文档库 最新最全的文档下载
当前位置:文档库 › 沙门菌感染水平和风险

沙门菌感染水平和风险

沙门菌感染水平和风险
沙门菌感染水平和风险

Instructions for use

Japanese Journal of Veterinary Research 62(4): 171-179, 2014
FULL PAPER
Quantification of contamination levels and particular risk of Salmonella spp. in pigs in slaughterhouses in Chiang Mai and Lamphun provinces, Thailand
Pakpoom Tadee1), Phacharaporn Boonkhot1) and Prapas Patchanee1, *)
1
Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
Received for publication, September 1, 2014; accepted, October 27, 2014
Abstract Salmonella spp. is one of the important foodborne pathogens, and the slaughtering process is recognized as a potential point of contamination and the spread of the pathogens. The three objectives of this study are first, to quantify the contamination levels of Salmonella spp. in pig skins and carcasses, second, to evaluate the outcomes from different pig supply sources and different practices at three critical steps (scalding, splitting, and washing) for Salmonella spp. contamination, and third, to assess risk of Salmonella spp. contamination in pork products after slaughtering level. The study was performed in three representative slaughterhouses in Chiang Mai and Lamphun provinces, Thailand. Investigation conducted from May 2013 through October 2013 found the overall prevalence and contamination levels mean to be 11.85% and 0.34 MPN/cm2, respectively. There was no statistically significant in Salmonella spp. prevalence and contamination levels detected with different patterns at the slaughterhouses which were supplied pigs from either co-operative or integrated farms. Factors found to reduce Salmonella spp. loads on carcasses included good practices, e.g., regular changing of water in the scalding tank after each batch and the use of chlorine in the washing step. Risk of Salmonella spp. contamination of pork products at the final stage of slaughtering was nearly 10%. Good practices and proper hygiene measures should be applied to minimize the risk of Salmonella spp. exposure in the slaughtering line, which can reduce the contamination pressure downstream at retail shops as well as for end consumers.
Key Words: Prevalence, Contamination levels, Salmonella spp., Risk, Pig, Slaughterhouse
*Corresponding author: Assoc. Prof. Dr. Prapas Patchanee, Department of Food Animal Clinics, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand Phone: +66-53-948-002. Fax: +66-53-948-065. E-mail: patprapas@https://www.wendangku.net/doc/1212993914.html,, prapas.pat@cmu.ac.th doi: 10.14943/jjvr.62.4.171

172
SALMONELLA SPP. IN SLAUGHTERED PIGS
Introduction Salmonella spp. is an important bacterial zoonotic pathogen that causes acute food-borne diseases in humans5,9,24) and is recognized as a major public health problem7,17). Approximately that worldwide of 80 million foodborne salmonellosis cases occurred annually19). Contaminated eggs and raw or undercooked meat are involved in most human cases 16) and it has been estimated that pork causes 15-20% of all human cases of salmonellosis13). That estimate is supported by several studies which have reported that pork products are a major source of infection1,4,10). Surveillance data in northern Thailand, found a high prevalence of Salmonella spp. in pigs at the farm level. In two studies, 55%15) and 63%4) of samples from pigs were found to be positive. Those high levels of infection suggest that the Salmonella spp. menace at the pre-harvest level is not easy to eradicate. A high prevalence at the pre-harvest level could be expected to cause a high prevalence at the harvest level18). The idea that “Salmonella spp. positive carcasses result from infected pigs” has been mentioned in several studies1,3,8,23). In the slaughtering process, inadequate routine practices such as improper evisceration techniques, poor conditions in the lairage area, etc., have also been found to play an important role in the colonization and spread of Salmonella spp. to pork12,19,22). Steps that can reduce the numbers of Salmonella spp. such as maintaining a high temperature in the scalding tank and a low temperature in the chilling step after processing, have been widely reported3,6,9,12). The objectives of this study are to quantify contamination levels of Salmonella spp. on pig
skins and carcasses during the slaughtering process, and to evaluate the outcomes from different in pig supply sources and with different practices in three critical processing steps (scalding, splitting and washing). Additionally, this study attempted to define the risk of Salmonella spp. contamination in pork products after slaughtering level in three representative slaughterhouses in Chiang Mai and Lamphun provinces, Thailand, as a part of an epidemic investigation conducted between May 2013 and October 2013 and to identify appropriate preventive measures to help control salmonellosis in this region.
Materials and Methods Sample collection: This study was conducted in three slaughterhouses in Chiang Mai-Lamphun provinces, in northern Thailand (Table?1). The steps in the slaughtering process were similar at all three slaughterhouses (Fig.?1). However, there were significant differences in the supply chain of pigs, i.e., slaughterhouse A received pigs from a co-operative pig farm, while slaughterhouse B and C received pigs from integrated pig farms. From each pig tested, pig skin swab-samples were obtained from five sites, two from each shoulder and two from each hip plus one from the backside, from an area of 100?cm2 per site. The samples were collected from live pigs and also from carcasses at each of the following steps: transportation, lairage, scalding, dehairing and evisceration (Fig.?2a). No samples were taken during stunning, bleeding or head removal. In addition, six carcass swab-samples (three from the skin and three from the internal parts of
Table?1. Slaughterhouses included this study Slaughterhouses A B C Capacity (animals/d.) 40-60 120-150 250-280 Locations Meung Dist, Lamphun Sankampang Dist, Chiang Mai Sansai Dist, Chiang Mai Suppliers Co-operative pig farms Integrated pig farm Integrated pig farm

Pakpoom Tadee et al.
173
Fig.?1. The slaughtering process used in slaughterhouses in Chiang Mai and Lamphun.
Fig.?2. Sites of sample collection.  Fig.?2a; from transportation process to evisceration. Fig.?2b; from splitting process to the end of slaughtering process.
the carcass) were collected during the splitting, washing, cutting and dressing and chilling steps (Fig.?2b). At least five pigs from each slaughterhouse were included in the study; a total of 230 samples was collected. All samples were transported in an icebox to the Bacteriology Laboratory, Chiang Mai University, and cultured for isolation and identification of Salmonella spp. within 24?hr of sample collection.
Salmonella spp. isolation and identification (Quantitative assays): The isolation and identification of Salmonella spp. was performed following the ISO 6579:2002 Amendment 1:2007, Annex D technique11) (Detection of Salmonella spp. in animal feces and in environmental samples from the primary production stage) to determine the prevalence of Salmonella spp.positive samples in this study. All positive samples were quantified using the most probable number (MPN) technique. Additionally, 100?ml of

174
SALMONELLA SPP. IN SLAUGHTERED PIGS
buffered peptone water (BPW; Merck, Germany) was added to swab samples as pre-enrichment media in which the first dilution was prepared. Two portions, of 0.1?ml and 0.01?ml of the first dilution were taken aseptically and added individually to tubes with BPW and homogenized using stomacher machine for 2?min. After incubation at 37°C for 24?hr, an aliquot of 0.1?ml from a homogenized mixture was transferred to Modified Semi-solid Rappaport-Vassiliadis (MSRV; Oxiod, United Kingdom). After the incubation at 42°C for 24?hr, the turbid, gray matter taken from broth was streaked on Xylose Lysine Deoxycholate agar (XLD; Oxiod, United Kingdom) and Brilliant green Phenol red Lactose Saccharose agar (BPLS; Merck, Germany) incubated at 37°C for 24?hr; Presumptive Salmonella spp. colonies, black in color, were then subjected to biochemical and serum agglutination tests. Finally, Salmonella spp.-positive results were used to quantify the estimated Salmonella spp. quantification using MPN table21). Statistical Analysis: Descriptive data were analyzed using PHStat?. Differences in Salmonella spp. prevalence among three slaughterhouses and the odds ratio in both of the differences in pig supply sources from the outcomes in the first step of slaughtering process (the transportation step) and differences in slaughtering practices were analyzed using Fisher’s exact test by R-Studio?. In addition, R-Studio? was used to analyze of the differences in the mean of Salmonella spp. contamination levels among three slaughterhouses and the difference in those outcomes from different pig supply sources and the slaughtering practices, using the KruskalWallis test. Modeling Method: The software program @Risk 5.5? was used to simulate the binomial distribution model of Salmonella spp. contamination in pork products after the slaughtering level on overall representative slaughterhouses. Distribution of Salmonella spp. prevalence in chilling step (which
recognized as the final stage at slaughtering step) was modeled and used as an output to simulate, with 10,000 iterations of Monte Carlo sampling25) as the formula: p = β (x + 1, n - x + 1) Where p is the probability of exposure, β represents the “riskbeta” command in @Risk 5.5?, x denotes number of positive samples and n are total sample-numbers.
Results The overall prevalence of Salmonella spp. on pig skin and carcasses from slaughterhouses in Chiang Mai and Lamphun between May 2013 and October 2013 was 11.85%. Values for each slaughterhouse, A, B and C, were 8.51%, 23.91% and 3.40%, respectively. The overall mean of Salmonella spp. contamination level found in this study was 0.34 MPN/cm2; the values for each of the slaughterhouses, A, B and C, were 0.08, 0.80 and 0.14 MPN/cm2, respectively (Table?2). The highest prevalence of Salmonella spp. contamination was found at the cutting and dressing step followed by the scalding step, both at slaughterhouse B (Fig.?3). The highest contamination level was found at the scalding step followed by the evisceration step, also from slaughterhouse B (Fig.?4). At slaughterhouse C, the values obtained were quite low, except for the splitting step (Fig.?3 and Fig.?4). There was no statistically significant difference between slaughterhouses supplied with pigs by co-operatives and those supplied by integrated farms (Table?3). Table?4 demonstrated the statistical differences in the outcomes compared with different processing practices in representative slaughterhouses. The relationship between Salmonella spp. contamination and the quality of management of the scalding tank was found to be statistically significant both with on Fisher’s exact test and with the Kruskal-Wallis test (OR = 11.29, average 0.77 MPN/cm2 differences

Pakpoom Tadee et al.
175
Table?2. Salmonella spp. prevalence (%) and means of contamination levels (MPN/cm2) in slaughterhouses in Chiang Mai and Lamphun Slaughterhouse A B C Total No. of samples 235 230 235 700 No. of % prevalence positive samples (95% confidence interval) 20 55 8 83 8.51a (4.94-12.07) 23.91b (18.40-29.42) 3.40 (1.08-5.72)
a
Means of contamination levels (95% confidence interval) 0.08c (0.04-0.12) 0.80d (0.49-1.11) 0.14c (0.06-0.35) 0.34 (0.21-0.46)
11.85 (9.46-14.25)
Superscripts (a) and (b) in each column indicate significant differences (p < 0.05) of prevalence among slaughterhouses, obtained using Fisher’s exact test. Superscripts (c) and (d) in each column indicate that significant differences in Salmonella spp. contamination levels by Kruskal-Wallis test among slaughterhouses,
Fig.?3. Prevalence (%) of Salmonella spp. isolated from swabs of pig skins and carcasses taken at each step of the slaughtering process.
Fig.?4. Contamination levels (MPN/cm2) of Salmonella spp. isolated from swabs of pig skins and carcasses taken at each step of the slaughtering process.
between groups). Similarity, contamination levels in facilities using tap water versus those using chlorinated water in the washing step was found to be statistically significant using the KruskalWallis test (average 1.15 MPN/cm2 differences
between groups). Both the scalding and the washing steps are considered to be risk factors for Salmonella spp. contamination. On the other hand, levels of Salmonella spp. contamination with different types of splitting equipment,

176
SALMONELLA SPP. IN SLAUGHTERED PIGS
Table?3. Odds ratio and means of contamination levels (MPN/cm2) of the different type of pig supplier to slaughterhouses in Chiang Mai and Lamphun Source of pig supply Integrated pig farm Co-operative pig farm
a
SLH
No. of samples 40 20
b
No. of Positive samples 7 3
b
Prevalence comparison Odds ratio 1.2
C
Contamination levels comparison Means 0.54 0.05 P-value 0.64
P-value 1
B, C A
Ref
Remarks: aSLH (slaughterhouses) b Salmonella spp. prevalence in the transportation step was used as the outcome of the analysis c Reference category
Table?4. Odds ratios and means of contamination levels (MPN/cm2) of different practices in the major steps in the slaughtering process in slaughterhouses in Chiang Mai and Lamphun No. of samples 25 50 60 30 60 30 No. of Positive samples 8 2 8 1 10 1 Prevalence comparison Odds ratio 11.29
b
Steps
Factors
a
SLH
Contamination levels comparison Means 0.85 0.08 0.82 0.04 1.18 0.03 P-value 0.01 0.13 < 0.01
P-value <0.01 0.26 0.13
Scalding Splitting Washing
Bad management in scalding tank Good management in scalding tank Electric splitter Knife Tap water Chlorined water
B A, C B, C A A, B C
Ref Ref Ref
4.46
b
5.80
b
Remarks: aSLH (slaughterhouses) b Reference category
however, was not statistically significant between an electric-splitter and a knife (p-value > 0.05). The prevalence in chilling step was used as the outcomes for determining the risk of Salmonella spp. contamination model, in pork products after slaughtering process to next production level. With the iteration from β (9,83), the value varying from 4.62% to 16.59% with the mean of 9.78%, and the distribution was demonstrated in Fig.?5.
Discussion The overall prevalence of Salmonella spp. on skin and carcass-swab samples from slaughterhouses in Chiang Mai and Lamphun was found to be 11.85%, lower than the 37.33% prevalence reported in a previous report by Padungtod et al. (2006)14) for slaughtered pig
carcasses in the same region. The difference might have arisen from the fact that the values for the slaughterhouses in this study (A, B and C) were pooled, and slightly lower levels of Salmonella spp. contamination was found in slaughterhouse C. In contrast, research carried out elsewhere in the world has found larger differences than in the present study in Thailand. For example, the prevalence of Salmonella observed on carcass swabs in the Netherlands was 1.4%22). Bung dropper was used in order to suck up feces from the rectum avoiding the Salmonella spp. contamination, and the splitted-carcasses were singeing at 1000°C for cleaning skin in deep layers. These indicated that better hygiene management can definitely have an influence on decreasing pathogen levels in slaughterhouses. The MPN range of the samples taken in this study was relatively low (0-24?mpn/cm2). Under

Pakpoom Tadee et al.
177
Fig.?5. Risk simulation of Salmonella spp. in pork products at the final stage of slaughtering level. X-axis; Salmonella’s prevalence. Y-axis; frequency of Salmonella samples. 
appropriate conditions, however, even 1?CFU of Salmonella spp. can grow to several million20). Thus, even a relatively small number of Salmonella spp. at any production levels is highly significant if improper conditions during the process exist which provide an opportunity for proliferation to hazardous numbers22). Comparison of prevalence and contamination levels in samples from the different slaughterhouses, found that the levels were statistically significantly higher in slaughterhouse B (p < 0.05). High levels of contamination normally are found at the beginning of the transportation and lairage steps23). Stress due to longer waiting periods before processing could be a factor resulting in the pigs shedding increased numbers of pathogens in the intestinal lumen19). The scalding step in slaughterhouse B was found to have a high Salmonella spp. prevalence and high contamination levels. This finding was different from that of several studies which mention scalding as being considered a step that reduces the probability of contamination and the number of carcasses contaminated1,12,23). The reason for the higher levels in slaughterhouse B was probably that the water in the scalding tank in slaughterhouse B was reused during two or three batches of processing, allowing water
contaminated with large amounts of organic matter (soil, pig feces or pig hairs) commonly found in the tank to contact many carcasses. The organic matter in the water could even have helped protect Salmonella spp. from being destroyed by the hot water22). The levels of Salmonella spp. contamination at the evisceration and splitting steps were higher than at the dehairing step. Improper practices and manipulation of contaminated material might have resulted in cross contamination1,12,24). In addition, the splitter might have played a role in spreading contamination from pig bellies to other sites on the carcasses22). Auto-cleaning of the electric splitter might not be sufficient to eliminate Salmonella spp. contamination, resulting in the lack of statistically significant difference observed with different types of splitting equipment (electric-splitter and knife). Interestingly, for slaughterhouse C, the values obtained were quite low, except for the splitting step. There were two positives out of 30 samples at that step, about 0.3 and 24?MPN/cm2; these two Salmonella spp.-positive samples increased the overall mean contamination levels for this step. In the washing step, slaughterhouses A and B were found to be using tap water for processing. Tap water could not be expected to

178
SALMONELLA SPP. IN SLAUGHTERED PIGS
bring about a decrease in the number of organisms; on the contrary, it could enhance the dissemination of organisms to other sites on the carcasses. Chlorinated water was used in slaughterhouse C, the numbers of Salmonella spp. were observed to decrease after this step2); Salmonella spp. contamination was found to be quite similar at all slaughterhouses in the cutting and dressing steps. Risk or Probability of Salmonella spp. contamination in pork products, after slaughtering level was considered low. Such value specified that in 95% of the sampling on pork products from the end process of slaughtering, probably at least 4.62% and in the maximum of 16.59% of products may be positive for Salmonella spp. This finding indicated the chilling step has been recognized as a suitable method for arresting colonization by Salmonella spp.6), which compatible with the low levels of contamination observed in this study. However, acquiring output data can be used as the input data for assessing Salmonella spp. prevalence in the next production level. Salmonella spp. in pigs during the slaughtering process is an important cause of salmonellosis in humans; however, this menace is unlikely to be alleviated effectively in the short term. This study found that pork is easily contaminated with this pathogen at every step of the slaughtering process. Good practices and appropriate hygiene measures at every step of slaughtering process should be promoted. These findings in this study highlight the need for continuous monitoring of slaughterhouses, along with an increased focus on problem solving to reduce downstream the contamination at retail shops as well as consumers.
and their staff for their participation in this study. We would also like to thank students and all technicians helping with sample collection and processing, and our colleagues at Chiang Mai University for their significant contribution.
References 1) Berends, B. R., Van Knapen, F., Snijders, J. M. and Mossel, D. A. 1997. Identification and quantification of risk factors regarding Salmonella spp. on pork carcasses. Int. J. Food Microbiol., 36: 199-206. 2) Clayton, N. C. 2002. The efficacy of various Salmonella intervention methods applied to pork carcasses during slaughter. Lexington, University of Kentucky Libraries. 3) Delhalle, L., Saegerman, C., Farnir, F., Korsak, N., Maes, D., Messens, W., De Sadeleer, L. and De Zutter, L. 2009. Salmonella surveillance and control at postharvest in the Belgian pork meat chain. Food Microbiol., 26: 265-271. 4) Dorn-in, S., Fries, R., Padungtod, P., Kyule, M. N., Baumann, M. P., Srikitjakarn, L., Chantong, W., Sanguangiat, A. and Zessin, K. H. 2009. A cross-sectional study of Salmonella in pre-slaughter pigs in a production compartment of northern Thailand. Prev. Vet. Med., 88: 15-23. 5) Farzan, A., Friendship, R. M., Dewey, C. E., Warriner, K., Poppe, C. and Klotins, K. 2006. Prevalence of Salmonella spp. on Canadian pig farms using liquid or dry-feeding. Prev. Vet. Med., 73: 241-254. 6) Fernandez-Escartin, E., Saldana, L. J., Rodriguez, O., Martinez, O. N. and Antonio, T. J. 1995. Incidence and level of Salmonella serovars in raw pork obtained from Mexican butcher shops. Food Microbiol., 12: 435-439. 7) Giovannini, A., Prencipe, V., Conte, A., Marino, L., Petrini, A., Pomilio, F., Rizzi, V. and Migliorati, G. 2004. Quantitative risk assessment of Salmonella spp. infection for the consumer of pork products in an Italian region. Food Control, 15: 139-144. 8) Gomes-Neves, E., Antunes, P., Tavares, A., Themudo, P., Cardoso, M. F., G?rtner, F., Costa, J. M. and Peixe, L. 2012. Salmonella cross-contamination in swine abattoirs in Portugal: Carcasses, meat and meat handlers. Int. J. Food Microbiol., 157: 82-87.
Acknowledgments This research was financially supported by the National Science and Technology Development Agency (NSTDA) Project ID: P-11-00729. The authors would like to thank the slaughterhouse

Pakpoom Tadee et al.
179
9) Gonzales-Barron, U. A., Redmond, G. and Butler, F. 2012. A risk characterization model of Salmonella Typhimurium in Irish fresh pork sausages. Food Res. Int., 45: 1184-1193. 10) Hauser, E., Hebner, F., Tietze, E., Helmuth, R., Junker, E., Prager, R., Schroeter, A., Rabsch, W., Fruth, A. and Malorny, B. 2011. Diversity of Salmonella enterica serovar Derby isolated from pig, pork and humans in Germany. Int. J. Food Microbiol., 151: 141149. 11) ISO 6579. 2002. Horizontal method for the detection of Salmonella spp. International Standard Organization, Geneva. 12) Lo Fo Wong, D. M., Hald, T., van der Wolf, P. and Swanenburg, M. 2002. Epidemiology and control measures for Salmonella in pigs and pork. Livest. Prod. Sci., 76: 215-222. 13) Mürmann, L., dos Santos, M. C. and Cardoso, M. 2009. Prevalence, genetic characterization and antimicrobial resistance of Salmonella isolated from fresh pork sausages in Porto Alegre, Brazil. Food Control., 20: 191-195. 14) Padungtod, P. and Kaneene, J. B. 2006. Salmonella in food animals and humans in northern Thailand. In.t J. Food Microbiol., 108: 346-354. 15) Patchanee, P., Zessin, K. H., Staak, C., Srikijkarn, L., Taravijitkul, P. and Tesaprateep, T. 2003. Pre-slaughther infection of Salmonella spp. and consideration of using the DANISH MIX-ELISA for monitoring Salmonella in pigs. CM. Vet. J., 1: 33-38. 16) Quintavalla, S., Larini, S., Mutti, P. and Barbuti, S. 2001. Evaluation of the thermal resistance of different Salmonella serotypes in pork meat containing curing additives. Int J Food Microbiol., 67: 107-114. 17) Rostagno, M. H. and Callaway, T. R. 2012. Pre-harvest risk factors for Salmonella enterica in pork production. Food Res. Int., 45: 634-640. 18) Sandberg, M., Hopp, P., Jarp, J. and Skjerve, E. 2002. An evaluation of the Norwegian
Salmonella surveillance and control program in live pig and pork. Int. J. Food Microbiol., 72: 1-11. 19) Schwaiger, K., Huther, S., H?lzel, C., K?mpf, P. and Bauer, J. 2012. Prevalence of antibiotic-resistant enterobacteriaceae isolated from chicken and pork meat purchased at the slaughterhouse and at retail in Bavaria, Germany. Int. J. Food Microbiol., 154: 206211. 20) Stephens, P. J., Joynson, J. A., Davies, K. W., Holbrook, R., Scott, L. and Humprey, T. J. 1997. The use of an automated growth analyser to measure recovery times of single heat-injured Salmonella cells. J. Appl. Microbiol., 83: 445-455. 21) Sutton S. 2010. The Most Probable Number method and it’s use in enumeration, quantification and validation. J. Val. Technol., 16: 35-38. 22) Swanenburg, M., Urlings H. A. P., Snijders J. M. A., Keuzenkamp D. A. and van Knapen F. 2001. Salmonella in slaughter pigs: prevalences, serotypes and critical control points during slaughter in two slaughterhouses. Int. J. Food Microbiol., 70: 243-254. 23) Van Hoek, A. H. A. M., de Jonge, R., van Overbeek, W. M., Bouw, E., Pielaat, A., Smid, J. H., Malorny, B., Junker, E., L?fstr?m, C., Pedersen, K., Aarts, H. J. and Heres, L. 2012. A quantitative approach towards a better understanding of the dynamics of Salmonella spp. in a pork slaughter-line. Int. J. Food Microbiol., 153: 45-52. 24) Visscher, C. F., Klein, G., Verspohl, J., Beyerbach, M., Stratmann-Selke, J. and Kamphues, J. 2011. Serodiversity and serological as well as cultural distribution of Salmonella on farms and in abattoirs in Lower Saxony, Germany. Int. J. Food Microbiol., 146: 44-51. 25) Vose, D. 2000. Risk Analysis: A Quantitative Guide, 2nd ed., Wiley John & Sons, Incorporated, New York.

沙门氏菌的检验

沙门氏菌得检验 食品学院14食品质量与安全1班 刘文敏柳基炜卫杰恒温紫君 2 2 2 2 摘要:本实验采用GB/T4789。4-2010得检测方法测定鸡场中得沙门氏菌、通过本实验学习沙门氏菌得检测方法与技术,了解沙门氏菌得一些生化特性;本实验先用显色培养基找出可疑菌落,再做生化试验找出可疑得典型性得沙门氏菌,再通过血清学试验最终确定就是否为沙门氏菌属。 关键词:沙门氏菌接种生化试验血清学鉴定 前言 沙门氏菌病就是公共卫生学中具有重要意义得人畜共患病种之一,其病原沙门氏菌属于肠道细菌科。沙门氏菌就是一个统称,泛指 2000多种有紧密连系得细菌,包括引起食物中毒,导致胃肠炎、伤寒与副伤寒得细菌。虽然只有少数人因沙门氏菌而患病,但就是,在世界范围内得细菌性食物中毒事件中,由沙门氏菌引起得占大多数。因此,采用科学、合理得方法检验食品中沙门氏菌,已经成为了人们最关心得问题之一[1]。国标法(GB4789。4-2010)就是目前中国规定得食品中沙门氏菌得标准检测方法,也就是基层实验室普遍采用得检测方法,它根据沙门氏菌得生长特点与生化特性,采取前增菌、增菌、分离、生化试验与血清学鉴定5个步骤进行[2]。 1材料与方法 1、1实验材料 1、1.1仪器设备 均质器、三角烧瓶、平皿、玻璃棒、接种棒 恒温培养箱:36℃±1℃,42℃±1℃ 吸管:1 mL(具 0.01 mL刻度)、10mL(具0、1mL刻度或微量移液器及吸头 电子天平PL602-S,梅特勒—托利多仪器(上海)有限公司; 手提式不锈钢压力蒸汽灭菌锅SYQ—DSX-280B,上海申安医疗器械厂 1。1。2试剂药品

鸡肠、靛基质试剂、沙门氏菌O与H诊断血清、API20E生化试剂盒或VITEKGNI 生化鉴定卡 1.1。3培养基 蛋白胨水(BPW)、四硫磺酸钠煌绿(TTB)、亚硒酸盐胱氨酸(SC)增菌液、亚硫酸铋(BS)琼脂、HE琼脂、三糖铁琼脂、蛋白胨水、尿素琼脂、氰化钾、氰化钾对照、赖氨酸脱羧酶、赖氨酸脱羧酶对照、甘露醇、山梨醇、β—D半乳糖苷(ONPG)培养基 1、2 实验方法 1.2。1培养基得制备 1、2。1.1培养基得配制步骤 蛋白胨水(BPW):称取蛋白胨10g、氯化钠5g、磷酸氢二钠9g、磷酸二氢钠1.5g、蒸馏水1000ml,将各成分加入蒸馏水中,搅混均匀,静置约 10 min,煮沸溶解,调节pH,高压灭菌 121℃,15min。分装10瓶,每瓶90ml 四硫磺酸钠煌绿(TTB):高压灭菌 121 ℃,15 min灭菌冷却后至30℃,每100ml 基础培养液加碘液2ml,煌绿液1ml 1。2.1、2配制培养基得注意事项 (1)按照说明书上得用量进行换算,称取准确分量得合成培养基粉末; (2)加热煮沸溶解培养基时,留意锅内水位得变化,水位下降可再添加适量得水,以免水分蒸发过多,导致后面分装不够量; (3)往试管中放小导管时,注意处理气泡、 1。2。2 沙门氏菌群检测 1、2.2.1沙门氏菌检测程序

院内感染病例讨论

院内感染病历讨论记录: 1月份 医院感染是指住院病人在医院内获得的感染,包括在住院期间发生的感染和在医院内获得出院后发生的感染,但不包括入院前已开始或者入院时已处于潜伏期的感染。医院工作人员在医院内获得的感染也属医院感染。广义地讲,医院感染的对象包括住院病人、医院工作人员、门急诊就诊病人、探视者和病人家属等,这些人在医院的区域里获得感染性疾病均可以称为医院感染,但由于就诊病人、探视者和病人家属在医院的时间短暂,获得感染的因素多而复杂,常难以确定感染是否来自医院,故实际上医院感染的对象主要是住院病人和医院工作人员。 研究生汇报本月院内感染病历:本月院内感染病人1例,吴风伦住院号777158,患者因颈椎过伸性损伤并截瘫及齿状突骨折入院,后施行了颈椎后路骨折复位内固定手术,术后并发下呼吸道感染,经过积极痰培养(培养菌为一般细菌)和针对敏感药物治疗,治愈出院。分析:以上两病人术后并发下呼吸道感染,为颈椎损伤手术的常见并发,尤其容易出现在上颈椎损伤的患者当中,对这类病人的严密监控治疗尤为重要。 讨论结果:1.重视院内感染:积极参加有关省市级卫生部门组织的有关院内感染的学习班并组织全科培训。护士长带头,总住院医师或医师,担任感染监控员,由感染办公室专职人员对他们每年进行1~2次的业务指导及培训。对全科医务人员进行有关院内感染和消毒隔离工作的培训,每年1~2次。对实习护士来科实习,要进行医院内感染方面的有关知识培训。培训内容:医院感染的概念,医院内感染的控制及预防,医院内感染的常见疾病及预防,消毒、隔离、灭菌等。对护士重点培训隔离、消毒方面的有关问题。对卫生员培训有关病房卫生清扫、隔离消毒的基本知识、各种消毒液的使用浓度及配制方法。 2.加强对颈椎损伤病人术后的重点监护及病房的隔离消毒等措施。

沙门氏菌检验

沙门氏菌的检验 1.目的 规范沙门氏菌检测方法,使产品检验有据可依。 2.消毒灭菌要求 微生物检测用的玻璃仪器、金属用具及培养基、被污染和接种的培养物等,必须经灭菌后方能使用。 注:本实验采用湿热灭菌法,吸管、培养皿、培养基等盖好塞子并包好瓶口在高压灭菌锅中按要求的温度和压力灭菌,一般是121℃()下灭菌20min。 3.原理 沙门氏菌的检验分四个连续阶段: 4.操作步骤 准备工作 配制实验所需的缓冲蛋白胨水、亚硒酸盐胱氨酸培养基(无需灭菌)、HE培养基、三糖铁培养基等,并将准备好的均质杯、吸管、培养皿、大试管等一起灭菌。 前增菌 在无菌环境下,称取25g待检样品放入盛有225ml灭菌好的缓冲蛋白胨水中,然后放到36±1℃的恒温培养箱内进行前增菌4-6h; 增菌 在无菌环境下,用灭菌好的吸管吸取10ml前增菌液接种与100ml亚硒酸盐胱氨酸培养基中进行二次增菌,恒温培养箱36±1℃,培养18-24h; 分离培养 将增菌培养液摇匀,以无菌操作,用直径3mm的接种环挑取一环,划线于表面无凝结水的BS和SS琼脂平板各一个,于36±1℃培养18-24h。观察各个平板上有无典型或可疑沙门氏菌属的菌落。如无典型或可疑菌落,应再继续培养24±2h。然后观察培养的平板(黄色的菌落是大肠杆菌;蓝绿色或蓝色,产硫化氢,菌落中心黑色或几乎全黑色为可疑沙门氏菌)。 沙门氏菌属各亚属在其他选择性琼脂平板的菌落特征 生化实验 用灭菌好的接种针在培养平板上挑取可疑的沙门氏菌单菌落,接种到三糖铁培养基上,恒温培养箱36±1℃,培养18-24h; 典型沙门氏菌培养物斜面显红色(碱性),底端显黄色(酸性),有气体产生,形成硫化氢(琼脂变黑)。 三糖铁培养基变化表 肠杆菌科各属在三糖铁琼脂内的反应结果

沙门氏菌的检验

沙门氏菌的检验 2.2 恒温培养箱:36 ℃±1 ℃,42 ℃±1 ℃。 2.3 均质器。 2.4 振荡器。 2.5天平:感量0.1 g。 2.6 无菌锥形瓶:容量500 mL,250 mL。 2.7 无菌吸管:1 mL(具0.01 mL 刻度)、10 mL(具0.1 mL 刻度)或微量移液器及吸头。 2.8 无菌培养皿:直径90 mm。 2.9 无菌试管:3 mm×50 mm、10 mm×75 mm。 2.10 无菌毛细管。 2.11 pH 计或pH 比色管或精密pH 试纸。 3 培养基和试剂 3.1 缓冲蛋白胨水(BPW):见附录A 中A.1。 3.2 四硫磺酸钠煌绿(TTB)增菌液:见附录A 中A.2。 3.3 亚硒酸盐胱氨酸(SC)增菌液:见附录A 中A.3。 3.4 亚硫酸铋(BS)琼脂:见附录A 中A.4。 3.5 HE 琼脂:见附录A 中A.5。 3.6 木糖赖氨酸脱氧胆盐(XLD)琼脂:见附录A 中A.6。 3.8 三糖铁(TSI)琼脂:见附录A 中A.7。 3.9 蛋白胨水、靛基质试剂:见附录A 中A.8。 3.10 尿素琼脂(pH 7.2):见附录A 中A.9。 3.11 氰化钾(KCN)培养基:见附录A 中A.10。 3.12 赖氨酸脱羧酶试验培养基:见附录A 中A.11。 3.13 糖发酵管:见附录A 中A.12。 3.14 邻硝基酚β-D 半乳糖苷(ONPG)培养基:见附录A 中A.13。 3.15 半固体琼脂:见附录A 中A.14。 3.16 丙二酸钠培养基:见附录A 中A.15。 1 前增菌 称取25 g(mL)样品放入盛有225 mL BPW 的无菌均质杯中,以8 000 r/min~10 000 r/min 均质 1 min~ 2 min,或置于盛有225 mL BPW 的无菌均质袋中,用拍击式均质器拍打1 min~2 min。 2 增菌 轻轻摇动培养过的样品混合物,移取1 mL,转种于10 mL TTB 内,于42 ℃±1 ℃培养18 h~24h。同时,另取1 mL,转种于10 mL SC 内,于36 ℃±1 ℃培养18 h~24 h。 3 分离 分别用接种环取增菌液1 环,划线接种于一个BS 琼脂平板和一个XLD 琼脂平板(或HE 琼脂平板或沙门氏菌属显色培养基平板)。于36 ℃±1 ℃分别培养18 h~24 h (XLD 琼脂平板、

(风险管理)畜产品中沙门氏菌的风险评估

(风险管理)畜产品中沙门氏菌的风险评估

畜产品中沙门氏菌的风险评估 沙门氏菌(Salmonella)广泛分布于自然界,是对人类和动物健康有极大危害的一类致病菌。由它引起的疾病主要分为两大类:一类是伤寒和副伤寒,另一类是急性肠胃炎。沙门氏菌是引起人类食物中毒的主要致病菌。据世界卫生组织报道,1985年以来,在世界范围内由沙门氏菌引起的已确诊的患病人数显著增加,在一些欧洲国家已增加5倍。在我国内陆地区,由沙门氏菌引起的食物中毒屡居首位。据资料统计,在我国细菌性食物中毒中,有70%~80%是由沙门氏菌引 起的。一2,而在引起沙门氏菌中毒的食品中,约90%是肉、蛋、奶等畜产品。肉、蛋、奶等畜产品中含有多种丰富的营养成分,非常适宜于沙门氏菌的生长繁殖,人们一旦摄入了含有大量沙门氏菌(105~106个/g)的畜产品。就会引起细菌性感染,进而在毒素的作用下发生食物中毒。由此可见,沙门氏菌的污染已对食品安全构成了严重威胁。鉴于沙门氏菌对人类健康的严重危害,目前世界各国政府已开始进行食品中沙门氏菌的风险评估工作,但大部分处于探索阶段。本文作者拟对畜产品中的沙门氏菌进行风险评估,为今后开展其他食品、微生物的风险评估工作提供依据。 1危害识别 1.1生物学性状 1.1.1形态与染色 沙门氏菌为一群革兰氏阴性,无芽孢的杆菌,长1~3.5μm,宽0.5~0.8μm。除禽雏沙门氏菌及无动力的变种外,都具有周身鞭毛,能运动。 1.1.2沙门氏菌的培养

一般沙门氏菌易在普通培养基上生长,发育良好。但也有少数菌型,如甲型副伤寒、羊流产、猪伤寒、仙台、鸡雏沙门氏菌等,在普通琼脂上发育较差。大多数沙门氏菌在普通琼脂平板上,经18~24h培养后,其菌落大小一般为2~3μm。光滑型菌落圆形,半透明,表面光滑,边缘整齐;粗糙型者,边缘不整齐,表面干燥,无光泽。在肉汤培养基内,光滑型呈均匀浑浊生长;粗糙型者可形成沉淀,上部澄清。 1.1.3生化反应 在肠杆菌科细菌分类鉴定中,生化特性检查有着重要的意义。绝大多数菌株能有规律地发酵葡萄糖并产生气体,但偶而亦有不产气者。该属细菌不能发酵侧金盏花醇、蔗糖,不产生吲哚,不分解尿素,不形成乙酰甲基甲醇。1.2流行病学 1.2.1胃肠炎 这是沙门氏菌感染中最常见的一型,约占病例的70%。潜伏期一般为4~24h,发病大多急剧,有畏寒、发热,多伴有头痛、头晕、恶心、呕吐、腹痛,继以腹泻。亦有偶带脓血或呈血性便者。吐泻严重者,可出现脱水和电解质紊乱。偶有呈霍乱样的爆发性胃肠炎者,呕吐,腹泻剧烈,体温在病初上升后即下降,脉弱而速,尿少或尿闭等,如抢救不及时,可引起死亡。病例长短不一,一般为3~6d,重者可延至1~3周才恢复。 1.2.2菌血病或败血症 沙门氏菌侵入血液并不少见,表现为畏寒、发热、出汗、面色苍白等中毒现象。细菌可随血液流到身体任何部位发生局部病灶。本型最常见的是猪霍乱沙门氏菌感染。

食品生产企业风险评估

食品安全风险评估 *****公司风险评估 ****公司,对本公司所生产的****产品进行风险分析如下: 公司简介: 为了适应市场经济的发展,拓展市场领域,我公司正推行质量管理体系,加工过程对各个环节采取有效的预防措施,从而达到保证产品安全的目的。 车间结构科学合理,设备先进,设施齐全。设粗加工车间、精加工车间、包装间、二套男女更衣室、男女厕所,消毒间与车间配套。各加工工序均配有相应的消毒设施,生产加工区域空气清鲜,车间内采用臭氧杀菌。车间内部全部采用不锈钢设备。车间配有一套先进的浓缩汁流水线生产设备,一系列现代化先进设施及科学预防措施杜绝了细菌的滋生、繁殖、传播以及异物的混入,为产品质量的提高奠定了基础。 公司具备有相应检测能力的化验室,化验室人员经培训考核合格后上岗。化验室检验设备齐全,配备恒温培养箱、水浴锅、干燥箱等检测设备能准确地检测产品中的细菌总数、大肠菌群、大肠杆菌、金黄色葡萄球菌和沙门氏菌等。每天对生产的产品进行抽样检测,保证产品的质量。 二、****产品风险分析 工艺:原料验收→配料→混料→均质→浓缩→灭菌→装袋→封口→冷却→包装→入库 1、源头上可能存在的风险 1.原料:原料可能会存在化学危害,如:重金属超标。 2.加工中可能存在的风险: 加工过程中设备损坏以及清洗控制不当易滋生细菌。 三,市场可能存在的风险三、采取的措施 1、原料的控制: 原料通过国内渠道购入,对质量的验收要有官方出示的重金属检验报告证明。在原料验收过程中,不加以控制,在以后的加工工序中没有能消除危害的步骤,因此,为更好的控制风险降低危害,我们在原料验收时须查看官方出示的重金属检验报告合格证明,如上述检验证明不合格,将拒收本批原料。 2、加工过程的控制 在加工过程中只要按照要求的生产条件和要求来执行。每天开工前及作业结束之后:1)对设备进行全方位的点检及维护,2)对设备进行清洗高温杀菌,防止微生物污染及异物混入。做好员工的设备操作、维护保养、卫生、质量培训,监测生产用水和食品接触面的卫生,搞好车间环境卫生就能够保证加工过程中产品微生物处于合格范围内。 3、成品包装、储存运输控制 成品包装用的物料必须来自经检验检疫部门卫生注册的生产厂家,且符合卫生标准,并保持清洁卫生,不得含有有害、有毒物质,且不易褪色。包装后的成品冷却后入库,常温储存。装运时,采用常温箱车。 文献 [1]资料源自网络

沙门氏菌基本知识及检测方法

沙门氏菌基本知识及检测方法 沙门氏菌属(Salmonella)是肠杆菌科的一个大属,有2000多个血清型,我国发现的约有100个。沙门氏菌广泛存在于猪、牛、羊、家禽、鸟类、鼠类等多种动物的肠道和内脏中。1880年Eberth首先发现伤寒杆菌,1885年Salmon分离到猪霍乱杆菌,由于Salmon发现本属细菌的时间较早,在研究中的贡献较大,遂定名为沙门氏菌属Salmonella 。本属细菌绝大多数成员对人和动物有致病性,能引起人和动物的败血症与胃肠炎,甚至流产,并能引起人类食物中毒,是人类细菌性食物中毒的最主要病原菌之一。 根据沙门氏菌的致病范围,可将其分为三大类群。第一类群:专门对人致病。如伤寒沙门氏菌、副伤寒沙门氏菌(甲型、乙型、丙型)。第二类群:能引起人类食物中毒——食物中毒沙门氏菌群,如鼠伤寒沙门氏菌、猪霍乱沙门氏菌、肠炎沙门氏菌、纽波特沙门氏菌等。第三类群:专门对动物致病,很少感染人,如马流产沙门氏菌、鸡白痢沙门氏菌。致病性最强的是猪霍乱沙门氏菌(Salmonella cholerae),其次是鼠伤寒沙门氏菌(Salmonella typhimurium)和肠炎沙门氏菌(Salmonella enteritidis)。 一、沙门氏菌属的生物学特征: 1.形态染色特性:G-无芽孢杆菌。大小通常为 0.7~1.5μm × 2.0~5.0μm,菌端钝圆,散在,偶有短丝状,无荚膜,除鸡白痢沙门氏菌和鸡伤寒沙门氏菌外均有周身鞭毛,能运动,绝大多数菌株有菌毛。需氧或兼性厌氧菌,生长温度范围为10~42℃,最适生长温度为37℃,适宜pH为6.8~7.8,对营养要求不高,在普通培养基中生长旺盛,胆盐可促进其生长。 2.培养特性:需氧或兼性厌氧菌;生长温度范围为10~42℃,最适生长温度为37℃;适宜pH为6.8~7.8;对营养要求不高,在普通培养基中生长旺盛;胆盐可促进其生长。 §普通琼脂:圆形、光滑、无色半透明、边缘整齐或不太整齐的中等大小(2 ~ 4mm)菌落。鸡白痢、鸡伤寒、猪副伤寒、甲型副伤寒沙门氏菌等只能长成细小菌落。§麦康凯琼脂和伊红美兰琼脂(EMB):菌落无色半透明

沙门氏菌检验标准操作规程

1目的P URPOSE 规范888物料、产品的沙门氏菌检验操作,确保检验结果的可靠性。 2范围SCOPE 适用于888物料、产品的沙门氏菌检验工作。 3责任RESPONSIBILITY 微生物检验员严格执行本规程,品质部负责人监督执行。 4程序PROCEDURE 定义和原理 沙门氏菌广泛存在于动物的肠道和内脏,以及被粪便污染的水和土壤中,是细菌性食物中毒的主要病因。本方法利用沙门氏菌呈辛酸酯酶阳性,而氧化酶和脂肪酶均呈阴性的特性,对物料、产品进行沙门氏菌检验。 材料和设备 紫外灯:波长366nm,功率不小于6W。 放大镜:3至4倍。 毛细滴管。 LX-B35L压力蒸汽灭菌锅。 无菌的培养皿。 无菌的接种环。 培养基和试剂 SCDLP液体培养基:按《化妆品卫生规范》(2007版)或使用商品培养基干粉配制。 四硫磺酸钠煌绿(TTB)增菌液:按—2010附录配制或使用商品试剂。 SS琼脂培养基(含1%蔗糖):牛肉浸膏(或牛肉粉),蛋白胨,乳糖,蔗糖,胆盐,柠檬酸钠,硫代硫酸钠,柠檬酸铁,煌绿,中性红,琼脂,蒸馏水1000mL。 HE琼脂培养基:按—2010附录或使用商品培养基干粉配制。 玉米油维多利亚蓝琼脂培养基:灭菌后的基础培养基冷却至50℃左右,边摇边加入玉米油乳化液。倾注平皿,制成平板。基础培养基及玉米油乳化液配方如下: a)基础培养基:蛋白胨5g,酵母浸粉3g,氯化钠5g,琼脂13g,水900mL,。将 各成分加入水中,加热溶解。调节,116℃15min高压灭菌。 b)玉米油乳化液:玉米油100mL,%维多利亚蓝水溶液100mL,%琼脂溶液80mL, 吐温801mL。玉米油加维多利亚蓝水溶液混合,边振动边在沸水中加热溶化。然后, 放入分液漏斗中,弃去蓝色水部分,再将着色的脂肪用水洗1-2次。将着色脂肪20mL 加入810mL琼脂溶液中,再加1mL吐温80,116℃15min高压灭菌。冷却后用超声 波乳化。

2018年上半年医院感染病例分析

2018年1-6月份医院感染病例分析 一、目标性监测: 2018年全院医院感染目标性监测信息汇总表 1、全院留置导尿1007人次,留置导尿总日数为3255日,发生导尿相关泌尿道感染1例,导尿相关人数感染率为0.10%,导尿千日感染率为0.3‰。 2、外科系统:1-6月份共计实施Ⅰ类手术545台次,未发生手术部位感染病例; 3、使用呼吸机53人,呼吸机辅助呼吸总日数为335日,发生呼吸机相关感染病例0例,呼吸机相关感染率为0%。 4、使用中心静脉置管8人,中心静脉置管总日数75日,未发生中心静脉置管相关感染病例,感染率为0。 二、医院感染病例分布表:

2018年1-6月全院院内感染情况汇总分析与反馈 总结与分析:

1、本年内全院发生医院感染36人次/37例次,共发生了5个部位的感染,上呼吸、下呼吸道、胃肠道、泌尿道、手术切口;医院感染发病率为0.42%; 2、医院感染各部位发病率:上呼吸道感染发病率为0.22%;下呼吸道感染发病率为0.13%;胃肠道、泌尿道感染发病率为0.03%,手术切口感染发病率为0.01%。 3、各部位医院感染分布比:上呼吸道感染占51.35%,下呼吸道感染占39.73%,胃肠道、泌尿道感染占8.1%,手术切口感染占2.7%。 三、2018年1-6月份出院人数 2018年1-6月份医院感染发病部位分布表:

上呼吸道感染明显的季节性,3月份多发,切口感染仅6月份1例,下呼吸道感染明显减少。 2018年第三季度各部位感染例数:

(一)上呼吸道感染19例,占医院感染总例次的53%,占出院人数的0.22%。分布在1月份5例、2月份2例、3月份8例、4月份2例,5月份2例、6月份0例 (二)下呼吸道感染11例,占医院感染总例次的31%,占出院人数的0.13%。分布在1月份5例、2月份2例、3月份8例、4月份2例,5月份2例、6月份0例 (三)胃肠道感染2例。占医院感染总例次的6%,占出院人数的0.02%。分布在2月份、3月份6月份各1例 (四)泌尿道感染3例,占医院感染总例次的8%,占出院人数的0.03%,分布在3月份1例、5月份2例 (五)表浅切口感染1例,占医院感染总例次的3%,占出院人数的0.01%。分布在6月份1例 四、感染原因分析:

鸡蛋生产环节沙门氏菌检测及洁蛋对蛋品质影响的研究

第3卷第5期食品安全质量检测学报Vol. 3No. 5 2012年10月Journal of Food Safety and Quality Oct. , 2012 鸡蛋生产环节沙门氏菌检测及洁蛋对蛋品质 影响的研究 段忠意1, 秦宇辉1, 刘燕荣1, 袁正东2, 杨宁1,2, 徐桂云1,2* (1. 中国农业大学动物科技学院, 畜禽育种国家工程实验室, 农业部动物遗传育种重点实验室, 北京 100193; 2. 国家蛋品工程技术研究中心, 北京 100081) 摘要: 目的对鸡蛋生产过程中沙门氏菌污染环节进行研究, 探明规模化蛋鸡养殖场鸡蛋生产中沙门氏菌 污染状况和洁蛋效果。方法选择规模化蛋鸡场一个, 对可能造成鸡蛋沙门氏菌污染的水、饲料、蛋网、传输 带等环节的样本进行采样, 并取清洁前后的鸡蛋各60个, 分为两组, 每组中30个蛋用于当天检测, 另外30个, 在室温环境下放置10 d后检测。所有样品经前增菌和选择性增菌后, 提取细菌DNA进行鉴定。结果水、饲 料和清洁后的鸡蛋表面未检出沙门氏菌, 蛋网、传输带、未清洁的鸡蛋表面检出沙门氏菌, 进一步检测表明, 检 出的沙门氏菌均不是肠炎沙门氏菌和伤寒沙门氏菌。鸡蛋放置10 d后检测, 未清洁组的蛋白高度和哈氏单位 显著低于清洁组的蛋白高度和哈氏单位, 二者均显著低于当天检测的结果, 而各组的蛋壳强度差异均不显著。 结论鸡蛋清洁涂膜处理后可以有效减少蛋壳表面沙门氏菌污染, 并延长鸡蛋的保存时间。 关键词: 鸡蛋; 清洁; 沙门氏菌; 蛋品质 Study on detection of Salmonella in egg production and influence on egg quality DUAN Zhong-Yi1, QIN Yu-Hui1, LIU Yan-Rong1, YUAN Zheng-Dong2, YANG Ning1,2, XU Gui-Yun1,2* (1. Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of MOA, China Agricultural University, Beijing 100193, China; 2. National Egg Engineering Research Center, Beijing 100081, China) ABSTRACT: Objective To study Salmonella contamination in egg production of scaled farm and effects of egg cleaning. Methods Drinking water, feed, net, conveyor belts, 60 cleaned and 60 uncleaned eggs were sampled in a scaled farm. A half of cleaned and uncleaned eggs and all the other samples were detected on the same day, and the other half of cleaned and uncleaned eggs were detected after they were placed under room temperature for 10 d. The DNA of all samples was extracted for detection after pre-enrichment and selected enrichment of bacterium. Results Salmonellae was detected on the surface of net, conveyor belts and uncleaned eggs, except water, feed and cleaned eggs, and further detection proved them neither Salmonella enteritidis nor Salmonella typhi. Albumen height and Haugh units of uncleaned eggs were significantly lower than those of cleaned eggs after placed for 10 d, which of cleaned and uncleaned eggs were both significantly 基金项目: 国家蛋鸡产业技术体系(CARS-41)、教育部长江学者与创新团队发展计划“禽蛋及禽肉检测技术研究”( IRT 0945) *通讯作者: 徐桂云, 教授, 硕士生导师, 主要从事家禽遗传育种与品质检测技术研究。E-mail: ncppt@https://www.wendangku.net/doc/1212993914.html,

沙门氏菌的检验

沙门氏菌的检验 食品学院14食品质量与安全1班 刘文敏柳基炜卫杰恒温紫君 201430520115 201430520116 201430520121 201430520122 摘要:本实验采用GB/T4789.4-2010的检测方法测定鸡场中的沙门氏菌。通过本实验学习沙门氏菌的检测方法和技术,了解沙门氏菌的一些生化特性;本实验先用显色培养基找出可疑菌落,再做生化试验找出可疑的典型性的沙门氏菌,再通过血清学试验最终确定是否为沙门氏菌属。 关键词:沙门氏菌接种生化试验血清学鉴定 前言 沙门氏菌病是公共卫生学中具有重要意义的人畜共患病种之一,其病原沙门氏菌属于肠道细菌科。沙门氏菌是一个统称,泛指 2000 多种有紧密连系的细菌,包括引起食物中毒,导致胃肠炎、伤寒和副伤寒的细菌。虽然只有少数人因沙门氏菌而患病,但是,在世界范围内的细菌性食物中毒事件中,由沙门氏菌引起的占大多数。因此,采用科学、合理的方法检验食品中沙门氏菌,已经成为了人们最关心的问题之一[1]。国标法(GB4789.4-2010)是目前中国规定的食品中沙门氏菌的标准检测方法,也是基层实验室普遍采用的检测方法,它根据沙门氏菌的生长特点和生化特性,采取前增菌、增菌、分离、生化试验和血清学鉴定5个步骤进行[2]。 1材料与方法 1.1实验材料 1.1.1仪器设备 均质器、三角烧瓶、平皿、玻璃棒、接种棒 恒温培养箱:36℃±1℃,42℃±1℃ 吸管:1 mL(具 0.01 mL刻度)、10mL(具0.1mL刻度或微量移液器及吸头

电子天平PL602-S,梅特勒-托利多仪器(上海)有限公司; 手提式不锈钢压力蒸汽灭菌锅SYQ-DSX-280B,上海申安医疗器械厂 1.1.2试剂药品 鸡肠、靛基质试剂、沙门氏菌O和H诊断血清、API20E生化试剂盒或VITEKGNI 生化鉴定卡 1.1.3培养基 蛋白胨水(BPW)、四硫磺酸钠煌绿(TTB)、亚硒酸盐胱氨酸(SC)增菌液、亚硫酸铋(BS)琼脂、HE琼脂、三糖铁琼脂、蛋白胨水、尿素琼脂、氰化钾、氰化钾对照、赖氨酸脱羧酶、赖氨酸脱羧酶对照、甘露醇、山梨醇、β-D半乳糖苷(ONPG)培养基 1.2 实验方法 1.2.1培养基的制备 1.2.1.1培养基的配制步骤 蛋白胨水(BPW):称取蛋白胨10g、氯化钠5g、磷酸氢二钠9g、磷酸二氢钠1.5g、蒸馏水1000ml,将各成分加入蒸馏水中,搅混均匀,静置约 10 min,煮沸溶解,调节 pH,高压灭菌 121 ℃,15 min。分装10瓶,每瓶90ml 四硫磺酸钠煌绿(TTB):高压灭菌 121 ℃,15 min灭菌冷却后至30℃,每100ml 基础培养液加碘液2ml,煌绿液1ml 1.2.1.2配制培养基的注意事项 (1)按照说明书上的用量进行换算,称取准确分量的合成培养基粉末; (2)加热煮沸溶解培养基时,留意锅内水位的变化,水位下降可再添加适量的水,以免水分蒸发过多,导致后面分装不够量; (3)往试管中放小导管时,注意处理气泡。 1.2.2 沙门氏菌群检测 1.2.2.1沙门氏菌检测程序

年感染病例监测分析

2016年医院感染病例监测分析 一、医院感染病例监测情况: 2016年共监测住院病例6560例,发生医院感染人数27人,感染例次27例次,科室上报27例,漏报0,院内感染率0.4%,漏报率0。 1、2016年全院医院感染病例监测统计

2、2016年各科室院内感染情况汇总表 科室出院 人数 上报 感染 病例 数 感染分类漏 报 病 例 数 漏报 率 (%) 感染 率 (%)下 呼 吸 道 皮 肤 浅 表 切 口 深 部 切 口 上 呼 吸 道 泌 尿 系 软 组 织 外科2282 22 4 6 5 3 2 2 0 0 0.97 内科2112 4 2 2 0 0 0.19 妇产科841 1 1 0 0 0.12 综合科1325 0 0 0 0 合计6560 27 7 6 5 3 2 2 2 0 0 0.41 3、感染部位:医院感染的主要部位是:手术部位感染8例,占感染病例的29.63%;呼吸道系统感染感染9例,占感染病例的33.33%;皮肤软组织感染8例,占感染病例的29.63%;泌尿道感染2例,占感染病例的7.4%。见下表: 2016医院感染部位构成比(%) 感染部位感染例数构成比(%) 下呼吸道感染7 25.92 皮肤感染 6 22.22 浅表手术切口感染 5 18.52 深部切口感染 3 11.11 上呼吸道感染 2 7.4 泌尿道感染 2 7.4

4、病原菌培养结果未做(医院未开展细菌检测) 二、资料分析 2016年全院发生医院感染的病例数共27例,年龄最大者79,最小者11岁;住院时间最长37天,最短3天。大多数病人存在侵袭性操作,并且侵袭性操作次数越多,病人出现院内感染的机率明显增高。 三、改进措施 针对以上情况,采取以下改进措施: 1、各科室应针对科室感染情况,组织讨论,分析科室感染因素,制定科室感染控制制度。 2、严格落实重症病房的消毒隔离工作,落实呼吸机相关肺炎控制措施,凡使用呼吸机和气管切口病人,均使用《呼吸及相关肺炎预防控制措施执行及督查表》,科室、医务科、护理部、控感办实施监督管理。 3、凡感染病例应根据感染部位采集相应组织或分泌物送检,进行细菌培养,明确感染病原体,采取相应隔离措施,严格防止交叉感染。 4、手术科室应对手术病人开展《手术院内感染风险评估》,严格执行外科手术部位感染预防控制措施,严格执行无菌技术操作原则,控制手术切口感染的发生率 5、手术室开展《手术室医院感染评估》,做好手术室环境和无菌物品的准备工作,降低感染风险。

食品安全危害分析、预防措施和风险评估

食品安全危害分析、预防措施和风险评估 一、 食品安全危害定义: 食品中所含有的对健康有 潜在不良影响的生物、 化学或物理的因素 或食品存在状况。 二、 危害的描述 对 1?于危害的描述是基于以下标准之上的: 1. 消费者自身的风险相关因素,如年龄和健康状况; 2. 食品原料的相关风险状况; 3. 产品加工过程中及其对危害的影响; 4. 产品加工后重新被污染的可能性; 5. 在流通和消费者处理过程中产品不当处理的可能性; 6. 在最后的制备过程中消费者的识别、清除或者破坏危害因子的能力。 二、食品中存在的危害 1. 生物性危害 2. 化学性危害 3. 物理性危害 4. 食品过敏的危害 5. 转基因食品的安全性 6. 食品包装污染的危害 7. 辐照食品的安全性 四、车间需要关注的食品安全危害和预防措施 1 、生物危害:大肠埃希菌、沙门氏菌、金黄色葡萄球菌、霉] 菌、酵母菌、肝炎 病毒、

结核杆菌、寄生虫、苍蝇、蟑螂、蚂蚁、飞蛾、老鼠、麻雀等。 生物危害预防措施:防止食品原料和包装受到污染;加强加工、贮存、运输等过程的卫 生管理;食品接触面的清洗消毒和消毒效果验证;加强员工个人卫生管理和健康管理;防止 二次污染和交叉污染;控制微生物的生长繁殖条件(如适当的温度控制);防止毒素的形成 (如黄曲霉毒素的形成);必要的杀菌措施;有效的防虫防鼠措施。 2、化学危害:清洗液、稀释液、油墨、二氧化氯消毒剂、过氧乙酸消毒液、液体去菌洗手液、洗衣粉、机油等。其他化学危害包括:黄曲霉毒素(原料受潮发霉产生)、人为有意投入的化学物质(毒品等)、偶然引入的化学物质(蟑螂药、蚂蚁药、老鼠药等)。 化学危害预防措施:加强化学品的贮存管理、使用管理、标签标识管理;加强食品添加剂的使用管理;生产设备上可能直接或间接接触食品的活动部件若需润滑,应当使用食用油 脂或能保证食品安全要求的其他油脂要求;加强仓储管理和提供适宜的仓储条件;系统有效 的安保措施;严格管理虫鼠害消杀过程的用药。 3、物理危害:线头、胶条、胶袋、纸屑、头发、铁钉铁丝、金属屑、木屑、戒子、耳 钉、项链、石头、玻璃、牙齿等。 物理危害预防措施:通过采取设备维护、卫生管理、现场管理、外来人员管理及加工过 程监督等措施,最大程度地降低食品受到玻璃、金属、塑胶等异物污染的风险;采取设置筛网、金属检查器、捕集器、磁铁、挑选等有效措施降低金属或其他异物污染食品的风险;进行现场维修、维护及施工等工作时,采取适当措施避免异物、异味、碎屑等污染食品。 五、风险评估的办法定义:根据事故后果的严重程度与发生事故的可能性进行风险评价。 风险评估的主要作用: 1、认识风险及其对目标的潜在影响; 2、为决策者提供相关信息; 3、增加风险的理解,以利于风险应对策略的正确选择; 4、识别那些导致风险的主要因素,以及系统和组织的薄弱环节; 5、沟通风险和不确定性;

医院感染病例报告制度

医院感染病例报告制度 1、住院病人发生医院感染,应由主管医生于 24 小时之内电话报告医院感染管理科。主管医生须即时填写《医院感染病例登记卡》随即送到感染科。 2.由医院感染管理科接到卡后到病区调查、核对、登记,并定期对医院感染病例进行统计、分析。 3.凡发现在同一病区三例以上的相同细菌感染的病例,科室质控员应立即电话通知医院感染管理科,及时查找原因并采取控制措施,防止暴发流行发生,对不及时报告的个人与科室予以一定处罚。 4.疑为医院感染病人应及时采集标本送检,在转科后已留标本报告阳性,并确诊为院内感染者,由转出科室补填登记卡并注明转归。 5.出现医院感染流行趋势时,医院感染管理科于 24 小时内报告主管院长和医务科,并通报相关部门。 6.医院感染管理科常规进行漏报调查,漏报与隐瞒不报,予以相应处罚。医院感染流行、医院感染流行、暴发处置原则 1.临床科室必须及时查找原因,协助调查和执行管理制度。 2.医院感染管理科进行流行病学调查处理: (1)证实流行或暴发,对怀疑患有同类感染的病例进行确诊,计算其罹患率,若罹患率显著高于该科室或病房历年医院感染一般发病率水平证实有流行或暴发。 (2)查找感染源,对感染病人、接触者、可疑传染源、环境、物

品、医务人员及陪护人员等进行病原学检查。 (3)查找引起感染的因素,对感染病人及周围人群进行详细流行病学调查。 (4)制订和组织落实有效的控制措施,包括对病人做适当治疗,进行正确的消毒处理,必要时隔离病人甚至暂停接收新病人。(5)分析调查资料,对病例的科室分布、人群分布和时间分布进行描述;分析流行或暴发的原因,推测可能的感染源、感染途径或感染因素,结合实验室检查结果和采取控制措施的效果综合做出判断。 (6)写出调查报告,总结经验,制定防范措施。 3.报告主管院长,并及时组织相关部门协助感染管理科开展流行病学调查与控制工作,并从人力、物力和财力方面予以保证。 (1)协助当地疾病控制部门进行医院感染流行或暴发的调查与控制。 (2)组织医院感染管理委员会成员,指导医院开展流行病学调查和制定有效的医院感染控制措施。 (3)根据需要,组织有关专家协助对感染病人的诊治。 4.当其他医院发生医院感染流行或暴发时,对本院同类潜在危险因素进行调查并采取相应控制措施。 5.确诊为传染病的医院感染,按《传染病防治法》的有关规定进行管理。医务人员职业防护制度一、标准预防认为病人的血液、体液、分泌物、排泄物均具有传染性,不论是否有明显的血迹污染或是否接触非完整的皮肤与粘膜,接触上述物质者.必须采取防护措施。其基本特点为:

食品中沙门氏菌的污染及预防

食品中沙门氏菌的污染及预防 沙门氏菌是引起人畜共患的食源性病原菌,现已发现的近一千种(或菌株),广泛分布于自然界中。沙门氏菌对禽类,生猪及其鲜肉制品的感染率最高,蛋类,禽类肉制品和猪肉是人类感染沙门氏菌的主要渠道[1]。据统计在世界各种类细菌性食物中毒中,沙门氏菌引起的食物中毒常列榜首。我国内陆地区也以沙门氏菌为首位[2]。本文对沙门氏菌的生物学特性,国内外污染情况及控制现状进行了分析,为我国沙门氏菌控制提供理论依据。 1、沙门氏菌的特性: 1.1沙门氏菌的生物学特性: 革兰氏阴性、两端钝圆的短杆菌(比大肠杆菌细),(0.7~1.5μm)×(2~5μm)散在,无荚膜和芽孢,除鸡白痢沙门氏菌、鸡伤寒沙门氏菌外都具有周身鞭毛,能运动,大多数具有菌毛,能吸附于宿主细胞表面或凝集豚鼠红细胞。需氧或兼性厌氧菌;生长温度范围为10~42℃,最适生长温度为37℃;适宜pH为6.8~7.8,需氧及兼性厌氧菌,在普通琼脂培养基上生长良好,培养24h后,形成中等大小、圆形、表面光滑、无色半透明、边缘整齐的菌落,其菌落特征亦与大肠杆菌相似(无粪臭味)。 沙门氏菌绝大多数菌株能发酵葡萄糖,麦芽糖,甘露醇和山梨醇并产生气体,不发酵乳糖、蔗糖和侧金盏花醇,不产吲哚、V-P反应阴性,不水解尿素和对苯丙氨酸不脱氨。 沙门氏菌属不耐热,55℃1h、60 ℃15—30min 即被杀死。在普通水中虽不易繁殖,但可生存2—3周,在粪便、土壤、食品、水中可生存5个月至2年之久。在牛乳和肉类食品中,存活数月,在食盐含量为10%-15%的腌肉中亦可存活2—3个月。烹调大块鱼、肉类食品时,如果食品内部达不到沙门氏菌的致死温度,其中的沙门氏菌仍能存活,食用后可导致食物中毒。冷冻对于沙门氏菌无杀灭作用,即使在-25℃低温环境中仍可存活10个月左右。由于沙门氏菌属不分解蛋白质,不产生靛基质,污染食物后无感官性状的变化,所以其感染易被忽视而引起食物中毒。 1.2沙门氏菌的毒理学特性: 沙门氏菌经口进入人体以后,在肠道内大量繁殖,经淋巴系统进入血液,造成一过性菌血症,即感染过程。随后,沙门氏菌在肠道和血液中受到机体的抵抗而被裂解、破坏,释放大量内毒素,使人体中毒,出现腹泻、发冷、发热及白细胞减少中毒症状。 1.3 沙门氏菌的中毒特点: 沙门氏菌的发病率高,在世界各种类细菌性食物中毒中,沙门氏菌引起的食物中毒常列榜首。中毒全年均有发生,多发生于5-10月春夏季节。动物性食品是引起食物中毒的主要食品,其中畜禽肉类及其制品类居首,肉及其制品的沙门氏菌检出率美国为20%—25%、英国为9沙门氏菌.9%、日本检查进口家禽的污染率为10.3%,国内肉类沙门氏菌检出率在 1.1%—39.5%。其次为鱼、奶、蛋类。中国蛋及其制品沙门氏菌检出率为3.9%-43.7%,由于吃蛋引起鼠伤寒病的病例报告逐渐有增加的趋势。 2 、沙门氏菌的污染情况 2.1美国食品中沙门氏菌的污染情况: 沙门氏菌是一种重要的人畜共患病原菌,能够污染多种食物,引起严重的食品安全问题。近年来有关沙门氏菌检出和沙门氏菌中毒事件报道不少。2010年8月17日美国加利福尼亚州卫生部门宣布,加州多个地区暴发沙门氏菌疫情,自6月迄今接到266例患病报告。初步调查显示,多数病人食用鸡蛋后染病。这些鸡蛋可能遭沙门氏菌污染。2012年8月20日,据美国媒体报道,美国州内和联邦政府官员称,全美有20个州出现了沙门氏菌感染病例,已造成2人死亡、141人感染。肯塔基州的感染人数最多,共有50人感染。2013年10月8日美国疾病控制和预防中心公布,迄今,全美18个州共报告278例因食用与生鸡肉有关产

沙门氏菌检验方法

沙门氏菌检验方法 关于GB 4789.04-2010 食品安全国家标准食品微生物学检验沙门氏菌检验解决方案 GB 4789.04-2010 沙门氏菌检验流程图 环凯针对标准的修改,扩充完善了微生物检测试剂,推出了成套的沙门氏菌检验解决方案,为生产企业提供方便。 功能阶段实验 序号 产品编号产品名称规格类别 前增菌1023130缓冲蛋白胨水(B PW)250g瓶(干粉)

CP0680缓冲蛋白胨水(B PW)225 mL×10袋盒(袋装)CP0290缓冲蛋白胨水(B PW)225 mL×6瓶盒(瓶装)CP0560A缓冲蛋白胨水(B PW)9 ml×20支盒(管装) 选择性增菌2 023030四硫磺酸钠煌绿增菌液基础(TTB)250g瓶(干粉)SR0040 四硫磺酸钠煌绿增菌液配套试剂 (碘液、煌绿各一支添加于100ml培养基) 2×5支/盒盒(西林瓶)CP0300四硫磺酸钠煌绿增菌液(TTB)10 ml×20支盒(管装)3 023040亚硒酸盐胱氨酸增菌液(SC)250g瓶(干粉)CP0050亚硒酸盐胱氨酸增菌液(SC)10 ml×20支盒(管装) 选择性分离4023050亚硫酸铋琼脂(BS)(配送指示剂)250g瓶(干粉)5 023070HE琼脂培养基250g瓶(干粉)CP0110HE琼脂培养基90mm×20盒(平板) 6 029999木糖-赖氨酸-去氧胆酸盐琼脂(XLD)250g瓶(干粉)029999P木糖-赖氨酸-去氧胆酸盐琼脂(XLD) 300 mL/袋 ×10袋 盒(袋装) 颗粒培养基CP0180木糖-赖氨酸-去氧胆酸盐琼脂(XLD)90mm×20盒(平板)7 CRM004沙门氏菌显色培养基1000 mL瓶(干粉)CP0560A沙门氏菌显色培养基平板90mm×20盒(平板)8HM42沙门氏菌乳胶凝集试剂盒50 tests套 生理生化 9 022080三糖铁琼脂(TSI)250g瓶(干粉)CP0080三糖铁斜面20支盒(管装)075750三糖铁20支盒(西林瓶) 10 022110蛋白胨水 (靛基质培养基,色氨酸肉汤)100g瓶(干粉)075240蛋白胨水 (靛基质培养基,色氨酸肉汤)20支盒(西林瓶)029230靛基质试剂10 mL×1支盒 11 023090尿素琼脂培养基基础100g瓶(干粉)02910040%无菌尿素溶液 2 mL×10支盒(西林瓶)075150尿素琼脂培养基20支盒(西林瓶)12 075330氰化钾生长实验管20支盒(西林瓶)075340氰化钾对照管20支盒(西林瓶)13 075280赖氨酸脱羧酶培养基20支盒(西林瓶)075290氨基酸脱羧酶对照培养基20支盒(西林瓶)029110无菌石蜡油10 mL×1支瓶14075090山梨醇20支盒(西林瓶)15075040甘露醇20支盒(西林瓶)16075180β-半乳糖苷 ONPG20支盒(西林瓶)17071740沙门氏菌生化鉴定试剂盒10种×10支盒(西林瓶)18075100卫矛醇20支盒(西林瓶)19075140水杨素20支盒(西林瓶)20075190丙二酸盐20支盒(西林瓶)

相关文档
相关文档 最新文档