文档库 最新最全的文档下载
当前位置:文档库 › 大功率IGBT模块变流器用水冷散热器介绍

大功率IGBT模块变流器用水冷散热器介绍

大功率IGBT模块变流器用水冷散热器介绍
大功率IGBT模块变流器用水冷散热器介绍

大功率IGBT模块变流器用水冷散热器介绍

水冷散热器服务对象:

?各类型IGBT模块、晶闸管是在变频、变流领域的实现变频、变流功能的核心元器件。?水冷散热器主要功能是对各类IGBT变频器型IGBT模块、晶闸管、以及部分电阻进行水冷散热保护。

为何需要散热?

?单个大功率IGBT模块、晶闸管在工作中发热量最大可达到2KW以上。

?IGBT中核心温度在达到150°(新型180°)时将被烧毁,甚至爆炸。

?必要对功率元件进行散热保护!

工业运用中的散热方式:

各种散热形式效能比较:

基于对流换热系数的不同散热方案效果比较:

冷板工艺与分类介绍:

水冷板常用加工工艺分类:

?埋管式

工艺:

—折弯铜管或不锈钢管—铸造工艺将水管埋入—CNC外型加工

特点:

—工艺简单

—批量生产低成本—性能低下

?压管式

工艺:

—CNC铣槽或型材拉槽

—将折弯铜管或焊或压或粘入槽腔—CNC外型加工

特点:

—工艺简单

—批量生产低成本

—性能低下

?组装式

工艺:

—CNC或压铸加工水腔与外型与外盖

—用螺丝与密封圈或胶水压合密封特点:

—工艺简单

—低成本

—性能够用

—可靠性低

?搅拌摩擦焊式

工艺:

—CNC加工水腔与外盖

—摩擦焊做密封焊接

—CNC成品加工

特点:

—有工艺门槛

—设计结构较灵活—性能较好

—可靠性高

—成本偏高

?搅拌摩擦焊式

?真空钎焊式

工艺:

—CNC或其他方式加工水腔—真空钎焊做面密封—CNC成品加工

特点:

—工艺门槛更高

—设计结构更灵活

—性能更好

—可靠性高

—成本偏高

?焊接原理

冷板工艺与分类:

?外型、重量、材质

?热阻

?流阻

流阻(压降、压差)= 入水压力—出水压力

?流阻、流阻、流量

反馈关系:

流量越小,热阻越大;流阻越大,热阻越小;流阻越大,流量越小。?热设计

?使用环境

1. 环境温度

—冷却液介质

—热阻计算

2. 盐雾环境

—表处要求

3. 装夹、导电、震动环境等

?表面处理

常用要求

—镀镍

—阳极氧化

—镀铬

—其他

铝合金表面处理难度大,需寻求优异供应商。?各类型式实验

实验项目

—热阻

—流阻

—破坏性耐压—结构强度—盐雾实验—高低温—脉冲老化—导电性

汽车水散热器的概述及理论设计计算

汽车水散热器的概述 及理论设计计算 一、散热器概述 1汽车散热器的定义: 汽车散热器是水冷式发动机冷却系统的关键部件。通过强制水循环对发动机进行冷却,是保证发动机在正常的温度范围内连续工作的换热装置。 1、散热器在汽车中的重要地位 1汽车总成 产值比重按不同的车型能够占汽车总成的1~2.5% 2发动机总成 产值比重按不同的车型能够占发动机的15%左右 3、散热器结构的发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4、散热器的结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构 三、汽车的整体结构 温度过高及过低的坏处

温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大 4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件的磨损 6气缸内的温度过高时,进入气缸内的新鲜空气很快膨胀,就减少了进气量,降低功率。 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件的摩擦阻力加大,消耗较多的功率,因而减少了输出功率 4废气中的水蒸气与硫化物生成一种叫亚硫酸的液滴腐蚀零件 5传走的热能增加,转变为机械功的热能减少,造成过多的散热损失. 汽车分类最新标准 以前的分类是我国1988年6月发布的有关标准GB/T3730.1-1988。 2目前新标准已将汽车的分类作了修改: 3一是废除了“轿车”的提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座): 1分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。 商用车: 2分为客车、货车和半挂牵引车 3客车细分为小型客车、城市客车、长途客车、铰接客车、无轨客车、越野客车、专用客车。 4货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专

散热器的热管技术

[散热原理——热管技术] 热管属于一种传热元件,它充分利用了热传导原理与致冷介质的快速热传递性质,通过在全封闭真空管内的液体的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、可控制温度等一系列优点,并且由热管组成的换热器具有传热效率高、结构紧凑、流体阻损小等优点。其导热能力已远远超过任何已知金属的导热能力。以前热管技术一直被广泛应用在宇航、军工等行业。 正是因为有热管技术的民用化,使得人们改变了传统散热器的设计思路,摆脱了单纯依靠大风量风扇获得更好散热效果的传统散热模式。取而代之的是采用低转速、低风量风扇配合热管技术的崭新散热模式。热管技术更为PC的静音时代带来了契机 热管技术为什么会有如此的高性能呢?这个问题我们要从热力学的角度看。物体的吸热、放热是相对的,凡是有温度差存在的时候,就必然出现热从高温处向低温处传递的现象。圣保罗散热器热传递有3种方式:辐射、对流、传导,其中热传导最快。

热管就是利用蒸发制冷,使得热管两端温度差很大,使热量快速传导。常见的热管均是由管壳、吸液芯和端盖组成。制作方法是将热管内部抽成负压状态,然后充入适当的液体,这种液体沸点很低,容易挥发。管壁有吸液芯,由毛细多孔材料构成。 热管一端为蒸发端,另外一端为冷凝端。当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止。热量由热管一端传至另外一端,这种循环是快速进行的,热量可以被源源不断地传导开来。热管的导热过程具有很高的热传导性能,与金属相比,单位重量的热管可多传递几个数量级的热量,并且具有优良的等温性和热开关性能,特别适用于高精密散热环境。 高速度的热传导效果: -重量轻且构造简单。 -温度分布平均,可作均温或等温动作。 -热传输量大。热传送距离长。 -没有主动元件,本身并不耗电。 -可以在无重力力场的环境下使用。 -没有热传方向的限制,蒸发端以及凝结端可以互换。 -容易加工以改变热传输方向。 -耐用、寿命长、可靠,易存放保管。

水冷散热系统的设计

水冷散热系统的设计 水冷又称为液冷。水冷散热的原理非常简单:在一个密闭的液体循环装置,通过泵产生的动力,推动密闭系统中的液体循环,将热沉吸收的芯片产生的热量,通过液体的循环,带到面积更大的散热装置,进行散热。冷却后的液体在次回流到吸热设备,如此循环往复。 由于水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,在激光、军工、医疗、电力电子、工业设备等行业有着广泛的应用。 水冷散热系统的分类: 根据二次换热器换热方式的不同,一般情况下可以将水冷散热系统分为以下三种类型:空气冷却系统、液体冷却系统、冷水机组冷却系统。 空气冷却系统一般主要由:水冷板、水泵、水箱、热交换器和风机组成。该系统结构简单,是最经济的水冷系统。 冷水机组冷却系统:由压缩机、水冷板、冷却塔等部分组成。这种方式水温可以精确的控制在环境温度以下,制冷量大。 水冷式冷水机组工作原理图: 液体冷却系统:它不含压缩机,主要由液体交换器、水泵、水箱等组成。低噪音、体积比冷水机组小一半以上。 水冷板的选择和计算 冷板作为水冷系统的重要组成部分,主要是将发热元器件产生的热量与冷却液充分交换。为了确保器件的发热表面在被液体冷却时能把所耗散的热量尽量全部带走,器件与冷板的接触和冷板的热阻就显得尤为重要!

设计适当的冷板,需要确定如下参数:冷却液体流速,冷却液体进口温度,安装在冷板上发热器件的热耗散功率,冷板表面允许的最高温度Tmax。已知这些参数,您就可以确定冷板的最大的允许热阻并且通过热仿真分析验证。

Tout:冷却液体出口温度 Tin:冷却液体进口温度 Q:冷板上发热器件的总热耗散功率 ρ:液体的密度 V:冷却液体流速 CP:冷却液体的比热容 计算冷却液体出口最高温度Tout。这个是非常重要的,如果Tout大于Tmax,那么,冷板将不能解决发热问题。 假设Tout小于Tmax,下一步需要确定冷板的标准化热阻,使用如下方程: :热阻 Tmax:冷板表面允许的最高温度 Tout:冷却液体出口温度 A:被冷却区域的面积 Q:冷板上发热器件的总热耗散功率 系统其他部分设计: 管道系统和阀门是水冷系统硬件重要组成部分,主要包括快速接头、管道、各种功能阀门(流量控制阀)、过滤器、其它管接头及密封件等。 管道的尺寸(如直径、长度等),应根据冷却液的流速来确定: 其中,Qv为水流量(m3/h);U为水流速(m/s)。可计算管道的直径。系统的管道材料,考虑到冷却介质特殊要求,全部采用无缝不锈钢管,局部用聚胺脂管。 冷却液:必须对冷却液的热传递能力、冰点和黏度、沸点和分解温度、绝缘性能、腐蚀性、可燃性、毒性、费用等加以考虑。常用冷却液有水、乙二醇溶液、硅油等。

热管散热器解决方案的优点和限制

热管散热器解决方案的7大优点和5大限制 来源;大比特商务网 今天的大功率LED灯具(300瓦以上)主要采用热管散热器进行散热,但这种散热技术目前也面临着PC处理器散热沿袭下来的均温板和复合槽群散热技术的挑战,下文会帮助您明白为什么超频三科技如此钟爱热管散热技术。 大功率(300瓦以上)LED户外灯具散热除了可考虑采用目前市场很受欢迎的热管散热器以外,还可以考虑采用从PC高速处理器散热传承下来的均温板和复合槽群散热器,下文先为大家介绍热管散热技术的工作原理和优缺点,接下来再为大家介绍均温板和复合槽群散热技术。 我们都知道热的传递方式有三种:传导、对流与辐射,任何的散热设计都是这几种方式的综合应用。目前行业内常用的散热方法主要有以下三种:自然散热、强制对流散热、热管散热。而热管散热是目前效果最好而且性能稳定的散热装置,其传导热量的速度高出传统金属几十到上百倍,这一特点对LED来说再好不过,它能迅速将LED产生的热量以最快的方式传到别处,这比其它任何方法都要快捷有效,缺点是成本较高,若我们实现热管散热的标准化、模组化后,其成本也将不是问题。 那么这项新的技术具有哪些特点呢? 从使用角度看,热管具有热传递速度极快的优点,安装至散热器中可以有效的降低热阻值,增加散热效率。热管,又称“热之超导体”,其核心作用是导热。它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍。 从技术角度看,热管的核心作用提高热传递的效率,将热量快速从热源带离,而非一般意义上所说的“散热”——这则涵括与外界环境进行热交换的过程。热管的工作原理很简单,热管分为蒸发受热端和冷凝端两部分。受热端受热时,管壁周围液体汽化,产生蒸气,此时这部分压力变大,蒸气向冷凝端流动,到达冷凝端后冷凝成液体,同时放出热量,最后借助毛细力回到受热端完成一次循环。

热管散热器技术原理

热管散热器技术原理 现在的CPU、显卡、硬盘,甚至主板芯片组的发热量都大得惊人。普通风冷散热器已经发展到极限了,要想继续提高散热性能只能寻求新的散热技术。好在业界早已开发出诸如热管、液冷、半导体制冷等技术。虽然这些技术里不乏高性能得散热方式,但是最贴合实际应用的还非热管莫数了。 热管应用于PC上还是近几年里的事,真正开始普及也就一年左右。随着热管技术的成熟和大规模使用,现在的热管散热器已经走下神台,价格也是一落千丈,从最初的500以上,到现在不足百元的售价,的确让很多玩家为止欣喜。但是,你知道为什么同样的热管散热器价格会有从几千元到几十元这么大的差价么?你知道热管散热器里面的各种技术和制造工艺么?下面我就和大家一起探讨一 下关于热管散热器的方方面面。 热管是一种具有极高导热性能的传热元件,1964年发明于美国洛斯-阿洛莫斯国家实验室(L os Alamos National Laboratory)并在上世纪60年代末达到理论研究高峰于70年代开始在工业领域大量应用。它通过在全封闭真空管内工质的汽、液相变来传递热量,具有极高的导热性,高达纯铜导热能力的上百倍,有“热超导体”之美称。工艺过关、设计出色的热管CPU散热器,将具有普通无热管风冷散热器无法达到的强劲性能。

热管工作状况示意图 PC散热器中应用的热管属常温热管,工艺成熟,热管内工质为水。热管一端为蒸发端,另外一端为冷凝端。当热管一段受热时,毛细管中的液体迅速蒸发,蒸气在微小的压力差下流向另外一端,并且释放出热量,重新凝结成液体。液体再沿多孔材料靠毛细力的作用流回蒸发段,如此循环不止。热量由热管一端传至另外一端,这种循环是快速进行的,热量可以被源源不断地传导开来。 理论上的导热系数优势转化到散热器设计方面,体现在可比同散热水平的全铜质散热片大幅减轻重量、实用型最终成品的效能领先,以及更为灵活的散热区域调整。前两种优势很容易理解,更为灵活的散热区域调整的典型实例是通过热管将CPU热量传递到稍远且不在同一平面上的机箱背部散热片处,由机箱风扇负责将热量带走,成功减少整机风扇数量,使机箱内部空气更加合理顺畅。这种方案在准系统和国外品牌整机中较为常见,如下图:

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

热管散热器的工作原理

热管散热器的工作原理 热管散热器的工作原理,热管:是一种传热性极好的人工构件,常用的热管由三;⑴在真空状态下,液体的沸点降低;;⑵同种物质的汽化潜热比显热高的多;;⑶多孔毛细结构对液体的抽吸力可使液体流动;典型的构造和工作过程如右图所示:;与热源靠近的一段(蒸发段)内的液体吸热而蒸发,蒸;热管利用“相变”传热的原理与金属铜、铝等实体材料热管散热器的工作原理 热管:是一种传热性极好的人工构件,常用的热管由三部分组成:主体为一根封闭的金属管,内部有少量工作介质和毛细结构,管内的空气及其他杂物必须排除在外。热管工作时利用了三种物理学原理: ⑴在真空状态下,液体的沸点降低; ⑵同种物质的汽化潜热比显热高的多; ⑶多孔毛细结构对液体的抽吸力可使液体流动。 典型的构造和工作过程如右图所示: 与热源靠近的一段(蒸发段)内的液体吸热而蒸发,蒸汽携带汽化潜热经空腔流向另一段(冷凝段),汽体经管壁与外界冷媒体换热放出潜热而完成了传热任务,冷凝成液体,经毛细结构的抽吸力量或重力回流到蒸发段进入下一个工作循环。金旗舰铜制散热器114*60 热管利用“相变”传热的原理与金属铜、铝等实体材料的天然传热方式完全不同。热管的有效导热性是铜、铝等有色金属的成百上千

倍,所以热管是传热领域的重大发明和科技成果,给人类社会带来巨大的实用价值。 热管散热器:利用热管技术能对许多老式散热器或换热产品和系统作重大的改进而产生出的新产品。热管散热器就是这一方面的一个很好的典型。散热器的 热阻是由材料的导热性和体积内的有效面积决定的。实体铝或铜散热器在体积达到0.006m3时,再加大其体积和面积也不能明显减小热阻了。对于双面散热的分立半导体器件,风冷的全铜或全铝散热器的热阻只能达到0.04℃/W。而热管散热器可达到0.01℃/W。在自然对流冷却条件下,热管散热器比实体散热器的性能可提高十倍以上。 散热系统:热管问世以来,使电力电子装置的散热系统有了新的发展。无论何种散热方式,其最终散热媒体是空气,其他都是中间环接。空气自然对流冷却是最直接和简便的方式,热管使自冷的应用范围迅速扩大。因为热管自冷散热系统无需风扇、没有噪音、免维修、安全可靠,热管风冷甚至自冷可以取代水冷系统,节约水资源和相关的辅助设备投资。此外,热管散热还能将发热件集中,甚至密封,而将散热部分移到外部或远处,能防尘、防潮、防爆,提高电器设备的安全可靠性和应用范围。

拖拉机水冷系统的设计及散热分析

毕业设计(论文) 题目: 院(系): 专业: 学号: 姓名: 指导教师: 完成日期: 2013年 6月

摘要 最初拖拉机是手动的,从发明到2013年已经有一百三十多年了,期间经历了由蒸汽驱动斗回转拖拉机到电力驱动和内燃机驱动回转拖拉机、应用机电液一体化技术的全自动液压拖拉机的逐步发展过程。第一台液压拖拉机由法国波克兰工厂发明成功。由于液压技术的应用,20世纪40年代有了在拖拉机上配装液压反铲地悬挂式拖拉机。1951 年,第一台全液压反铲拖拉机由位于法国的 Poclain( 波克兰 ) 工厂推出,从而在拖拉机的技术发展领域开创了全新空间,20世纪50年代初期和中期相继研制出拖式全回转液压拖拉机和履带式全液压拖拉机。初期试制的液压拖拉机是采用飞机和机床的液压技术,缺少适用于拖拉机各种工况的液压元件,制造质量不够稳定,配套件也不齐全。从20世纪60年代起,液压拖拉机进入推广和蓬勃发展阶段,各国拖拉机制造厂和品种增加很快,产量猛增。1968-1970年间,液压拖拉机产量已占拖拉机总产量的83%,已接近100%。 第一代拖拉机:电动机、内燃机的出现,使拖拉机有了先进而合适的电动装置,于是各种拖拉机产品相继诞生。1899年,第一台电动拖拉机出现了。第一次世界大战后,柴油发动机也应用在拖拉机上,这种柴油发动机(或电动机)驱动的机械式拖拉机是第一代拖拉机。第二代拖拉机:随着液压技术的广泛使用,使拖拉机有了更加科学适用的传动装置,液压传动代替机械传动是拖拉机技术上的一次大飞跃。1950年德国的第一台液压拖拉机诞生了。机械传动液压化是第二代拖拉机。 第三代拖拉机:电子技术尤其是计算机技术的广泛应用,使拖拉机有了自动化的控制系统,也使拖拉机向高性能、自动化和智能化方向发展。机电一体化的萌芽约发生在1965年前后,而在批量生产的液压拖拉机上采用机电一体化技术则在1985年左右,当时主要目的是为了节能。拖拉机电子化是第三代拖拉机的标志。 关键词:拖拉机液压支架有限元分析

散热器高效散热技术及应用研究阚宏伟

散热器高效散热技术及应用研究 摘要:随着电子技术的发展,使得电子器件的热流密度不断增加,这样势必对电子器有更高的散热要求,因此有效地解决散热问题已成为电子设备必须解决的关键技术。针对现代电子设备所面临的散热问题,就散热基本原理以及各种主流散热技术,包括自然对流散、强制风冷散热、液体冷却、热管、微槽道冷却、集成热路、热电致冷等常用的电子设备散热技术及某些前沿的研究现状、发展趋势及存在问题分别予以阐述。 关键词:热传递自然对流强制风冷热管散热热电制冷 引言:据统计,55%的电子设备失效是由温度过高引起的。可见,电子设备的主要故障形式为过热损坏,因此对电子设备进行有效的散热是提高产品可靠性的关键。电子设备的主要散热技术电子设备的高效散热问题与传热学(包括热传导、对流和热辐射)和流体力学(包括质量、动量和能量守恒三大定律)等原理的应用密切相关。 一:热传递主要有三种方式: 传导:物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。 热传导的基本公式为“Q=K×A×ΔT/ΔL”。其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但是又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积)、ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式我们就可以发现,热量传递的大小同热传导系数、热传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。 对流:对流指的是流体(气体或液体)与固体表面接触,造成流体从固体表面将热带走的热传递方式。 具体应用到实际来看,热对流又有两种不同的情况,即:自然对流和强制对流。自然对流指的是流体运动,成因是温度差,温度高的流体密度较低,因此质量轻,相对就会向上运动。相反地,温度低的流体,密度高,因此向下运动,这种热传递是因为流体受热之后,或者说存在温度差之后,产生了热传递的动力;强制对流则是流体受外在的强制驱动(如风扇带动的空气流动),驱动力向什么地方,流体就向什么地方运动,因此这种热对流更有效率和可指向性。

水冷散热的设计方法

52现代制造技术与装备2017第1期总第242期 水冷散热的设计方法 张瑜 (中国空空导弹研究院,洛阳471009) 摘要:为了满足大发热量电子设备的测试需求,水冷散热系统应运而生。本文详细介绍通过计算水在循环 系统中所需的流量以及流动产生的压力损失,以选择满足使用要求的水泵;讨论计算散热器的对数平均温差、散热面积将水吸收到的热量通过散热器散出去的水冷散热方法。 关键词:水泵流量压力散热器对数平均温差散热面积 引言 现代电子设备所选用的元器件发热量越来越大,且在 研制阶段的测试时间较长。为了保障电子设备测试过程中 的安全并提高测试效率,急需一种产品能让其产生的热量 迅速冷却。水冷散热以其散热效率高、成本低廉、使用方便、经久耐用的特点,成为此类产品的首选。 1水泵的选型计算 通过计算流量和扬程来选择合适的水泵。具体的,流 量的计算为: H(1) 这里,qv为液体流量,单位m3/s;H为发热功率;C为水的比热容,即4186J/kg*K;P为水的密度,即l X103kg/m3;A t为流过散热器后水的温升,机械设计手 册推荐5?10°C,计算时可取中间值。为了留出足够的余量,A t也可以取5°C进行计算。根据工程经验,实际流量应比 计算值约大15%?20%。 2压力损失的计算 水在水冷装置中循环流动会产生压力损失,其中包括 沿程压力损失、局部压力损失、电子设备水道中的压力损失、散热器中的压力损失。 沿程压力损失的计算: a p=a-L^⑵ e d2 式中:1为管路总长度,单位m;d为管路直径,单 位m;v为管路中液体流速,单位m/s;P为水的密度,即l X103kg/m3;X为管路沿程阻力系数,其值与雷诺数Re 有关。对于光滑的管道,沿程阻力系数X只是R e的函数,可用下式进行计算。 层流时:Re 彡 2320, X=64/Re 紊流时且 3000 彡 Re 彡 105时:A =〇.3164Re^°_25 紊流且:105矣f e43_X108时* 局部压力损失的计算: A P=^⑶ r 2 式中:为局部阻力损失系数之和,包括管道入口处 的局部压力损失系数、管道出口处的局部压力损失系数、管道扩大处的局部压力损失系数、管道缩小处的局部压力 损失系数以及弯管的局部压力损失系数。实际中,可以查 找机械设计手册得到。 3电子设备中水道的压力损失 对于水冷散热系统的设计者来说,大多数情况下水道是 既定的,不需自己设计水道,只需对已有的水道模型进行计算。4散热器中的压力损失 机械设计手册会根据散热器的型式给出一个经验值,工作中可以采用将水泵、压力表与散热器相连成循环系统 测出散热器的压力损失。 5扬程的计算 将以上各压力损失相加,即可得到整个水冷系统中总的压力损失。通过计算,将压力损失转化成水泵的 Pg 扬程。根据工程经验,计算值的基础上给出1.2的安全系数. 水泵的类型很多,如微型隔膜泵能量很大、体积很小、重量很轻、价格经济实惠,但使用过程中,由于隔膜泵本 身所使用电机的技术原因,使用时间都不长,要经常更换;齿轮泵体积大、重量大、价格较贵、对过滤的要求高,但 使用寿命长,减少了维护成本。因此,需根据具体的使用 情况,选择核实的水荥。 6散热器的选型计算 散热器主要参数有两个:传热参数K和散热面积A。 传热参数K:一般情况下选定一种散热器,厂家往往能 给出散热系数,但不排除有的厂家不知道。此时,需要查 找机械设计手册得到一个范围值。 散热面积A:可以通过A=H/K*AtB进行计算得到。式中:H为散热器的吸收热量,单位W; A t>为对数平均温差,单 位°C。如果只是水冷散热,A 不需修正;如果散热器上 加风扇,属于水和空气两种不混合的交叉散热形式,与热力 学简单的顺流和逆流的换热形式不同,因此需要修正系数对平均温差进行修正。与两个无量纲的值P、R有关,有:p—Atk(4) tSK~tk 这里,Al_s为水的温升;A t k S 空气的温升;tsA为水

散热技术之热管技术简介

热管技术 3、热管散热技术 热管是一种具有极高导热性能的传热元件,导热能力比普通金属高几百倍。据相关资料表明,高质量热管的传热效率是铜的1490倍,传递速度可达30m/s,远远高于世界上任何导热金属和传热技术,能到达瞬时传热的效果。 其实热管技术并不是近年才出现的新技术。它的历史可追溯到上世纪40年代,为了满足二次世界大战的需要,美国通用发电机工程师Gaugler就提出了类似于热管的设计方案,并在1944年取得了专利。到了1963年,第一根真正的热管被科学家George M.Grover 在美国加里佛尼亚大学的Los Alamos实验室制造出来。笔者有幸看到了当年第一根热管的设计笔记,但由于字迹潦草,具体内容还请有兴趣的读者自己研究。 热管技术应用广泛,在航空航天、铁路交通、取暖保温中有大规模的使用。而被引入IT硬件领域,还是上世纪90年代末,最早奔腾2笔记本电脑中出现了热管。使用目的是为了在压缩体积的条件下取得优秀的散热效果。 随着硬件发热量的提高,现有的传统风冷散热技术已经不能满足散热需求。于是出现了液冷、半导体制冷、压缩机制冷等散热方式,但由于安全性、稳定性与成本过高等问题无法普及应用。所以热管这种技术成熟,成本相对较低的技术就被越来越多的台式机散热器采用。 热管的工作原理与特点

热管的基本原理与空调等相变制冷类似,也可以说是一个微缩的相变制冷系统。它是利用高导热性液体相变时吸热蒸发、放热凝结的特性,将热量快速的从吸热端转移到散热端。 从原理示意图上我们可以看出,热管内部液体由于在吸热端受热而气化(按红色箭头的走向),蒸腾到散热端放热后液化(按蓝色箭头走向),最后回流到吸热端这一个循环过程。这个循环过程是在密闭的金属管体中进行的,不会有液体外漏的不稳定现象,而且热管体积也可控制,适合多种用途。 如果把热管剖开看,我们可以把热管分成管壳、吸液芯和蒸汽通道三个部分:管壳由于必须承受热管内部的真空高压,并且还必须更小的热阻,因此对管材的材料和制造工艺有很高的要求。目前广泛采用的是炭钢、铝、铜、不锈钢、钛等。吸液芯是一种多孔材质,它紧贴于热管内壁,利用液体的表面张力从凝结段将液体送回到蒸发段。吸液芯的材质主要是由金属网、泡沫材料、毛毡、纤维等多孔物质组成。热管的中间部分作为蒸汽传输通道。作为内部液体,一般选择与吸液芯有良好的相容性,并且导热性、稳定性、汽化性、安全性高的液态介质。目前PC热管散热器中主要使用的是铜-丙酮或铜-水组合。 由于热管中需要通道流动液体与气体,因此在使用中非常忌讳弯曲。有技术文档显示,热管每做一个180度的弯曲,就会降低大约37%的热传递效能。而在实际应用中,热管不可能不弯曲,为了保证不降低热传递性能,只能以增加热管数量来弥补。因此当前采用热管的CPU 散热器,都配备至少两根热管,最多甚至有12根热管。

智能电脑散热系统设计报告

目录 1、前言··1 2、总体方案设计·2 2.1设计内容·2 2.2方案比较·2 2.3方案论证·3 2.4方案选择·3 3、单元模块电路简介与设计··4 3.1本系统部分器件介绍·4 3.1.1 DS18B20 温度传感器简介·4 3.1.2 STC89C52RC 单片机简介·4 3.1.3 ULN2003 芯片简介·5 3.2单元模块电路设计·6 3.2.1 电源电路·6 3.2.2 单片机主芯片电路·7 3.2.3 时钟电路·7 3.2.4 复位电路·8 3.2.5显示电路·8 3.2.6温度检测电路·9 3.2.7 按键控制电路·9 3.2.8 报警及电机电路·9

3.3模块连接总电路·10 4、软件设计··11 4.1程序设计原理及所用工具·11 4.2主程序设计·11 4.3主要模块主程序设计·12 5、系统调试··15 6、系统功能、指标参数··18 7、结论··19 8、总结与体会··20 9、参考文献··21 附录1:ISIS仿真图、PCB板图、实物图附录2:程序源代码

1 前言 现代生活,电脑已经成为人们生活中不可缺少的一部分。无论笔记本电脑还是台式电脑,人们在选择的时候都会考虑到它的散热性能,一个好的散热系统能够保证电脑的高速正常运行,给CPU足够的空间进行高负载的活动,才能享受计算机技术给我们生活带来的无穷魅力,可见一个好的散热系统,对电脑而言是多么的重要。但是,计算机部件中大量使用的是集成电路,而众所周知,高温是集成电路的大敌。高温不但会导致系统运行不稳,使用寿命缩短,甚至有可能使某些部件烧毁。导致高温的热量不是来自计算机外,而是计算机内部,或者说是集成电路内部。散热器的作用就是将这些热量吸收,然后发散到机箱内或者机箱外,保证计算机部件的温度正常。多数散热器通过和发热部件表面接触,吸收热量,再通过各种方法将热量传递到远处,比如机箱内的空气中,然后机箱将这些热空气传到机箱外,完成计算机的散热。 说到计算机的散热器,我们最常接触的就是CPU的散热器。散热器通常分为主动散热和被动散热两种;前者以风冷散热器较为常见,而后者多为散热片。细分散热方式,又可分为风冷,液冷,半导体制冷,压缩机制冷等等。其中,液冷·半导体制冷及压缩机制冷要么技术不成熟,要求高,能耗大;要么体积受限,价格昂贵。 风冷散热器作为区别于水冷散热器的一个主流产品类别,不断的引领着整个IT散热市场的前进和创新因此,风冷是最常见,性价比最高的散热方式,我们设计的“智能电脑散热系统”就是利用温度传感器实现对外界温度的感知,再利用单片机编程控制风扇的转速,从而实现温度的自动调节,以达到散热目的。正是因为融合了温度传感器技术和单片机技术,使得本作品兼智能化和自动化于一体。而温控调速技术的优点在于其能有效地提高散热器的的工作效率,节约能源,性价比高,适用范围广泛。且本设计比

热管散热器挑战处理器散热极限

热管散热器挑战处理器散热极限

————————————————————————————————作者:————————————————————————————————日期:

6热管散热器:挑战处理器散热极限 类型:编译作者: 日期:2004-04-22 09:49:18 一个月前,作为散热产品领导厂商之一的酷冷至尊,再次祭出利器——发布了令人惊讶的CPU散热器HYPER6(KHC-V81)。“纯铜+热管”是很早就被高档散热器采用的技术,有许多经典产品比如Thermalright SP-97等都使用了3根热管。而这一次,HYPER 6名副其实地拥有6根热管,将“纯铜+热管”散热器再次推向新的巅峰! 这个巨兽般散热器的包装盒也比一般产品要大很多,几乎相当于一个标准ATX电源的体积。而且与其它出厂就是一体化的产品不同,HYPER 6的散热器和风扇是分离包装的,使用前需要用户自己安装风扇。

由于AMD的K7处理器几乎已经走到了尽头,所以各大厂家最近几乎都没有针对Athlon XP推出新的散热器产品,而面向P4和K8平台的新散热产品则是数不胜数。HYPE R6也不例外,而且同时兼容上述二平台,颇有王者通吃的气度。照例先来看看技术细节: AMDK8 (socket754/940) 处理器平台 Intel P4 (socket 478) 散热器尺寸96x82x120毫米 散热器材料 6 热管+100%铜鳍片和底座 风扇尺寸80x80x25毫米 风扇转速1800 ~ 3000 rpm 风扇寿命40000小时 轴承类型来福轴承 额定电压6~ 12V

噪音值21~34dB(A) 风扇接头4针(电源输入),3针(转速检测) 重量750克(含风扇) 适合所有频率的P4和K8处理器 包装内除了散热器和风扇,还有各种扣具、螺丝和导热膏,以及酷冷至尊经典的两用调速器,既可以放在机箱前面板软驱口,也可以放在后面板插槽挡板处。 HYPER6采用了侧面吹风的散热方式,因此密集的鳍片均为水平排列,而且为了保证气流不会散逸,顶部和两个侧面还安装了铝片作为风罩。风罩侧面预留的螺丝孔可以安装80毫米风扇,而且需要的话还可以安装一抽一吹双风扇。这种散热设计令人想起了Aero Cool去年底推出的HT-101(见下图二),与HYPER6不同的是,HT-101的散热片体积稍小,热管为3根“U”形管,风罩也是透明塑料制成。

热管利用技术

热管利用技术 代课老师:胡广涛 学生姓名:赵岩 学生学号:1005300151 学生专业:热能与动力工程

1 引言 传统散热方式主要是空气冷却、强制风冷散热以及水冷散热。 (1)空气冷却 也称自然冷却,一般是将电子元器件的发热核心部位与型材散热器相接触,通空气的自然对流方式将热传导出来。其优点是结构简单、安装方便、成本低廉。缺点是散热功率低 (2)风冷散热 这传导出来,然后再通过风扇转动,来加强空气的流动,通过强制对流的方式将散热片上的热传至周围的环境。 优点:结构简单,价格低廉,安全可靠,技术成熟。 缺点:降温的效果有限,不能达到令人满意的程度,并且具有噪音,风扇的使用寿命也有限制。 (3)水冷散热 其原理是利用水泵驱动水流经过热源,进行吸热传递。 优点:水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,是风冷效果所不能比拟的。因为即使是散热效率最高的涡轮风扇风冷散热,其温度比水冷散热也要高大约10℃;相比于风冷散热,水冷散热因为没有风扇,所以不会产生振动现象,也无风冷散热的高噪音。 缺点:需要良好的通风环境,并且体积大,安装和维护不方便,容易滴漏、安全性不高,价格一般也相对较高。 (4) 热管散热 热管是一种具有极高导热性能的新型传热元件,它通过在全封闭真空管内的液体的蒸发与凝结来传递热量,它利用毛吸作用等流体原理,起到良好的制冷效果。具有极高的导热性、良好的等温性、冷热两侧的传热面积可任意改变、可远距离传热、温度可控制等特点。将热管散热器的基板与晶闸管、igbt、igct 等大功率电力电子器件的管芯紧密接触,可直接将管芯的热量快速导出。 通过对上述几种散热方式的分析,我们不难看出,热管散热相对于其他几种传统散热方式存在以下的优势: ●热管散热技术具有散热效果好,热阻相对小,使用寿命长,传热快的优点。热管的热导系数是普通金属的100倍以上; ●传热方向可逆,不管任何一端都能成为蒸发端和冷凝端; ●优良的热响应性。热管内汽化的蒸汽能以接近音速的速度传输,从而有效的提高了导热效果; ●结构简单紧凑,重量轻,体积小,维护方便; ●无功耗、无噪音、符合工业“绿色”的要求; ●可以在无重力场的环境下使用。 综上所述:热管传热利用热传导原理与致冷介质的快速热传递性质,通过热管将发热物体的热量迅速传递到热源以外。采用热管技术使得散热器即便采用低转速、低风量电机,甚至不需风机,完全采用自冷方式,同样可以得到满意的散热

热超导体_热管技术的原理及应用

热超导体——热管技术的原理及应用 李洪斌杨先 说起超导现象人们就会想到,当温度降低到一定程度时,导体对电流的阻碍作用就消失,即电阻等于零。现在要给大家介绍的是对热量超导的热管技术。 日常生活和工作中,我们常需要把热量从一个地方传递到另一个地方,或是将某处的热量收集起来。根据物理学知识我们知道,在相同条件下不同的物质对热量传导能力是不同的。一般说来,金、银、铜等金属的导热性能良好;塑料、干木材、陶瓷等导热性能较差。因此在涉及到导热时,人们往往考虑金属材料。但由于金属材料本身价格较高,从而限制了其大量使用的可能。于是在找寻新型高效导热材料的过程中,热管(heat pipe)技术诞生了。 一、热管技术的发展历程 1944年美国俄亥俄州通用发动机公司的研究人员在研究制冷问题时,设想一装置由密封的管子组成,在管内液体吸热蒸发后于该下方的某一位置放热冷凝,在无任何外加动力的前提下,冷凝液体借助管内的毛细吸液芯所产生的毛细力回到上方继续蒸发,如此循环,达到热量从一处传到另一处的目的。当然这些工作也只是停留在初步研究和申请专利阶段。 1963年美国洛杉矶国家实验室发明了类似的传热元件,并进行了性能测试实验,后来又在美国的《应用物理》杂志上公开发表了一篇论文,并正式将这一传热元件命名为热管,指出它的导热率远远超出任何一种已知的金属,并给出了以钠为液体工质,不锈钢为壳体,内部装有丝网吸液芯的热管的实验结果,热管这才为人们所知。 1965年美国的科特首次提出了完整的热管理论,为以后的热管原理的研究工作奠定了基础。 1967年不锈钢——水热管首次安置在轨道卫星上并运行成功,从而吸引了很多科学技术人员从事热管的研究。 1974年以后,热管在节约能源和新能源开发研究方面得到了充分的重视,由热管做成的换热器来回收废热,并将其应用于工业以节约能源。 进入20世纪80年代后,世界各国的热管换热器研制工作迅猛展开;到90年代末期,为了降低热管的生产成本、缩短热管的设计周期、提高热管的设计水平,特别是随着热管计算机辅助设计水平的发展,各大热管生产厂家纷纷开发出了热管计算机辅助设计的软件,大大缩短了热管的设计和开发周期,促进了热管技术应用的发展。 二、热管的工作原理 通常普通的热管由管壳、吸液芯及传热工质组成。热管的两端封闭,内部的空气被抽去,在密闭的管道内装有传热工质(即工作液)内壁上贴有吸液芯。简单地来说,热管工作时,液态工质在吸热段吸收管壁传来的热量温度升高,气化为蒸气,同时压力也随之增大,于是就流向压力较低的冷凝段,在冷凝段放出热量后又重新变成液态,液体再沿着吸液芯依靠毛细力作用返回吸热段,再吸收热量进入下一次循环。如此反复循环就实现了热量的传递和转移。因此热管的正常工作过程是由液体的蒸发、蒸气的流动、蒸气的凝结和凝结液的回流组成的闭合循环,其外观像一个拉长的变细的暖水瓶胆,由两根同轴的金属管(或玻璃管)组成,内、外管间抽成真空,一般情况下真空度小于10?4毫米汞柱(见图1)。 图1 热管工作原理示意图 热管采用了液-气-液的相变传热,具有极高的传热效率,试验表明一根直径为20mm的铜—水热管,其导热能力是同直径紫铜棒的1500倍。因此热管又有热超导体之称。值得注意的是,热管的高导热性也是相对而言的,总是需要存在着温差,热管的导热也不能违反热力学第二定律。 三、热管的分类 热管的用途、种类和形式较多,再加上热管在 21卷第3期(总123期) ·17·

热管技术

热管技术 处理器高速发展,发热量也与日俱增 在过去几年里,得益于Intel和AMD的竞争,CPU前进的步伐从未停止过,从单核发展到双核,再到四核,频率从几百MHz提升到数千MHz,用户在感觉科技日新月异的同时,两家也赚得盆满钵盈。然而在残酷的你追我赶性能竞争中,CPU功耗的增长甚至比频率的提升更为迅速,从早期的十数W(TDP)增长到现在的上百W(TDP)。 CPU 看下英特尔和AMD旗下两个处理器的数据:

◆AMD AM2 FX-62 Daul Core 2.8G TDP 125W(2006年发布) ◆Intel Pentium 4 Extreme Edition 3.73G TDP 115W(2005年发布) 英特尔和AMD为了甩开对手,屈从于利益,功耗往往是性能之后的考虑。所幸的是,TDP在达到了100多W这样恐怖的数值时,英特尔和AMD都意识到单纯增加频率已经很难有所突破,功耗已经成为性能提升的瓶颈。实际上,制约CPU发展的一个重要问题就是散热问题。目前的台式机CPU,TDP功耗超过100W基本是不可取的,比较理想的数值是低于50W。 英特尔和AMD开始改良架构,设计新的核心,2006年英特尔发布的Conroe系列开始有了大幅改善,Core 2 Duo TDP只有65W,改进的Core 2 Quadro TDP为95W。AMD Socket AM2也为小型系统设计了TDP 功耗为35W和65W的版本。 第三方实测的目前主流 在主流CPU市场,TDP的增加暂时得到了控制,但在高端市场,仍不容忽视,AMD的代号K10的发烧平台Phenom FX,其TDP将达到120W,而Intel Core 2 Extreme QX6850,会在今年第三季度发布,TDP 高达130W。 实际上CPU的真实功耗要比TDP值大得多,CPU巨大的发热量最后都是谁来买单呢?答案是很明显的,买单的只能是我们这些用户。我们不得不付出更多的精力和金钱,去安抚那颗足以“煎鸡蛋”的处理器。

水冷设计的一点经验

三、散热器的使用与安装 ①为保证功率元件与散热器有良好的接触,应尽量避免使用绝缘垫,且应保证功率元件与散热器接触面的平整与光滑。由于功率元件的外壳与散热器很难做到紧密结合,总会留有看不见的空气隙,所以在接触面之间应涂硅脂,以改善接触效果,有利于散热。 ②当功率元件的外壳与散热器之间需要绝缘时,应加装绝缘垫,但绝缘垫的厚度必须在0.08~0.12mm之间。 ③功率元件应用弹簧垫圈及螺钉紧固于散热器的中央。 ④为了增加散热器的热辐射能力,一般都进行着色处理,安装中不可将这种高辐射的涂层损坏。 ⑤散热器最好垂直安装,不要过于贴近其他部件以利空气对流,尤其不要接近发热及怕热的元器件。 ⑥散热器应尽量装在机壳外。当散热器装在机内时,要在散热器附近的机壳上开足够的通风孔,必要时应加风机强制对流冷却。 ⑦选用板材散热时,不宜选用过薄的板材,其厚度应在2~5mm之间。 ⑧若功率元件的耗散功率大于50W,应选用微型风扇进行强制对流冷却,此时可视情况适当缩小散热器面积2~4倍。 三、散热器的使用与安装

①为保证功率元件与散热器有良好的接触,应尽量避免使用绝缘垫,且应保证功率元件与散 热器接触面的平整与光滑。由于功率元件的外壳与散热器很难做到紧密结合,总会留有看不见的 空气隙,所以在接触面之间应涂硅脂,以改善接触效果,有利于散热。 ②当功率元件的外壳与散热器之间需要绝缘时,应加装绝缘垫,但绝缘垫的厚度必须在 0.08~0.12mm之间。 ③功率元件应用弹簧垫圈及螺钉紧固于散热器的中央。 ④为了增加散热器的热辐射能力,一般都进行着色处理,安装中不可将这种高辐射的涂层 损坏。 ⑤散热器最好垂直安装,不要过于贴近其他部件以利空气对流,尤其不要接近发热及怕热 的元器件。 ⑥散热器应尽量装在机壳外。当散热器装在机内时,要在散热器附近的机壳上开足够的通 风孔,必要时应加风机强制对流冷却。 ⑦选用板材散热时,不宜选用过薄的板材,其厚度应在2~5mm之间。 ⑧若功率元件的耗散功率大于50W,应选用微型风扇进行强制对流冷却,此时可视情况适当 缩小散热器面积2~4倍。 水冷又称为液冷。水冷散热的原理非常简单:在一个密闭的液体循环装置,通过泵产生的动力,推动密闭系统中的液体循环,将热沉吸收的芯片产生的热量,通过液体的循环,带到面积更大的散热装置,进行散热。冷却后的液体在次回流到吸热设备,如此循环往复。

电机冷却水道设计

螺旋形电机水冷系统设计与散热计算 庞瑞 上海联孚新能源科技集团有限公司 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm, 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10 进口温℃ in t30

相关文档
相关文档 最新文档