与导轨间的动摩擦因数均为 ,g 取10m/s 2 ,求: (1)碰后瞬间两棒的速度; (2)碰后瞬间的金属棒加速度; (3)金属棒在导轨上运动的时间。 24.(20分)如图13所示,四分之一光滑绝缘圆弧轨道A P 和水平绝缘传送带PC 固定在同一 竖直平面内,圆弧轨道的圆心为0,半径为R 0传送带PC 之间的距离为L,沿 m 、电荷量 为+q 的小物体从圆弧顶点A 由静止开始沿轨 道下滑,恰好运动到C 端后返回。物体与传送 带间的动摩擦因数为μ,不计物体经过轨道与传 送带连接处P 时的机械能损失,重力加速度为g (1) 求物体下滑到P 点时,物体对轨道的压力F (2) 求物体返回到圆弧轨道后,能上升的最大高度H (3) 若在PO 的右侧空间再加上方向垂直于纸面向里、磁感应 强度为B 的水平匀强磁场 (图中未画出),物体从圆弧顶点A 静止释放,运动到C 端时的速度为2 2gR ,试求物体 在传送带上

《动量与动量定理》教案

《动量动量定理》教学设计 【知识与技能】 (1)理解动量和冲量的定义; (2)从前面的推到中总结出动量定理的表达式。 (3)理解动量定理的确切含义,知道动量定理适用于变力。 (4)会用动量定理解释有关现象和处理有关的问题。 【能力与方法】 (1)通过对动量定理的探究过程,尝试用科学探究的方法研究物理问题,认识物理模型工具在物理学的作用。 (2)能够应用动量定理处理一些与生产和生活相关的实际问题,在分析、解决问题的过程中培养交流、合作能力。 【情感态度与价值观】 (1)有参与科技活动的热情,有从生活到物理,从物理到生活的意识。 (2)有善于发现问题的精神,并具有解决问题的能力。 (3)培养学生正确的价值观和人生观,明白只有勤奋努力才可能有丰硕的收获,寄希望于侥幸是不可取的。 【教学重点】 利用动量定理来解释生活中的一些现象。 【教学难点】 动量和冲量方向问题的理解 【教学方法】 1.利用多媒体课件,让学生清楚地认识到动量定理在生活中的普遍性;

2.引经据典法:通过对故事的创新旧事新演,最大限度调动学生学习的积极性和学习的兴趣。 【教学过程】 导入: 通过给学生讲述《守株待兔》的故事,引导学生对兔子撞树桩的过程进行思考,借助于所学物理知识,建立物理和数学模型,通过分析展开对本节课新课内容讲授,带着这个故事的结局进入本节课的学习,授课结尾对故事的发展及结果以及启示进行阐述。 新授: 模型建立 兔子以0v 的初速度奔跑,来不及躲闪,撞到了一个树桩上,与树桩成为一个整体,假设在此碰撞过程作用时间为t,作用力为恒力,兔子质量为m,求此作用力F ? 分析: 在此我们可将此碰撞过程看做一个减速运动过程,兔子在水平方向只受到树桩对兔子的弹力F. 由牛顿第二定理可得ma F = (1) 由匀减速运动过程的原理可得 t v v a t 0-= (2) (1)(2)两式结合可得 t v v m F t 0-= (3) 对(3)两边同时乘以时间t,可得 o t mv mv Ft -= (4) 得出(4)式,我们对式子左右两边分别进行讨论 一.冲量 1.定义:力与力的作用时间的乘积叫做力的冲量。 2.公式:Ft I = 单位为s N ? 3.冲量是矢量,方向与合力方向一致

动量定理 绝对经典

动量定理 1.理解动量、动量变化量、动量定理的概念. 2.知道动量守恒的条件. 1、动量、动量定理 (1)动量 ①定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。 ②表达式:p=mv。 ③单位:kg·m/s。 ④标矢性:动量是矢量,其方向和速度方向相同。 (2)冲量 ①定义:力和力的作用时间的乘积叫做力的冲量。 ②表达式:I=Ft。单位:N·s。 ③标矢性:冲量是矢量,它的方向由力的方向决定。 (3)动量定理 2、动量守恒定律 (1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 (2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′。 (3)适用条件 ①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。 ②近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。 ③分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。

三种碰撞模型 一、完全弹性碰撞(满足动量守恒,能量守恒) 二、完全非弹性碰撞(满足动量守恒,能量损失最大,两个物体粘结在一起) 三、非弹性碰撞(满足动量守恒) 碰撞满足的条件 1、碰撞后能量之和不大于碰撞前能量之和 2、碰后V1≤V2 ★典型案例★质量为1kg的小球从离地面5m高处自由落下,空气阻力不计,碰地后反弹的高度为0.8m,碰地的时间为0.05s.规定竖直向下为正方向,则碰地过程中,小球动量的增量为__-14____kg·m/s,小球对地的平均作用力大小为___290N_____.(小球与地面作用过程中,重力冲量不能忽略,g取10m/s2) ★针对练习1★从地面上方同一高度沿水平和竖直向上方向分别抛出两个等质量的小物体,抛出速度大小都是为v,不计空气阻力,对两个小物体以下说法正确的是:(D)A.落地时的速度相同 B.落地时重力做功的瞬时功率相同 C.从抛出到落地重力的冲量相同 D.两物体落地前动量变化率相等

动量定理及其应用

1.动量: ①定义:物体质量与速度的乘积, ②动量的性质:是状态量、具有相对性、矢量性 2.动量守恒定律 ①动量的变化量: ②内力与外力:系统内物体间的相互作用力叫做内力;系统外物体施加给系统内物体的力叫做内力。 ③动量守恒定律: 如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。 ④动量守恒定律的成立条件 a.系统不受外力或所受外力和为零,则系统的动量守恒。 b.系统所受外力比内力小很多,则系统的动量近似守恒。 c.系统某一方向不受外力或所受外力的和为零,或所受外力比内力小很多,该方向动量守恒。 ⑤动量守恒定律的普适性 a.牛顿定律解决问题涉及全过程,用动量解决只涉及始末状态,与过程无关。 b.动量守恒不仅适用宏观低速,而且适用微观高速,牛顿定律不适用微观高速。 二.碰撞 1.碰撞的分类: 2.一维弹性碰撞 当时 ①若,交换速度 ②若,,同向,速度前大后小

③若,反弹 ④若, ⑤若, 三.反冲 1.反冲:如果一个静止的物体在内力的作用下分裂为两部分,一部分向某个方向运动,另一部分必然向相反的方向运动,这个现象叫做反冲。 2.反冲遵循的规律: ,即: , ,即: 3.反冲运动的应用: 喷气式飞机,射击时枪筒的后退,火箭发射等。 四.用动量概念表示牛顿第二定律 1.用动量概念表示牛顿第二定律 假设物体受到恒力的作用做匀变速直线运动,在时刻物体的初速度为,在时刻物 体的速度为,由牛顿第二定律得,物体的加速度 合力F=ma 由于, 所以 2.动量定理

应用动量定理需要注意的几点: ①方程左边是物体动量的变化量,计算时顺序不能颠倒 ②方程右边是物体受到的合外力的总冲量,其中F可以是恒力也可以是变力,如果合外力是变力,则F是合外力在时间t内的平均值 ③整个式子反映了一个过程,即力对时间的积累效果是引起物体动量的变化。 ④动量定理中的冲量和动量都是矢量,冲量的方向与动量变化量的方向相同。 ⑤动量与参考系的选取有关,所以用动量定理时必须注意参考系的选取。 ⑥动量定理不仅适用于宏观物体的低速运动,对微观现象,高速运动仍然适用。 ⑦不能认为合外力的冲量就是动量的变化。合外力的冲量是引起动量变化的原因,而动量变化是冲量作用的必然结果 ⑧动量定理的研究对象是单个质点或由质点所构成的系统,当研究对象为质点系统时,动量定理中的动量应是该系统内所有质点在同一时刻动量的矢量和,而冲量是该系统内各个质点在同一个物理过程中所受一切外力冲量的矢量和,不包括系统内各质点之间相互作用的(内力)的冲量,这是因为内力总是成对出现的,且大小相等、方向相反,故其内力的总冲量必定为零。 五.动量典型模型 1.人船模型 :如图所示长为,质量为m1的小船在静水中,一个质量为m2的人立在船头,若不计水的粘滞阻力,当人从船头走到船尾的过程中,船和人相对地面的位移各是多少? 分析与解答: 选船和人组成的系统为研究对象,由于水平方向不受外力,因而人从船头走向船尾的过程中任一时刻水平方向的动量都守恒,既平均动量守恒,而系统在人起步前的总动量为0。 设人和船在全过程中的平均速度分别为和,根据动量守恒定律: 设相互作用的时间为,则,故 由题意知: 联立两式解得:,

第七章动量定理和动量守恒定律

第7章 动量定理和动量守恒定律 §7-1动量定理和动量守恒定律 物体之间或物体内部各部分之间因运动发生相对位置变化的过程称为机械运动。它是物质的各种各样运动形式中最简单、也是最普遍的一种,例如:行星绕太阳的转动、宇宙飞船的航行、机器的运转、弹簧的伸长或压缩、水和空气等流体的流动…等等,都是机械运动。而各种复杂的运动形式如生命现象、化学反应等,虽然也有位置的变化,但并不归结为机械运动。 机械运动有两种量度:如果存在的机械运动仍以保持机械运动的形式进行传递,那么应以动量v m 来量度;如果机械运动转变为其它形式的运动,应以动能221 mv 来量度。即动量是以机 械运动来量度机械运动,动能是以机械运动转化为一定量的其它形式的运动的能力来量度机械运动的,动量和动能是研究机械运动不可缺少的物理量。 动量、动量定理 1、动量p 物体的质量m 与其速度的乘积,称为该物体的动量p ,即v m p =。在直角坐标系中动量p 可表示为 k p j p i p k mv j mv i mv v m p z y x z y x =+=++== (7-1-1) 由(7-1-1)式知,动量是一个矢量,具有瞬时性。 2、动量定理 若在时刻t ,物体的动量为)(t p ,经过t ?时间段,其动量为)(t t p ?+ ,在t t t ?+-时间微元段上,其动量的增量p d 为 )()(t t t d -?+= 若在该时间元段t ?内,物体受力f 作用,由牛顿第二定律知有 dt f p d = (7-1-2) 关系成立。若在21t t -的时间段上,物体受力f 作用,将每一个时间元段上动量的增量p d 加起来,即在21t t -的时间段上对其求和,则该时间段上的动量增量p ?为 dt f p t t ?→ →=-=?2112 (7-1-3) (7-1-2)式与(7-1-3)式就是动量定理的表述。人们又常把(7-1-3)式的右项?2 1t t dt f 称为力 f 的冲量。

动量、冲量和动量定理

第七章动量动量守恒 考纲要求 1、动量、冲量、动量定理Ⅱ 2、动量守恒定律Ⅱ 说明:动量定理和动量守恒定律的应用只限于一维的情况 知识网络: 单元切块: 按照考纲的要求,本章内容可以分成两部分,即:动量、冲量、动量定理;动量守恒定律。其中重点是动量定理和动量守恒定律的应用。难点是对基本概念的理解和对动量守恒定律的应用。 §1 动量、冲量和动量定理 知识目标 一、动量 1、动量:运动物体的质量和速度的乘积叫做动量.是矢量,方向与速度方向相同;动量的合成与分解,按平行四边形法则、三角形法则.是状态量;通常说物体的动量是指运动物体某一时刻的动量,计算物体此时的动量应取这一时刻的瞬时速度。是相对量;物体的动量亦与参照物的选取有关,常情况下,指相对地面的动量。单位是kg·m/s; 2、动量和动能的区别和联系 ①动量的大小与速度大小成正比,动能的大小与速度的大小平方成正比。即动量相同而质量不同的物体,其动能不同;动能相同而质量不同的物体其动量不同。 ②动量是矢量,而动能是标量。因此,物体的动量变化时,其动能不一定变化;而物体的动能变化时,其动量一定变化。 ③因动量是矢量,故引起动量变化的原因也是矢量,即物体受到外力的冲量;动能是标量,引起动能变化的原因亦是标量,即外力对物体做功。 ④动量和动能都与物体的质量和速度有关,两者从不同的角度描述了运动物体的特性,且二者大小间存在关系式:P2=2mE k 3、动量的变化及其计算方法 动量的变化是指物体末态的动量减去初态的动量,是矢量,对应于某一过程(或某一段时间),是一个非常重要的物理量,其计算方法: (1)ΔP=P t一P0,主要计算P0、P t在一条直线上的情况。

第12章 动量矩定理

第十二章 动量矩定理 §12—1 质点和质点系的动量矩 一、质点的动量矩 质点Q 的动量对于点O 的矩,定义为质点对于点O 的动量矩 动量矩的单位:kgm 2/s 二、 质点系的动量矩 ()mv r mv M O ?=()OQA r mv mv M O ?=?=2sin ?() i i n i O O v m M L ∑==1 () i i n i z z v m M L ∑==1 ()A Q O mv M z ' '?±=2()[]() mv M mv M z z O =

绕定轴转动刚体对其转轴的动量矩等于刚体对转轴的转动惯量与转动角速度的乘积。 §12—2 动量矩定理 一、质点的动量矩定理 质点的动量矩定理: 质点对某定点的动量矩对时间的一阶导数,等于作用力对同一点的矩。 直角坐标投影式为 []z z O L L =()2 1 1 1 i n i i i n i i i i i n i z z r m r v m v m M L ∑∑∑====?==ω2 1 i n i i z r m J ∑==ω z z J L =()mv dt d r mv dt dr mv r dt d mv M dt d O ?+?=?=)()(()F r mv v mv M dt d O ?+?=()()F M mv M dt d O O =()()()()()()F M m v M dt d F M m v M dt d F M m v M dt d z z y y x x == =

特殊情形: 当质点受有心力F 的作用时,如图11-4所示,力矩0=)(o F M ,则质点对固定点O 的动量矩)(m o v M =恒矢量,质点的动量矩守恒。例如行星绕着恒星转,受恒星的引力作用,引力对恒星的矩0=)(o F M ,行星的动量矩 )(m o v M =恒矢量,此恒矢量的方向是不变的,因此行星作平面曲线运动;此 恒矢量的大小是不变的,即mvh =恒量,行星的速度v 与恒星到速度矢量的距离h 成反比。

相关文档
相关文档 最新文档