文档库 最新最全的文档下载
当前位置:文档库 › 轴加多级水封工作原理

轴加多级水封工作原理

轴加多级水封工作原理
轴加多级水封工作原理

轴加多级水封工作原理

多级水封是汽轮机轴封加热器的疏水部分,轴封加热器系统如图:

轴封加热器的作用

是:利用轴封蒸汽的回汽

加热凝结水,减少热损失。

轴封加热器在运行时处于

微负压状态,压力大约在

-6 kPa左右,与凝汽器真

空压差约10 m水柱,按照

多级水封工作原理,此多级水封在工作时必须产生高于10 m水柱的阻力方可保证疏水畅通又能阻止空气漏入。轴封加热器至凝汽器多级水封为4级水封(如图1),每级水封筒高约3m,多级水封结构的分析,如图:

多级水封作

用:维持轴加疏

水水位,保护真

空,一旦多级水

封里的水灌满

后,它的水位是

基本维持不变

的。多级水封就

是增大疏水回水

的阻力,从理论

上说轴封加热器疏水经过多级水封然后再有一定的高度回到凝汽器汽侧,流动阻力加上高差刚好等于凝汽器的真空这时候就是最正常的工况,但事实上工况经常在变,

凝汽器的真空也不是一成不变的,所以多级水封一般很容易造成两个结果,一是回水不畅(流动阻力大时),一是漏真空(回水阻力小时),多级水封并不是只能通过水不能通过汽,凝汽器真空太高了把回水拉空自然就会有空气进去也自然就会掉真空了。

使用多级水封作为加热器疏水装置优点:没有机械传动,无磨损、无卡涩;没有电气元件,不需调试,不耗电;结构简单、维护方便。缺点:停机后水封管内残留积水,易造成金属锈蚀,影响再次启动时凝结水的品质。机组启动前投入时要注水,完全排出水封内聚集的空气。

轴流式压气机工作原理(伯努利方程)

进口、收缩器、导向叶片(导叶)、动叶片、转子、扩压器、出口 增压原理:伯努利方程,气体从进口流入压气机,经收缩器时流速得到初步提高,进口导向叶片使气流改为轴向,同时还起扩压管的作用,使压力有所提高。转子在外力作用下作高速转动,固装在转子上的动叶片推动气流,使气流获得很高的流速。高速气流进入导叶(静叶),气流动能降低而压力升高,相邻导叶叶片间的通道相当于一个扩压管。气体流经每一级连续进行类似的过程,使气体压力逐渐升高 伯努利方程:理想正压流体在有势体积力作用下作定常运动时,运动方程(即欧拉方程)沿流线积分而得到的表达运动流体机械能守恒的方程。因著名的瑞士科学家 D.伯努利于1738年提出而得名。对于重力场中的不可压缩均质流体,方程为: 式中p、ρ、v分别为流体的压强、密度和线性速度;h为铅垂高度;g为重力加速度;c为常量。 上式各项分别表示单位体积流体的压力能p、重力势能ρgh和动能(1/2)*ρv ^2,在沿流线运动过程中,总和保持不变,即总能量守恒。但各流线之间总能量(即上式中的常量值)可能不同。对于气体,可忽略重力,方程简化为p+(1/2)*ρv ^2=常量(p0),各项分别称为静压、动压和总压。显然,流动中速度增大,压强就减小;速度减小,压强就增大;速度降为零,压强就达到最大(理论上应等于总压)。飞机机翼产生举力,就在于下翼面速度低而压强大,上翼面速度高而压强小,因而合力向上。据此方程,测量流体的总压、静压即可求得速度,成为皮托管测速的原理。在无旋流动中,也可利用无旋条件积分欧拉方程而得到相同的结果但涵义不同,此时公式中的常量在全流场不变,表示各流线上流体有相同的总能量,方程适用于全流场任意两点之间。在粘性流动中,粘性摩擦力消耗机械能而产生热,机械能不守恒,推广使用伯努利方程时,应加进机械能损失项[1]。

蓄冷罐结构及其原理

蓄冷罐 1、蓄冷形式:双槽式,多槽式、单槽式(隔膜法、长通道隔离、自然分层) 2、斜温层:冷热水交界处生成一定厚度的相对稳定的温度剧变 由于斜温层真实厚度占据蓄冷水池内一定空间容积,直接减少可蓄冷的水容量,蓄冷后期,斜温层升至水池上部,使接近冷机的水温逐渐降低,导致冷机减载,甚至引起提前停机,使蓄冷量下降。反之,取冷后期,斜温层降至池底进入取冷水口,导致取冷水温上升,影响用户水温。 3、Fr=惯性力/浮升力(Fr≤1,保持重力流,维持稳定水温分层 1﹤Fr<2重力流仍可出现,但不稳定 Fr≥2惯性流为主,破坏水温分层 4、分层蓄冷:环境向蓄冷槽内水传热、温水通过蓄冷槽壁向冷水传热、温水通过斜温层向冷水层导热、温水层由于流动扰动与冷水层发生质交换导致热交换 高径比H/D:处于2-4之间,蓄冷效率较高 5、开式蓄冷罐:(注意路由,室外管线布置,埋地管沟;液面在水系统1·2m)

结构:1)罐体为圆柱形钢制容器。拱顶选用球冠状。 2)罐底由钢板拼装而成,罐底中部的钢板为中幅板,周边的钢板为边缘板。3)罐壁由多圈钢板组对焊接而成。罐壁要求采用套筒式罐壁板。 4)罐顶有多块扇形板组对焊接而成球冠状,罐顶内侧采用扁钢制成加强筋,各个扇 形板之间采用搭接焊缝,整个罐顶与罐壁板上部的角钢圈(或称锁口)焊接成一体。 6、闭式蓄冷罐: 温度测量:每个温度保护套管内有两套测温元件,一用一备(如图 3 所示),当出现故障时只需要在接 线端进行线路调换,就可以将备用的投入使用,简单方便。即使两只都用坏了,只需要从套管内 抽出温度传感器更换即可。不影响其他的测温点的正常使用,更不影响承压罐的正常使用

离心式压气机的工作原理

航空发动机原理

压气机的工作原理 根据气流在压气机的流动方向,可将压气分为两大类,气流沿离开叶轮中心方向流动的叶做离心式压气机;气流沿与叶轮轴平行方向流动的叫做轴流式压气机。此外还有轴流式与离心式压气机混合而成的混合式压气机。目前使用最广泛的是轴流式压气机,以下将作重点介绍。 轴流式压气机的基本组成,由静子和转子组成。静子由多排叶片组成,这些叶片叫做整流叶片,由一排流叶片组成的圆环叫做整流环,各整流环固定在机匣上。转子由多排叶轮组成,每一排叶轮上固定了许多工作叶片,压气机叶轮最终能过叶轮轴与涡轮的工作叶轮轴相连,并由涡轮带动高速旋转。 轴流式压气机的叶轮和整流环是交错排列的。一个叶轮和后面相邻的整流环构成了压气机的一级。单级压气机增压比不高。一般约为1.2-1.8。为了得到更高的增压比,目前用在民航机上的涡扇发动机的轴流式压气机级数常为10-20级,压气机增压比高达30-40。 有些轴流式压气机的进口安装了一排固定的导流叶片,它们所组成的圆环叫做导流环。空气在压气机中的流动 从进气道流入压气机的空气,首先流过导流环,然后依次流过各级的叶轮和整流环,最后从末级整流环流出进入燃烧室。由于空气在压气机中的流动较为复杂,同时气流在不同半径叶片通道内的流动大体相仿,为了便于分析,我们假想用一条通过各级叶轮平均地半径处的直线绕叶轮旋转,来切割叶轮和整流环叶片,得到压气机——“基本级”,每级压气机可看成是很多基元级相叠加而成。

所以空气在基元级中的流动可看成压气机工作的缩影。把所得到的基元级切片在平面上展开,就得到——平面叶栅图形。 目前大多数航空燃气轮机都采用轴流式压气机,只有小功率、小流量的涡轴和涡浆发动机上才采用离心式压气机。在20世纪40年代末和50年代初、涡喷发 动机也曾采用离心式压气机。 离心式压气机由导流器, 叶轮, 扩压器, 导气管等部分组成,叶轮和扩压器是其中两个主要部件。导流器:安装在叶轮的进口处,其通道是收敛形的使气流以一定方向均匀进入工作叶轮, 以减小流动损失,空气在流过它时速度增大,而压力和温度下降。叶轮:是高速旋转的部件,叶轮上叶片间的通道是扩张形的,空气在流过它时, 对空气作功, 加速空气的流速, 同时提高空气的压力。扩压器:位于叶轮的出口处,其通道是扩张形的,空气在流过它时将动能转变为压力位能,速度下降, 压力和温度都上升。导气管:使气流变为轴向, 将空气引入燃烧室。 离心式压气机属于叶片机械,其工作原理是以高速气流与工作叶轮和固定叶片的相互动力作用为基础,与容积式压气机相比离心式压气机的优点是:消耗同样的功率时,比容积式压气机的效率高,并能得到较高的增压压力,一般能达到0.147~0.196MPa以上;结构简单紧凑,重量轻,金属消耗量少。目前离心式压气机在内燃机增压方面获得广泛的应用。离心式压气机的缺点是随着转速的降低,增压压力便急剧下降。空气经滤清器进入气道,进气道的断面沿气流方向逐渐缩小,以便提高气流的稳定性。进气道一定要能保证在流动损失为最小的情况下,把空气均匀地导向工作轮。工作轮装装花链轴上,尺寸小的可安装在光轴上。工作轮可由曲轴通过机械驱动,也可直接由涡轮机驱动。 空气沿进气道进入工作轮随工作轮一起旋转,受到离心力的作用沿着工作轮上叶片所构成的通道流动,使空气受到压缩,这时压力从P1增加到P2,气流速度从c1增加到c2,驱动工作轮的机械功转化为空气在工作轮中获得的动能,和以压力形式表现的势能。工作轮出口处的功能一般为气流总能量的一半,因此,

燃气轮机原理与结构解析

图说燃气涡轮发动机的原理与结构 曹连芃 摘要:文章介绍燃气涡轮发动机的工作原理;对燃气轮机的主要部件轴流式压气机、环管形燃烧室、轴流式涡轮分别进行了原理与结构介绍;对燃气涡轮发动机的整体结构也进行了介绍。 关键字:燃气涡轮发动机,燃气轮机,轴流式压气机,燃烧室,轴流式涡轮 1. 燃气涡轮发动机的工作原理 燃气涡轮机发动机(燃气轮机)的原理与中国的走马灯相同,据传走马灯在唐宋时期甚是流行。走马灯的上方有一个叶轮,就像风车一样,当灯点燃时,灯内空气被加热,热气流上升推动灯上面的叶轮旋转,带动下面的小马一同旋转。燃气轮机是靠燃烧室产生的高压高速气体推动燃气叶轮旋转,见图1。 图1-走马灯与燃气涡轮 燃气轮机属热机,空气是工作介质,空气中的氧气是助燃剂,燃料燃烧使空气膨胀做功,也就是燃料的化学能转变成机械能。图2是一台燃气轮机原理模型剖面,通过它来了解燃气轮机的工作原理。 从外观看燃气轮机模型:整个外壳是个大气缸,在前端是空气进入口;在中部有燃料入口,在后端是排气口(燃气出口)。 燃气轮机主要由压气机、燃烧室、涡轮三大部分组成,左边部分是压气机,有进气口,左边四排叶片构成压气机的四个叶轮,把进入的空气压缩为高压空气;中间部分是燃烧器段(燃烧室),内有燃烧器,把燃料与空气混合进行燃烧;右边是涡轮(透平),是空气膨胀做功的部件;右侧是燃气排出口。

图2-模型燃气轮机结构 在图3中表示了燃气轮机的简单工作过程:空气从空气入口进入燃气轮机,高速旋转的压气机把空气压缩为高压空气,其流向见浅蓝色箭头线;燃料在燃烧室燃烧,产生高温高压空气;高温高压空气膨胀推动涡轮旋转做功;做功后的气体从排气口排出,其流向见红色箭头线。 图3-燃气轮机工作过程 在燃气轮机中压气机是由涡轮带动旋转,压气机的叶轮与涡轮安装在同一根主轴上组成燃气轮机转子,如图4所示。

压力罐的结构及工作原理

压力罐的结构及工作原理 此内容被浏览:【151】次添加日期:【2011-3-30 10:25:09】 压力罐的结构及工作原理压力罐主要由气门盖、充气口、气囊、碳钢罐体、法兰盘组成,当其连接到水系统上时,主要起一个蓄能器的作用,当系统水压力大于膨胀罐碳钢罐体于气囊之间的氮气压力时,系统水会在系统压力的作用下挤入膨胀罐气囊内,这样一是会压缩罐体于气囊之间的氮气,使其体积减小,压力增大;二是会增加系统整个水的容纳空间,使系统压力减小,直到系统水的压力和罐体于气囊之间的氮气压力达到新的平衡才停止进水。 当系统水压力小于膨胀罐内气体压力时,气囊内的水会在罐体于气囊之间的氮气的压力作用下挤出,补回到系统,系统水容积减小压力上升,罐体于气囊之间的氮气体积增大压力下降,直到两者达到新的平衡,水停止从气囊挤压回系统,压力罐起到调节系统压力波动的作用。结构图如下:罐体于气囊之间是出厂时预充的氮气,罐体外面为烤漆层,进出水口直接用三通或金属软管连接到系统,排气阀接口可及时排出系统和气囊内的水溢出的空气,也可用闸阀直接关死,以免水从顶部溢出,防尘帽下面是充/放气口,可补充氮气或放掉一部分气体,750L及以上的充/放气口不在此位置。 压力罐由于气囊的调节作用,广泛应用在水系统的小范围压力波动控制上。压力罐应用在热水供暖系统上,主要用来消除由于水温变化导致的压力波动,避免损害其他的系统控制元件。如应用在变频供水上,可以消除因水泵启闭而引起的压力波动,减少变频泵的启动次数,大大延长水泵的使用寿命。如应用在民用楼宇供水上或者其他供水设备上,可以消除因其他阀门开关引起的水锤效应,保护整个系统免遭水锤的冲击。 压力罐结构压力罐原理压力罐作用压力罐安装压力罐维护详细说明: 压力罐主要由罐体、法兰盘、气囊、针阀以及罐体与气囊之间预充的氮气组成。 压力罐工作原理 压力罐用于系统中时,当系统压力大于预充气体的压力,在系统压力的作用下,会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到气囊外氮气的压力和系统的压力达到平衡,当系统压力升高再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。 压力罐的作用: 意大利AQUASYTEM压力罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,起缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,压力罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,是一些系统不可或缺的配件之一。 压力罐的安装 压力罐一般安装在系统的回水端、水泵出水口。 压力罐的安装 1. 供暖系统压力罐一般安装在系统的回水端,小容量的压力罐一般直接连到系统管道上;35L及以上的压力罐考虑到工作时进水和自重对系统管道可能产生的影响,设计 有三脚支架,可直接放置在地面。使用时用金属软管把压力罐连接到系统,压力罐支脚用埋地螺钉固定,保证使用过程中的平稳; 2. 压力罐附近尽可能安装安全阀,避免在系统膨胀异常的时候损坏压力罐和系统其他部件;

给水泵密封水系统由于设计存在问题

给水泵密封水系统由于设计存在问题,在机组停运过程中尤其是机组紧急停机或汽泵停运过程中,由于密封水回水不畅,导致回水进入小机油系统中,不但造成凝结水的大量损失,而且影响到了机组的安全稳定运行,本文深入分析了设备深层次的原因并给出了设备改造的具体解决方案和改造后的运行效果。 关键词:FK4E39型汽泵密封水改造 1 国电山东聊城发电厂一期2×600MW机组汽泵密封水系统简介 国电山东聊城发电厂一期工程安装两台2×600MW机组,汽轮机由上海汽轮机有限公司引进美国西屋公司技术制造的600MW亚临界、中间再热式、四缸四排汽、单轴、凝汽式汽轮机,该机组所用的汽动给水泵组为上海电力修造总厂引进英国韦尔公司技术生产的FK4E39型汽动泵、FA1D67型前置泵,技术规范分别为: 给水泵规范:型号:FK4E39 型式:多级、卧式、双壳体、筒形、全抽芯、离心式水泵 转速:5570r/min 轴功率:8132.4kW 流量:1183.2m3/h 扬程:2331.7m 效率:85% 制造厂家:上海电力修造总厂 前置泵规范:型号:FA1D67 转速:1480r/min 轴功率:485.7kW 流量:942.7m3/h 扬程:150m 效率:79.5% 必需汽蚀余量:4.1 m 制造厂家:上海电力修造总厂 该型号汽动给水泵的密封系统为迷宫密封,主要原理是通过间隙控制泄漏的方式进行汽动给水泵的密封工作。汽泵密封水采用凝结水泵出口母管来水,在靠近泵组部位的注水管路中设置精细的滤网进行过滤来保证密封水的纯度;其回水分为两路:一路经过密封水回水母管去地沟或凝汽器;另一路回到汽泵前置泵进口电动门前的前置泵进口管道(见附图一)。密封水的泄漏温度是采用对轴套中部注入密封水的方式来控制的,故对于注入用密封水的质量应维持有高洁净度是基本要求。给水泵正常运行期间,给水从泵进口和泵的平衡腔室沿迷宫密封分别泄出;汽动给水泵作为备用泵时,给水仍从迷宫密封向外泄漏,流出泵的给水由来自正常运行的暖泵水所取代。 所有运行条件下,压力控制阀调节到迷宫密封压力至如下数值:密封水压力=泄荷水压力+0.1Mpa,凝结水以高于泄荷水0.1Mpa的控制压力注入,压力控制阀保持密封水与泄荷水之间的压差在0.1Mpa,压力阀必须安装一个差压控制执行器,自动执行器信号取自于密封水和泄荷水上的接头。每台泵传动端和自由端两只迷宫,只须一只压力控制阀控制。为减少控制阀和迷宫密封之间的管道损失,控制阀应尽可能的安装在靠近给水泵处。聊城发电厂汽泵密封水调节阀位置安装在汽机房6.9米层,汽动给水泵安装在13.7米层。 图一 2 聊城发电厂汽泵密封水系统运行过程中存在的主要问题 聊城发电厂2×600MW机组在调试、试运期间,我们通过跟踪发现汽动给水泵密封水系统

气压罐原理结构

消防水系统气压罐有带气囊的和不带气囊的两种;其工作原理就是水泵启动后,水进入有空气的压力罐,空气压缩,当在小流量的情况下,空气膨胀,将罐内的水压出,使水泵不至于在小流量的情况下启动。 气压罐结构(图) 标签:气压结构 上一篇:[转贴]OnlineNIC公司恶意注册域下一篇:气压罐原理(图) 膨胀罐的结构: 膨胀罐按结构可分为隔膜式和气囊式两种,如下图: 隔膜式膨胀罐及其隔膜气囊式膨胀罐及其气囊

对隔膜式膨胀罐来讲,其罐体和隔膜之间预充有一定压力的氮气,气囊式膨胀罐是罐体可气囊之间预充有一定压力的氮气 膨胀罐的工作原理: 有上面其结构可知:当膨胀罐用于系统中时,由于系统压力比预充气体的压力,所以会有一部分工作介质进入气囊内(对隔膜式来讲是进入罐体内),直到达到新的平衡,当系统压力再度升高,系统压力再次大于预充气体的压力,又会有一部分介质进入囊内,压缩囊和罐体间的气体,气体被压缩压力升高,当升高到跟系统压力一致时,介质停止进入,反之,当系统压力下降,系统内介质压力低于囊和罐体间的气体压力,气囊内的水会被气体挤出补充到系统内,使系统压力升高,直到系统工作介质压力跟囊和罐体间的气体压力相等,囊内的水不再外系统补给,维持动态的平衡。 膨胀罐的作用: 膨胀罐被广泛应用于中央空调、锅炉、热水器、变频、恒压供水设备中,其缓冲系统压力波动,消除水锤起到稳压卸荷的作用,在系统内水压轻微变化时,膨胀罐气囊的自动膨胀收缩会对水压的变化有一定缓冲作用,能保证系统的水压稳定,水泵不会因压力的改变而频繁的开启。 隔膜式膨胀罐的缺点: 1.因为隔膜式膨胀罐壳体是直接与水接触的,所以壳内都喷涂防锈层。罐的接口与壳体之间是焊接而成。 这样在焊接的过程中,高温就会将防锈涂层氧化。本来是银白色的涂层,在焊接后呈现黑色。用手触摸可感觉有黑色小颗粒。那么这些看似微不足道的氧化点工作时长期与水接触,慢慢就会生锈并逐渐扩大,直到整个罐体生锈,为什么这种膨胀罐用一段时间后,倒出来来的水呈黄水也就不足为奇了。 2.隔膜式膨胀罐的内膜是通过热轧的方式固定在膨胀罐的两个半壳的碳钢中间,这种工艺过程如果处理的不好,就会留下微小的气孔在内膜和碳钢之间,这些微小的气孔就会将预充的气体泄露出去,膨胀罐如果泄露气体,90%就是从这里泄露的。这种漏气的膨胀罐用一段时间如果不再补充气体就不能起到定压卸荷作用。而这本身是很难察觉。由于罐壁厚度一般在1mm左右,接口直接与罐焊接在一起,这种联接方式可承受的扭力相当小。而安装罐时只能抱着壳体旋转,这样如果用力太大或过猛,就会将接口旋断。这种情况在空调生产过程中最为常见。气囊式膨胀罐就克服了这些缺点气囊式膨胀罐内部有一个整体的气囊,在工作时水只进入气囊内,不与壳体接触。接口处用法兰盘连接。这种结构就避免了焊接过程引起的生锈问题。这种结构的膨胀罐的气囊可更换。同样,由于是法兰连接,故它的接口就可以承受很大的扭力,在安装过程中就不怕会扭断接口。 气压罐原理(图) 标签:气压原理 上一篇:气压罐结构(图)下一篇:DR-700AG工业级气动研磨机(图)

第三章 轴流压气机工作原理

第三章 轴流压气机的工作原理 压气机是燃气涡轮发动机的重要部件之一,它的作用是给燃烧室提供经过压缩的高压、 高温气体。根据压气机的结构和气流流动特点,可以把它分为两种主要型式:轴流式压气机 和离心式压气机。本章论述轴流式压气机的基本工作原理,重点介绍压气机基元级和压气机 一级的流动特性及工作原理。 第一节 轴流压气机的增压比和效率 轴流式压气机由两大部分组成,与压气机旋转轴相联接的轮盘和叶片构成压气机的转 子,外部不转动的机匣和与机匣相联接的叶片构成压气机的静子。转子上的叶片称为动叶,静子上的叶片称为静叶。每一排动叶(包括动叶安装盘)和紧随其后的一排静叶(包括机匣)构成轴流式压气机的一级。图3-1为一台10级轴流压气机,在第一级动叶前设有进口导流 叶片(静叶)。 图3-1 多级轴流压气机 压气机的增压比定义为 ***=1p p k k π (3-1) *k p :压气机出口截面的总压;*1p :压气机进口截面的总压;*号表示用滞止参数(总参数)来定义。 依据工程热力学有关热机热力循环的理论,对于燃气涡轮发动机来讲,在一定范围内, 压气机出口的压力愈高,则燃气涡轮发动机的循环热效率也就愈高。近六十年来,压气机的 总增压比有了很大的提高,从早期的总增压比3.5左右,提高到目前的总增压比40以上。 图3-2 压气机的总增压比发展历程

压气机的绝热效率定义为 ** *=k adk k L L η (3-2) 效率公式定义的物理意义是将气体从*1p 压缩到*2p ,理想的、无摩擦的绝热等熵过程 所需要的机械功* adk L 与实际的、有摩擦的、绝热熵增过程所需要的机械功k L * 之比。 p 1*p k *1k ad k L *k L *ad k s h * 图3-3 压气机热力过程焓熵图 由热焓形式能量方程(2-5)式、绝热条件、等熵过程的气动关系式)1(1 1)(k k adk adk p p T T -****=和R k k c p 1 -=可以得到 )1(1)(111--=-=-****k k k adk p adk RT k k T T c L π (3-3) )1(1)(1 11--=-=******T T RT k k T T c L k k p k (3-4) 将(3-3)和(3-4)式代入到(3-2)式,则得到 11 11--=**-**T T k k k k k πη (3-5) 效率公式(3-5)式可以用来计算多级或单级压气机的绝热效率,也可以用来计算单排 转子的绝热效率,只要*k p 和*k T 取相应出口截面处值即可。压气机静子不对气体作功,静子 的性能不能用效率公式(3-5)式衡量,静子的气动品质用总压恢复系数*23σ反映,*23σ= p *静子出口/ p * 静子进口 。 压气机的效率高,说明压缩过程中的流阻损失小,实际过程接近理想过程。或者说, 压气机效率愈高,达到相同增压比时,所需要外界输入的机械功愈少。目前,单级轴流压气 机的绝热效率可以达到90%以上,高增压比的多级轴流压气机的绝热效率也可以达到85% 以上。

轴加水位高致使事故疏水阀频繁动作原因分析 刘廷帅

轴加水位高致使事故疏水阀频繁动作原因分析刘廷帅 摘要:本文通过对轴封系统相关内容阐述及陕西某厂超临界热电联产机组,轴 加事故疏水阀频繁动作异常实例的探究和分析,阐述了该厂轴加事故疏水阀频繁 动作的根本原因及处理方案。 关键词:轴封加热器;轴封加热器多级水封;轴加水位;轴加事故疏水阀 1、前言 火力发电厂轴封蒸汽系统由汽轮机的轴封装置、轴封加热器、轴封加热器多 级水封、轴封压力调节站、轴加风机及相应的管道,阀门等部件组成。本文就某 厂调试及正常运行期间,轴封加热器水位高致使事故疏水阀频繁动作原因及应对 措施进行探讨。 2、轴封系统功能及轴封加热器和轴加多级水封原理介绍 轴封蒸汽系统的主功能是向汽轮机、给水泵汽轮机的轴封和主汽阀,调节汽 润的阀杆轴封提密封蒸汽,同时将各轴封的漏汽合理导向或抽出,在汽轮机的高 压区段,轴封系统的正常功能是防止蒸汽向外泄漏,以确保汽轮机有较高的效率;在汽轮机的低压区段,则是防止外界的空气进入汽轮机内部,保证汽轮机有尽可 能高的真空(也即尽可能低的背压参数),也是为了保证汽轮机组的高效率。 轴封加热器的作用:利用轴封蒸汽的回汽(含门杆漏气)加热凝结水,减少 热损失。 轴加多级水封的作用:维持好轴加疏水水位,防止蒸汽进入凝汽器或下一级 加热器,进入凝汽器将影响真空,进入下一级加热器将影响循环热效率,采用多 级水封,使水在水封中曲折流动形成一定压差,并利用其特有结构只许疏水通过,防止蒸汽通过。多级水封的作用:维持好轴加疏水水位,防止蒸汽进入凝汽器或 下一级加热器,进入凝汽器将影响真空,进入下一级加热器将影响循环热效率, 采用多级水封,使水在水封中曲折流动形成一定压差,并利用其特有结构只许疏 水通过,防止蒸汽通过。 如轴加内水位太高,将减少换热面积,使换热效果减弱,并有可能引起轴封 压力的异常变化,使轴端冒汽,油中进水;而水位太低,多级水封将失去作用, 轴封排汽将直接进入凝汽器,影响真空。 一旦多级水封里的水灌满后,它的水位是基本维持不变的。多级水封就是增 大疏水的阻力,从理论上说轴封加热器疏水经过多级水封然后再有一定的高度回 到凝汽器汽侧,流动阻力加上高差刚好等于凝汽器的真空这时候就是最正常的工况,但事实上工况经常在变,凝汽器的真空也不是一成不变的,所以多级水封一 般很容易造成两个结果,一是回水不畅(流动阻力大时),一是漏真空(回水阻 力小时),多级水封并不是只能通过水不能通过汽,凝汽器真空太高了把回水拉 空自然就会有空气进去也自然就会掉真空了。 多级水封原理:疏水采用逐级溢流,而加热器内的蒸汽被多级水封内的水柱 封住不能外泄。水封的水柱高度取决于加热器内的压力与外界压力之差。轴封加 热器在运行时处于微负压状态,压力大约在-6 kPa左右,与凝汽器真空压差约10 m水柱(约100KPa),按照多级水封工作原理,此多级水封在工作时必须产生高于10 m水柱的阻力方可保证疏水畅通又能阻止空气漏入。轴封加热器至凝汽器 多级水封为4级水封(如下图),每级水封筒高约3m。 图例轴加多级水封示意图

压气机性能试验报告_第11组

实验名称压气机性能实验 一、实验目的 1)掌握轴流压气机内流动、加功增压原理和特性; 2)熟悉压气机气动参数测量和计算方法。 二、实验内容 1、性能测试中的气动参数测量与速度三角形 一台压气机在设计完成后,组装到核心机之前一定要经过部件试验的验证。达到设计指标的才能进行组装。这部分试验内容称之为压气机的性能测试。其中最主要的性能参数集中反映在流量、压比和效率这几个参数上。为了能够绘制速度三角形,本次试验要求在设计和近失速这两个特征状态下,测量如下气动参数: 流量管静压、转子进出口外壁静压、静子出口外壁静压、转子进出口和静子出口平均半径处的总压、转子出口平均半径处的气流偏角以及其它必要的辅助参数。 2、额定折合转速下压气机特性曲线 压气机的性能用特性曲线来表示。对于高速压气机,通常的特性曲线图为流量-总压比图和流量-效率图。但对于低速压气机,其横坐标则常用流量 系数来表示,而压比可用压升或压升系数来表示。试验 时首先要在流量全开的情况下将转速开至待测转速。待 转速稳定后逐渐减小排气阀关度,通过减小排气面积来 提高反压,从而得到同一转速下不同流量点的特性。当 流量减小到一定值时就会发生失速或喘振,此时应退出 失速或喘振状态。将同一转速下的这些测点连接起来就 成为一条特性线。如需完整的特性图,还应返回大流量 状态,然后开至其它转速,重复这个过程。图2.1为某低速压气机额定转速下的特性曲线示意图。 0.200.250.300.350.400.450.500.550.600.650.70 ? p / . 5 ρ u m 2 c a /u m 0.200.250.300.350.400.450.500.550.600.650.70 1.010 1.012 1.014 1.016 π c a /u m 0.75 0.80 0.85 0.90 η 图 2.1 压气机特性曲线

汽机轴加多级水封系统

汽机轴加多级水封系统 汽轮机采用内泄式轴封系统时,一般设有轴封加热器(亦称 轴封冷却器),用以加热凝结水,回收轴封漏汽,从而减少 轴封漏汽及热量损失,并改善车间的环境条件。 轴封加热器的作用:利用轴封蒸汽的回汽(含门杆漏汽)加热凝结水,减少热损失。 轴封加热系统图 多级水封原理是疏水采用逐级溢流,而加热器内的蒸汽被多级水封内的水柱封住不能外泄。水封的水柱高度取决于加热器内的压力与外界压力之差。

多级水封是汽轮机轴封加热器的疏水部分。轴封加热器在运行时处于微负压状态,压力大约在-6 kPa左右,与凝汽器真空压差约10 m水柱(约100KPa),按照多级水封工作原理,此多级水封在工作时必须产生高于10 m水柱的阻力方可保证疏水畅通又能阻止空气漏入。轴封加热器至凝汽器多级水封为4级水封(如下图),每级水封筒高约3m。 多级水封的作用:维持好轴加疏水水位,防止蒸汽进入凝汽器或下一级加热器,进入凝汽器将影响真空,进入下一级加热器将影响循环热效率,采用多级水封,使水在水封中曲折流动形成一定压差,并利用其特有结构只许疏水通过,防止蒸汽通过。 如轴加内水位太高,将减少换热面积,使换热效果减弱,并有可能引起轴封压力的异常变化,使轴端冒汽,油中进水;而水位太低,多级水封将失去作用,轴封排汽将直接进入凝汽器,影响真空。 |P0|+P1+P2+P3+P4=|P5|

一旦多级水封里的水灌满后,它的水位是基本维持不变的。多级水封就是增大疏水的阻力,从理论上说轴封加热器疏水经过多级水封然后再有一定的高度回到凝汽器汽侧,流动阻力加上高差刚好等于凝汽器的真空这时候就是最正常的工况,但事实上工况经常在变,凝汽器的真空也不是一成不变的,所以多级水封一般很容易造成两个结果,一是回水不畅(流动阻力大时),一是漏真空(回水阻力小时),多级水封并不是只能通过水不能通过汽,凝汽器真空太高了把回水拉空自然就会有空气进去也自然就会掉真空了。

大型汽轮机组的轴加疏水系统类型及目前水封改造供选择的方案

汽轮机组轴加疏水系统改造方案 摘要 以国内大型机组为例,以运行实践为基础,探讨了大型汽轮机组轴封加热器(以下简称轴加)及其热力系统的设计和运行问题,认为目前情况下,平东公司轴加疏水单级U型管水封疏水必须进行改造,对存在的问题进行了分析,提出了改造的设计要点。 一、概述 平东热电有限公司#6、#7汽轮机为哈尔滨汽轮机厂生产的C140/ N210-12.75/535/535/0.981型超高压、一次中间再热、两缸两排汽、采暖用可调整抽汽、供热凝汽式汽轮机,自试运以来,两台机组真空系统严密性均较差,#6汽轮机最好时达到1.4kPa/min左右,#7汽轮机为3.5kPa/min左右,严重影响机组的经济性。 #6、#7机设计上轴加疏水水封采用多级水封方式,根据以往其它机组的运行经验,多级水封运行中易发生水封破坏现象,公司2006年10月对轴加疏水水封进行改进,改为单级水封。 U 型水封管通常应用在电厂低压加热器轴封蒸汽冷却器等设备内的凝结疏水至凝汽器的管路上,它是依靠介质在U型水封管进口与出口之间的压力差来进行疏水的U 型水封管,分为单级和多级,在电厂实际应用中多级水封管应用较多,平东公司改造后的轴封疏水U 型运行一直不稳定,存在不少问题,针对这些问题进行分析和提出改造方案。 二、U型水封管在实际运行中遇到的问题 目前国内设计轴加疏水水封不论是单级还是多级水封存在运行不稳定问题,易发生水封破坏现象,并且多是运行中临时对轴加水封进水和回水阀门进行调节。 一般情况下,主要是由于负压侧沿程阻力和局部阻力较小,难以抵消真空的影响,在U型套桶管里未能建立起水封,致使空气随疏水一同进入凝汽器中,使得真空恶化。因此,在U型套桶管的出口加装一个调节阀,使疏水在U型套桶管里流动会产生节流,增大沿程阻力和局部阻力,强制建立起水封,改善真空。 如果U型套桶管直通凝汽器或者设计不当,将无法建立起水封,从轴封回收的蒸汽(含有空气)冷却后空气随疏水一同进入凝汽器,影响凝汽器真空。 目前机组加减负荷较频繁轴封蒸汽冷却器进汽量经常变化,使冷却器的水位无法维持在一定范围内,而导致其U型水封管内的疏水量经常变化,U 型水封管多次发生失水现象,当U 型管水封管失水时,轴封蒸汽冷却器的汽侧就直接与凝汽器相通,机组真空就会急剧下跌,需要运行人员对轴加进行注水,并且当注水量大时,遇突然发生机组跳闸造成轴加电机烧损,多次影响机组的安全经济运行。 在U型套桶管的出口处加装调节阀,起到了增大沿程阻力和局部阻力的作用,在U型套桶管里形成水封,保持了两端的压力差。但这并非长久之计,主要问题是担心轴加泄漏,轴加汽侧由于阻力较大(调节阀的节流作用),轴加疏水及泄漏的凝结水很难较快地排入凝汽器,轴加汽侧水位升高很快,疏水会沿着轴封汽管道经汽轮机高、低压汽封进入汽轮机,这样将会产生严重的后果,一则疏水会对汽轮机的大轴起着冷却作用,使大轴产生热应力或产生热弯曲;二则疏水进入汽轮机后会产生水击作用,严重时会打坏汽轮机的叶片。其次需要对轴加进行注水,并且当注水量大时,遇突然发生机组跳闸造成轴加电机烧损,因此,电厂在条件允许的情况下,应彻底进行改造,消除隐患。 一般由于设计精度问题,在轴加U型套桶管出口处加装调节阀,满负荷时逐渐关小调节阀,凝汽器真空随之变化,调节阀关闭到20%开度时,真空就应正常。但是目前平东公司其调节阀开度

各种空压机工作原理动图(完整版)

各种压缩机工作原理动图(完整版) 一、活塞式压缩机 活塞式压缩机的工作是气缸、气阀和在气缸中作往复运动的活塞所构成的工作容积不断变化来完成。如果不考虑活塞式压缩机实际工作中的容积损失和能量损失(即理想工作过程),则活塞式压缩机曲轴每旋转一周所完成的工作,可分为吸气,压缩和排气过程。 活塞式压缩机工作原理: 压缩过程:活塞从下止点向上运动,吸、排汽阀处于关闭状态,气体在密闭的气缸中被压缩,由于气缸容积逐渐缩小,则压力、温度逐渐升高直至气缸内气体压力与排气压力相等。压缩过程一般被看作是等熵过程。 排气过程:活塞继续向上移动,致使气缸内的气体压力大于排气压力,则排气阀开启,气缸内的气体在活塞的推动下等压排出气缸进入排气管道,直至活塞运动到上止点。此时由于排气阀弹簧力和阀片本身重力的作用,排气阀关闭排气结束。 二.双螺杆压缩机 双螺杆压缩机具有一对互相啮合、相反旋向的螺旋形齿的转子。大气通过进气过滤器将灰尘或杂质滤除后,经进气控制阀进入螺杆空气压缩机机头的吸气齿槽容积腔中,随着阳、阴转子啮合运动,齿槽容积腔中的空气被逐渐压缩,当空气被压缩到规定的压力时,压缩空气即从特定的排气孔口排出,然后流经油气分离罐,此时压缩排出的含油气体在油气分离罐内通过碰撞、拦截、重力作用,绝大部份的油介质被分离下来,然后进入油气分离芯进行二次分离,得到含油量很少的压缩空气,最后通过空气冷却器冷却排出,完成整个工作过程。(国

内做的比较成熟的双螺杆空压机公司是广东艾高,专注螺杆空压机20多年,微信:艾高空压机) 三、单螺杆压缩机 螺杆式压缩机又称螺杆压缩机。20世纪50年代,就有喷油螺杆式压缩机应用在制冷装置上,由于其结构简单,易损件少,能在大的压力差或压力比的工况下,排气温度低,对制冷剂中含有大量的润滑油(常称为湿行程)不敏感,有良好的输气量调节性,很快占据了大容量往复式压缩机的使用范围,而且不断地向中等容量范围延伸,广泛地应用在冷冻、冷藏、空调和化工工艺等制冷装置上。以它为主机的螺杆式热泵从20世纪70年代初便开始用于采暖空调方面,有空气热源型、水热泵型、热回收型、冰蓄冷型等。在工业方面,为了节能,亦采用螺杆式热泵作热回收。 四、转子式压缩机 转子式压缩机通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。压缩机汽缸内装有一对互相啮合的螺旋形阴阳转子,两转子都有几个凹形齿,两者互相反向旋转。转子之间和机壳与转子之间的间隙仅为5~10丝,主转子(又称阳转子或凸转子),通过由发动机或电动机驱动(多数为电动机驱动),另一转子(又称阴转子或凹转子)是由主转子通过喷油形成的油膜进行驱动,或由主转子端和凹转子端的同步齿轮驱动。所以驱动中没有金属接触(理论上)。 五、离心式压缩机

多级水封器高度计算方法及运行注意事项的探(20120918)

多级水封器高度计算方法及运行注意事项 的探讨 西安亨特电力殷进军 水封器是利用水封水头差平衡两容器间的压差,同时利用水封器中的水柱对两容器中的气体进行隔离与单级水封器相比,多级水封器降低了水封器的高度,减少了水封管埋地的工作量。 多级水封在电厂中通常用于给水泵密封水回水至凝汽器;轴封加热器疏水至凝汽器;射汽抽汽器疏水回凝汽器等。水封器设计不当,可能引起给水泵润滑油带水乳化;密封水回水不畅,机组补水率高;凝汽器真空度下降,机组效率降低…“ J 0因此必须引起足够重视。 多级水封器的设计是一个复杂的计算过程,其中水封器高度的计算是最重要的。目前常用静态计算方法来计算水封器的高度。本文结合印度某工程设计,归纳出某四级水封器高度计算的动态分析方法。 I研究对象 四级水封器(下称A水封,见图1、2),进口压力 0. 1MPa 出口压力0. 003MPa

A水封的工作过程如下:启动时,关闭水封管进出口阀,开启注水阀和放气阀,注满水后关闭放气阀和注水阀,开启水位 控制阀,至无水流出时,关闭水 ■ 位控制阀,然后打开水封管出口阀,缓慢打开进口阀投入运行。此时水封管内液柱上方为空气。工作时依靠液位发生变化产生水头,各级水封的有效水头之和为该水封器的总水头。 2静态计算法 该方法假设:工作时水封器各级内的气体量是恒定的。从出口往进口逐级求解下列方程组可得到各级水封有效水头的高度勺: 胀后的体积,m'; L水的重度,N/n?; —%关于&的函数,由水封结构决定。 A水封计算结果如表1所示。表1的计算结果显示A 水封所需的最小高度为4. 294m,且水封器每一级的有效水头并不都是一样的。 该方法计算过程复杂,没有充分利用每级水封的高度。 p产P"" L y^f = (1) (i = lKn) (2) V严8(hJ(/ = lKzi) (3) 式中:P^Pl—分别为第i级水封内气体膨胀前、膨胀后的压

关于低加多级水封至凝汽器增设浮球型疏 水阀的技术改造

关于低加多级水封至凝汽器增设浮球型疏水阀的技术改造 发表时间:2018-09-11T16:55:02.310Z 来源:《基层建设》2018年第20期作者:邹达[导读] 摘要:本文以某电厂为例,分析了关于低加多级水封至凝汽器增设浮球型疏水阀的技术改造。 深圳市能源环保有限公司广东省深圳市 518127摘要:本文以某电厂为例,分析了关于低加多级水封至凝汽器增设浮球型疏水阀的技术改造。 关键词:浮球型疏水阀原理;技术改造 一、改造背景 某电厂#3、#4汽轮机当机组负荷稳定且带80%以上负荷时,凝结水出口温度一般为47℃,真空为-90kpa,凝结水经过#1低加温度变为60℃,经过#2低加温度变为90℃最后进入除氧器。Ⅲ段非调整抽汽经汽轮机第8级抽出与凝结水充分对流式换热,排汽去凝汽器,疏水经过汽液两相分离疏水器至#1低压加热器与Ⅳ段非调整抽汽混合后给凝结水加热,最后一起经疏水器汇流至多级水封,经过多级水封溢流至凝汽器热井,以确保凝汽器真空运行。但是考虑到在负荷较低的情况下,由于汽轮机的进汽量不够,末端抽汽(四抽)供汽量不足,同时, 当汽轮机负荷开始变化时,由于低加汽液两相分离器磨损、卡涩或动作不灵敏导致不能及时调节自身阀体开度,促使低加水位过高或过低,导致低加压力逐步上升,且凝汽器真空为-90kpa,多级水封为8m扬程,会促使凝汽器将多级水封内的水吸走,从而将抽汽与凝汽器对接,导致凝汽器真空下降,#1低加水位无法维持。而且由于在正常运行中,低加的运行排汽并未打开,低加汽侧含有部分不凝结气体;在低加液位较高的情况下一旦出现低加水位的迅速下降,低加中所含不凝结气体以及系统中所含蒸汽随疏水进入凝汽器,导致凝汽器真空出现快速下降,从而引发机组的安全经济性问题。 二、工作原理 1、相关系统的参数 #2低压加热器:设计压力:壳侧 0.2MPa 管侧 2.5MPa 最高工作压力:壳侧 0.25 Mpa 管侧 3.12MPa 设计温度:壳侧 150℃管侧 150℃换热面积: 160 m2 #1低压加热器:设计压力:壳侧 0.1MPa 管侧 2.5MPa 最高工作压力:壳侧 0.125 Mpa 管侧 3.12 MPa 设计温度:壳侧 100℃管侧 100℃换热面积: 185 m2 凝汽器真空-91.6kpa #2低加进汽流量 7.567t/h #1低加进汽流量 7.282t/h 通过以上参数,可以确定最大压差为3.5Bar。但是根据现场实际的运行经验,压差一般为1Bar左右。通过设计参数、实际运行参数及3倍的安全系数,该浮球阀选型如下:型号:50-KD10 DN65 PN25(Armstrong)此型号在压差为3Bar时排量为40000kg/h,压差为1Bar时排量为25000kg/h,可以满足系统的需要。 2、浮球型疏水阀原理介绍 该浮球型疏水阀的工作原理是由于阀体内的凝结水液位的变化而导致杠杆浮球关闭件的开关动作。整个动作过程:1、设备启动时,杠杆浮球主阀通常是关闭的,空气靠系统内压力由敞开的热静力排气阀排出。当冷凝水进入阀后,浮球上升打开主阀排出凝结水,剩余空气不断地通过热静力排气阀排出。2、当蒸汽进入阀后,热静力排气阀关闭,而凝结水不断通过主阀排出,阀内凝结水量的大小、液位的高低,随流入疏水阀速度变化而变化,如果凝结水流入疏水阀的速度增加,疏水阀内液面就上升,浮球也随之比原来升高,加大了主阀打开面积,也增加了排出凝结水的速度;反之速度减慢。这样实现了自动调节排放。3、凝结水排放时,来系统内的空气也开始聚集在疏水阀顶部,当空气温度降到低于相应压力饱和蒸汽温度时,热静力排气阀打开,并使空气排出。 三、现场实际改造情况 原有的多级水封至凝汽器的疏水手动门保持不变,在此门前新增设此浮球型疏水阀和DN100、PN1.6的手动闸阀,浮球疏水阀和前后的手动门作为整套疏水系统的主路,同时,在此浮球疏水阀上设置DN100、PN1.6旁路手动门,旁路手动门的进出口管道分别接在浮球型疏水阀前手动门之前和浮球型疏水阀后手动门之后(见图1)确保在浮球疏水阀出现故障的时候能够维持系统的运行。在正常运行中,浮球疏水阀的前后手动门保持全开的状态,旁路门全关,通过浮球疏水阀控制疏水的速度,从而达到通水不通汽的目的,确保凝汽器的真空维持稳定。

轴流式压气机采用的防喘措施有哪些其基本原理是什么

1.轴流式压气机采用的防喘措施有哪些?其基本原理是什么? 措施:中间级放气,压气机静子叶片可调和采用多转子。原理:通过在非设计状态下,改变速度三角形的绝对速度的轴向分量、绝对速度的切向分量和圆周速度,从而使气流相对速度对转子叶片的攻角同设计状态相近,避免叶片失速。 2.在压气机中,什么是预旋和正预旋?说明正预旋的作用? 第一级工作叶轮进口处绝对速度在切线方向的分量称为预旋。若叶轮进口处绝对速度的切向分量与叶轮旋转的圆周速度方向一致,称为正预旋;预旋是由进气导向器产生的,目的是避免气流在叶背处发生分离,防止压气机喘振。 3.压气机叶片为什么要扭转?如何扭转? 压气机叶片的扭转主要是为了保证从叶根到叶尖气流的攻角都能在要求的范围之内。叶片的扭转情况是:在叶尖处叶型弯度小,叶型安装倾斜度大;在叶根处叶型弯度大,叶型安装倾斜度小。 4.压气机分哪两种?目前燃气涡轮发动机中常采用哪一种,为什么? 离心式和轴流式。目前燃气涡轮发动机中常采用轴流式压气机。这是因为轴流式压气机具有下述优点:总的增压比高,单位面积的流通能力高,迎风面积小,阻力小。 5.压气机的增压比是如何定义的?它与级增压比有什么关系? 压气机的增压比是压气机出口处的总压与压气机进口处的总压之比。压气机的增压比等于各级增压比乘积。 6.什么是压气机的流量系数?影响压气机流量系数的因素有哪些?它的物理意义是什么? 压气机的流量系统是工作叶轮进口处的绝对速度在发动机轴线的分量和工作叶轮旋转的切向速度之比。影响流量系数的因素有两个:一个是转速,另一个是叶轮进口处的绝对速度。物理意义:流量系数比设计值小,会使气流在叶背处发生分离;流量系数比设计值过大,使气流在叶盆处发生分离。 7.什么是压气机的流量特性?什么是压气机的喘振边界?什么是压气机的喘振裕度? 在进入压气机空气的总温和总压保持不变的情况下,压气机的增压比和效率随进入压气机空气的流量和压气机转速的变化规律称为压气机的流量特性。将各转速下的不稳定工作点连接起来的曲线称为喘振边界。压气机喘振裕度指喘振线与工作线的距离。更具体的说,喘振裕度为在同一空气流量下,喘振点和工作点的增压比之差与工作点增压比的比值。 8.什么是压气机的喘振?导致喘振的根本原因是什么? 喘振是气流沿压气机轴线方向发生的低频高振幅的振荡现象。导致喘振的根本原因是压气机在非设计状态下工作,气流在叶背处发生分离。 9.什么是进入压气机叶片气流的攻角?影响攻角的因素有哪些?它的物理意义是什么? 工作叶轮进口处相对速度的方向与叶片弦线之音的夹角叫攻角。影响攻角的因素有两个:一个是转速,另一个是工作叶轮进口处的绝对速度(大小和方向)。物理意义是:正攻角过大,会使气流在叶背处发生分离;负攻角过大,会气流在叶盆处发生分离。10.什么是进气道的冲压比?影响进气道冲压比的因素有哪些? 进气道的冲压比是:进气道上出口处的总压与远前方气流静压的比值。影响冲压比因素有:流动损失,飞行速度和大气温度。当大气温度和飞行速度一事实上时,流动损失大,则冲压比下降;当大气温度和流动损失一定时,飞行速度越大,则冲压比增加;当飞行速度和流动损失一定时,大气温度上升,则冲压比下降。 11.燃烧室中的主燃区,补燃区,掺混区的主要作用是什么?

相关文档
相关文档 最新文档