文档库 最新最全的文档下载
当前位置:文档库 › 一种图像增强新方法_闫河

一种图像增强新方法_闫河

一种图像增强新方法_闫河
一种图像增强新方法_闫河

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

图像增强算法综述

图像增强算法研究综述 刘璐璐 宁波工程学院电子与信息工程学院计算机科学与技术071班,邮编:(315100) E-mail:375212239@https://www.wendangku.net/doc/1f13098759.html, 摘要:本文简要介绍图像增强的概念和图像增强算法的分类,从图像的直方图均衡化处理方法,直方图规定化处理方法和图像平滑处理方法三方面对图像增强算法进行讨论和研究,并说明了图像增强技术的应用和前景展望。 关键词:图像增强直方图均衡化直方图规定化平滑处理 近年来,随着电子计算机技术的进步,计算机图像处理得到了飞跃的发展,己经成功的应用于几乎所有与成像有关的领域,并正发挥着相当重要的作用。它利用计算机对数字图像进行系列操作,从而获得某种预期的结果。对图像进行处理时,经常运用图像增强技术以改善图像的质量增强对某种信息的辨识能力,以更好的应用于现代各种科技领域,图像增强技术的快速发展同它的广泛应用是分不开的,发展的动力来自稳定涌现的新的应用,我们可以预料,在未来社会中图像增强技术将会发挥更为重要的作用。在图像处理过程中,图像增强是十分重要的一个环节。 1.图像增强概念及现实应用 1.1 图像增强技术 图像增强是数字图像处理的基本内容之一。图像增强是指按特定的需要突出一幅图像中的某些信息,同时,削弱或去除某些不需要的信息。这类处理是为了某种应用目的去改善图像质量,处理的结果更适合于人的视觉特性或机器识别系统,图像增强处理并不能增加原始图像的信息,而只能增强对某种信息的辨识能力,使处理后的图像对某些特定的应用比原来的图像更加有效。 1.2图像增强技术的现实应用 目前,图像增强处理技术的应用己经渗透到医学诊断、航空航天、军事侦察、纹识别、无损探伤、卫星图片的处理等领域,在国民经济中发挥越来越大的作用。其中最典型的应用主要体现以下方面。 1

医学图像分割方法综述

医学图像分割方法综述 林瑶,田捷1 北京,中国科学院自动化研究所人工智能实验室,100080 摘要: 图像分割是一个经典难题,随着影像医学的发展,图像分割在医学应用中具有特殊的重要意义。本文从医学应用的角度出发,对医学图像分割方法,特别是近几年来图像分割领域中出现的新思路、新方法或对原有方法的新的改进给出了一个比较全面的综述,最后总结了医学图像分割方法的研究特点。 关键词:医学图像分割 综述 1.背景介绍 医学图像包括CT 、正电子放射层析成像技术(PET )、单光子辐射断层摄像(SPECT )、MRI (磁共振成像技术)、Ultrasound (超声)及其它医学影像设备所获得的图像。随着影像医学在临床医学的成功应用,图像分割在影像医学中发挥着越来越大的作用[1]。图像分割是提取影像图像中特殊组织的定量信息的不可缺少的手段,同时也是可视化实现的预处理步骤和前提。分割后的图像正被广泛应用于各种场合,如组织容积的定量分析,诊断,病变组织的定位,解剖结构的学习,治疗规划,功能成像数据的局部体效应校正和计算机指导手术[2]。 所谓图像分割是指将图像中具有特殊涵义的不同区域区分开来,这些区域是互相不交叉的,每一个区域都满足特定区域的一致性。 定义 将一幅图像,其中g x y (,)0≤≤x Max x _,0≤≤y Max y _,进行分割就是将图像划分为满足如下条件的子区域...: g 1g 2g 3 (a) ,即所有子区域组成了整幅图像。 (b) 是连通的区域。 g k (c) ,即任意两个子区域不存在公共元素。 (d) 区域满足一定的均一性条件。均一性(或相似性)一般指同一区域内的像素点之间的灰度值差异较小或灰度值的变化较缓慢。 g k 如果连通性的约束被取消,那么对像素集的划分就称为分类(pixel classification),每一个像素集称为类(class)。在下面的叙述中,为了简单,我们将经典的分割和像素分类通称为分割。 医学图像分割到今天仍然没有获得解决,一个重要的原因是医学图像的复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像比较,不可避免的具有模糊、不均匀性等特点。另外,人体的解剖组织结构和形状复杂,而且人与人之间有相当大的差别。这些都给医学图像分割的分割带来了困难。传统的分割技术或者完全失败,或者需要一些特殊的处理技术。因此,我们有必要针对医学应用这个领域,对图像分割方法进行研究。 为了解决医学图像的分割问题,近几年来,很多研究人员做了大量的工作,提出了很多实用的分割算法[2][3][4],随着统计学理论、模糊集理论、神经网络、形态学理论、小波理论等在图像分割中的应用日渐广泛,遗传算法、尺度空间、多分辨率方法、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,国内外学者提出了不少有针对性的好分割方法。本文将主要介绍近几年这一领域中研究人员提出的新方法或对原有方法的新改进。需要指出的是,由于从不同的角度将得到不同的分类结果,本文中所涉及方法的分类并不是绝对的,而且许多分割方法还是多种简单方法的综合体,我们只能大致将它们分为属于最能反映其特点 1x x g N k k =),(),(y g y =∪φ=(y y g j k ∩),(),x g x 1 联系人:田捷 电话:82618465 E-mail:tian@https://www.wendangku.net/doc/1f13098759.html,

一种基于视觉特性的彩色图像增强算法

计算机与现代化 2014年第2期 JISUANJIYUXIANDAIHUA总第222期 文章编号:1006-2475(2014)02-0073-04收稿日期:2013-09-09 基金项目:国家自然科学基金资助项目(60972101);江苏省科技支撑计划项目(BE2012096,BE2013372);南通市科技计划项目(BK2012025) 作者简介:束代群(1988-),女,江苏盐城人,河海大学物联网工程学院硕士研究生,研究方向:数字图像处理;朱浩(1989-),男,硕士研究生,研究方向:数字图像处理;盛惠兴(1961-),男,江苏无锡人,副教授,硕士,研究方向:信息获取与处理,通信系统;李庆武(1964-),男,河南新乡人,教授,博士生导师,博士,研究方向:数字图像处理,信息获取与智能感知。一种基于视觉特性的彩色图像增强算法 束代群1,朱 浩1,盛惠兴1,2,李庆武1,2,周 军2 (1.河海大学物联网工程学院,江苏常州213022;2.南通河海大学海洋与近海工程研究院,江苏南通226019) 摘要:为了增强图像暗区域部分,基于人类视觉系统的全局和局部自适应调节原理,提出一种彩色图像增强方法。该方法主要包括全局自适应亮度调节、局部对比度增强和颜色恢复3个部分。全局亮度调节采用直方图非线性自适应拉伸来增强暗区域的亮度;局部对比度增强利用当前点与区域像素之间的关系,调节当前点的亮度,以增强图像局部对比度;通过一种自适应的非线性颜色恢复算法恢复图像色彩。通过大量图像对比实验分析表明,本文方法可以自适应有效快速地实现图像增强。 关键词:人类视觉调节原理;自适应亮度调整;局部对比度增强;色彩恢复;快速 中图分类号:TP391 文献标识码:A doi:10.3969/j.issn.1006-2475.2014.02.017 AnAlgorithmforColorImageEnhancementBasedonHumanVisualProperty SHUDai-qun1,ZHUHao1,SHENGHui-xing1,2,LIQing-wu1,2,ZHOUJun2 (1.CollegeofInternetofThingsEngineering,HohaiUniversity,Changzhou213022,China; 2.NantongHohaiUniversityMarineandOffshoreEngineeringResearchInstitute,Nantong226019,China) Abstract:Toenhancethedarkareasofanimage,anovelalgorithmtoenhancethecolorimagebasedonglobalandlocaladapta-tionofthehumanvisualregulationprinciplesisproposed.Thealgorithmmainlyconsistsofthreeparts:apreliminarygloballumi-nanceadjustmentfollowedbylocalcontrastenhancementandcolorrestoration.Thegloballuminanceadjustmentincreasesthelu-minanceofdarkerpixelsbasedonnonlinearadaptivehistogramstretching.Thelocalcontrastenhancementadjuststheintensityofeachpixelbasedonitsrelativemagnitude,whichisbasedonitscorrelationbetweenrelativemagnitudeandtheoutputofitsneighboringpixels.Thenanadaptivenonlinearcolorrestorationprocessisappliedtoconverttheenhancedintensityimagebacktoacolorimage.Thecontrastexperimentalresultsbasedonalargesetofimagesindicatethat,theproposedimageenhancemental-gorithmisadaptive,effectiveandrapid.Keywords:humanvisualregulationprinciples;preliminaryluminanceadjustment;localcontrastenhancement;colorrestora-tion;rapid 0 引 言 图像增强是图像处理重要的组成部分,其根据应 用要求突出图像中感兴趣的部分,同时减弱或去除不 需要的信息,将原图像转换为一种更适合于人眼观察 和计算机分析处理的形式。传统的增强方法有基于 空域的直方图均衡化、同态滤波以及基于变换域的多 尺度增强[1]等。这些方法主要是增强图像的边缘等 高频信息,同时抑制噪声的放大,但缺乏对颜色信息的考虑。而在自然界和人们的日常生活中,接触的大多数是彩色图像。近年来,由于人类视觉系统在处理图像信息上近乎完美的特性,越来越多的学者模仿人眼视觉系统,提出基于人眼视觉特性的图像增强算法[2],其中LandE.H.等提出了基于Retinex理论的图像增强算法[3-5],受到了广泛的关注。一般来说Retinex算法能够获得较好的彩色图像增强效果,但也存在一些不足。当图像和“灰度世界”假设冲突时,处理的图像

基于matlab的图像去雾算法详细讲解与实现-附matlab实现源代码

本文主要介绍基于Retinex理论的雾霭天气图像增强及其实现。并通过编写两个程序来实现图像的去雾功能。 1 Rentinex理论 Retinex(视网膜“Retina”和大脑皮层“Cortex”的缩写)理论是一种建立在科学实验和科学分析基础上的基于人类视觉系统(Human Visual System)的图像增强理论。该算法的基本原理模型最早是由Edwin Land(埃德温?兰德)于1971年提出的一种被称为的色彩的理论,并在颜色恒常性的基础上提出的一种图像增强方法。Retinex 理论的基本容是物体的颜色是由物体对长波(红)、中波(绿)和短波(蓝)光线的反射能力决定的,而不是由反射光强度的绝对值决定的;物体的色彩不受光照非均性的影响,具有一致性,即Retinex理论是以色感一致性(颜色恒常性)为基础的。 根据Edwin Land提出的理论,一幅给定的图像S(x,y)分解成两幅不同的图像:反射物体图像R(x,y)和入射光图像L(x,y),其原理示意图如图8.3-1所示。 图-1 Retinex理论示意图 对于观察图像S中的每个点(x,y),用公式可以表示为: S(x,y)=R(x,y)×L(x,y) (1.3.1) 实际上,Retinex理论就是通过图像S来得到物体的反射性质R,也就是去除了入射光L的性质从而得到物体原本该有的样子。 2 基于Retinex理论的图像增强的基本步骤 步骤一: 利用取对数的方法将照射光分量和反射光分量分离,即: S'(x, y)=r(x, y)+l(x, y)=log(R(x, y))+log(L(x, y)); 步骤二:用高斯模板对原图像做卷积,即相当于对原图像做低通滤波,得到低通滤波后的图像D(x,y),F(x, y)表示高斯滤波函数: D(x, y)=S(x, y) *F(x, y); 步骤三:在对数域中,用原图像减去低通滤波后的图像,得到高频增强的图像G (x, y):

图像分割技术与MATLAB仿真

中南民族大学 毕业论文(设计) 学院: 计算机科学学院 专业: 自动化年级:2012 题目: 图像分割技术与MATLAB仿真 学生姓名: 高宇成学号:2012213353 指导教师姓名: 王黎职称: 讲师 2012年5月10日

中南民族大学本科毕业论文(设计)原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名:年月日

目录 摘要 (1) Abstract (1) 引言 (3) 1 图像分割技术 (3) 1.1 图像工程与图像分割 (3) 1.2 图像分割的方法分类 (4) 2 图像分割技术算法综述 (5) 2.1 基于阈值的图像分割技术 (5) 2.2边缘检测法 (5) 2.3 区域分割法 (7) 2.4 基于水平集的分割方法 (8) 2.5 分割算法对比表格 (8) 3基于水平集的图像分割 (9) 3.1 水平集方法简介 (9) 3.2 水平集方法在图像分割上的应用 (9) 3.3 仿真算法介绍 (10) 3.4 实验仿真及其结果 (11) 结论 (18) 致谢 (19) 参考文献 (19)

图像分割技术研究及MATLAB仿真 摘要:作为一项热门的计算机科学技术,图像分割技术已经在我们生活中越来越普及。顾 名思义这项技术的目的就是,将目标图像从背景图像中分离出去。由于这些被分割的图像区域在某些属性上很相近,因此图像分割与模式识别以及图像压缩编码有着密不可分的关系。完成图像分割所采用的方法各式各样,所应用的原理也不同。但他们的最终目的都是把图像中性质相似的某些区域归为一类,把性质差异明显的不同区域分割开来。通常在分割完成之后,我们就要对某些特定区域进行分析、计算、评估等操作,因而分割质量的好坏直接影响到了下一步的图像处理[1],因此图像分割是图像处理的一个关键步奏。图像分割技术在各个领域都有着及其重要的意义;在工业上有卫星遥感,工业过程控制监测等等;在医学方面,水平集的分割方法还可以通过医学成像帮助医生识别模糊的病变区域;在模式识别领域还可应用到指纹扫描、手写识别、车牌号识别等等。 本课题的研究内容是对图像分割技术的几种常用的方法进行综述和比较,并基于其中一种方法进行MATLAB仿真测试,给出性能分析比较结果。 关键字:图像分割,MA TLAB仿真,模式识别 Image Segmentation and Matlab Simulation Abstract:Image segmentation is to image representation for the physically meaningful regional connectivity set, namely according to the prior knowledge of target and background, we on the image of target and background of labeling and localization, then separate the object from the background. Because these segmented image regions are very similar in some properties, image segmentation is often used for pattern recognition and image understanding and image compression and coding of two major categories. Because the generated in the segmented region is a kind of image content representation, it is the image of visual analysis and pattern recognition based and segmentation results of quality of image analysis, recognition and interpretation of quality has a direct impact. Image segmentation it is according to certain features of the image (such as gray level, spectrum, texture, etc.) to a complete picture of the image is segmented into several meaningful area. These features made in a certain region of consistent or similar, and between different regions showed significantly different. Image segmentation technology in various fields have most of the field and its important significance in digital image processing, image segmentation has a wide range of applications, such as industrial automation, process control, online product inspection, image coding, document image processing, remote sensing and medical image analysis, security surveillance, as well as military, sports and other aspects. In medical image processing and analysis, image segmentation for body occurrence of three-dimensional display of the diseased organ or lesion location determination and analysis plays an effective role in counseling; in the analysis and application of road traffic conditions,

数字图像处理算法汇总

形态学运算:基本思想是具用一定结构形状的结构元素去度量和提取图像中的对应形状以达到对图像分析和识别的目的。 腐蚀运算:将结构元素中心遍历整个图像,当图像完全包含结构元素时的中心点的轨迹即为腐蚀后的图像,图像变细。腐蚀运算可用于滤波,选择适当大小和形状的结构元素,可以滤除掉所有不能完全包含结构元素的噪声点。当然利用腐蚀滤除噪声有一个缺点,即在去除噪声的同时,对图像中前景物体形状也会有影响,但当我们只关心物体的位置或者个数时,则影响不大。 膨胀运算:将结构元素中心遍历整个图像边缘,中心点的轨迹即为腐蚀后的图像,图像整体变粗。通常用于将图像原本断裂开来的同一物体桥接起来,对图像进行二值化之后,很容易是一个连通的物体断裂为两个部分,而这会给后续的图像分析造成干扰,此时就可借助膨胀桥接断裂的缝隙。 开运算:先腐蚀后膨胀,可以使图像的轮廓变得光滑,还能使狭窄的连接断开和消除细毛刺;但与腐蚀运算不同的是,图像大的轮廓并没有发生整体的收缩,物体位置也没有发生任何变化。可以去除比结构元素更小的明亮细节,同时保持所有灰度级和较大亮区特性相对不变,可用于补偿不均匀的背景亮度。与腐蚀运算相比,开运算在过滤噪声的同时,并没有对物体的形状轮廓造成明显的影响,但是如果我们只关心物体的位置或者个数时,物体形状的改变不会给我们带来困扰,此时腐蚀滤波具有处理速度上的优势。 闭运算:先膨胀后腐蚀,可以去除比结构元素更小的暗色细节。开闭运算经常组合起来平滑图像并去除噪声。可使轮廓变的平滑,它通常能弥合狭窄的间断,填补小的孔洞。腐蚀运算刚好和开运算相反,膨胀运算刚好和闭运算相反,开闭运算也是对偶的,然而与腐蚀、膨胀不同的是,对于某图像多次应用开或闭运算的效果相同。 击中击不中运算:先由结构元素腐蚀原图像,再将结构元素取反去腐蚀原图像的取反图,最后将两幅处理后的图像取交。主要用于图像中某些特定形状的精确定位。 顶帽变换:原图像减去开运算以后的图像。当图像的背景颜色不均匀时,使用阈值二值化会造成目标轮廓的边缘缺失,此时可用开运算(结构元素小于目标轮廓)对整个图像背景进行合理估计,再用原图像减去开运算以后的图像就会是整个图像的灰度均匀,二值化后的图像不会有缺失。 Sobel算子: Prewitt算子: LOG算子: Canny算子:力图在抗噪声干扰和精确定位之间尊求折中方案,主要步骤如下所示: 1、用高斯滤波器平滑图像; 2、用一阶偏导的有限差分来计算梯度的幅值和方向; 3、对梯度幅值进行非极大值抑制; 4、用双阈值算法检测和连接边缘。 Hough变换: 边缘检测:

图像增强技术

数字图像处理期中论文 图像增强技术综述 学院信息工程学院 专业电子信息工程 方向信息处理方向 姓名何娜娜 学号200710113081 中国传媒大学 2010 年11 月27 日

图像增强技术综述 内容摘要 数字图像处理是指将图像信号转换成数字格式并利用计算机对其进行处理的过程。图像增强是数字图像处理的过程中经常采用的一种方法,它对提高图像质量起着重要的作用。本文先对图像增强的原理进行概述,然后对图像增强的方法分类并给出直方图增强、对比度增强、平滑和锐化等几种常用的增强方法的理论基础,通过Matlab实验得出的实际处理效果来对比各种算法的优缺点,讨论不同的增强算法的技术要点,并对其图像增强方法进行性能评价。 关键词:图像增强直方图增强对比度增强平滑锐化彩色图像增强 Abstract Digital image processing is the procedures of converting image signal into digital format, then using the computer to process it. Image enhancement is digital image processing process often use a method to improve image quality, it plays an important role. This article first introduces the principle of image enhancement and classification,and then focus on several methods to study such as and histogram enhancement, contrast enhancement, smoothing and sharpening, and other commonly used in learning the basic digital image With the approach, through Matlab experiment that the actual effect of various algorithms to compare the advantages and disadvantages to discuss the different enhancement algorithm. The application of occasions, and its image enhancement method of performance evaluation. Keywords:Image Enhancement histogram enhancement contrast enhancement smoothing sharpening 1 图像增强概述 1.1 图像增强背景及意义 在一般情况下,经过图像的传送和转换,如成像、复制、扫描、传输和显示等,经常会造成图像质量的下降,即图像失真。在摄影时由于光照条件不足或过度,会使图像过暗或过亮;光学系统的失真、相对运动、大气流动等都会使图像模糊,传输过程中会引入各种类型的噪声。总之输入的图像在视觉效果和识别方便性等方面可能存在诸多问题,这类问题不妨统称为质量问题。图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚

医学图像分割综述

医学图像分割综述郭爱心安徽大学摘要:图像分割是图像处理和分析的关键。随着影像医学的发展,图像分割在医学应用中具有重要意义。本文从医学应用的角度出发,对医学图像分割的意义、方法、评估标准和发展前景做出了简单综述。关键字:医学图像分割意义方法评估标准发展前景AReviewofMedicalImageSegmentation Ai- XinGuoAnhuiUniversityAbstract:Imagesegmentationisthekeyofimageprocessingandanalysis.Withthede velopmentofmedicalimage,imagesegmentationisofgreatsignificanceinmedicalapplications.Fromtheper spectiveofmedicalapplications,thispapermadeasimplereviewofthemedicalimagesegmentationonit’ssig nificance、methods、evaluationstandardsanddevelopmentprospects.words:Keymedical image,segmentation,sig nificance,methods,evaluation standards,developmentprospects1.医学图像分割的意义图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。医学图像包括CT、正电子放射层析成像技术(PET)、单光子辐射断层摄像(SPECT)、MRI(磁共振成像技术)、Ultrasound(超[2]声)及其它医学影像设备所获得的图像。医学图像分割是将原始的2D或3D图像划分成[1]不同性质(如灰度、纹理等)的区域,从而把感兴趣的区域提取出来。医学图像分割是一个非常有研究价值和研究意义的领域,对疾病诊断、图像引导手术以及医学数据可视化等有重要作用,为临床诊疗和病理学研究提供可靠的依据。医学图像处理有其复杂性和多样性。由于医学图像的成像原理和组织本身的特性差异,图像的形成受到诸如噪音、场偏移效应、局部体效应和组织运动等的影响,医学图像与普通图像相比较,不可

基于matlab的数字图像增强算法研究与实现

基于matlab的数字图像增强算法研究与实现 摘要图像在获取和传输过程中,会受到各种噪声的干扰,使图像退化质量下降,对分析图像不利。图像的平滑或去噪一直是数字图像处理技术中的一项重要工作。为此,论述了在空间域中的各种数字图像平滑技术方法。 关键字:数字图像;图像增强;平滑处理

目录 第一章、概述 2 1.1 图像平滑意义 2 1.2图像平滑应用 2 1.3噪声模 型 (3) 第二章 、图像平滑方法 5 2.1 空域低通滤波 5 2.1.1 均值滤波器 6 2.1.2 中值滤波器 6 2.2 频域低通滤波 7 第三章、图像平滑处理与调试 9 3.1 模拟噪声图像 9 3.2均值滤波法 11 3.3 中值滤波法 14 3.4 频域低通滤波法 17 第四章、总结与体会 19 参考文献 20 第一章、概述 1.1图像平滑意义 图像平滑(S m o o t h i n g)的主要目的是减少图像噪声。图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经

电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声)。实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。减少噪声的方法可以在空间域或在频率域处理。在空间域中进行时,基本方法就是求像素的平均值或中值;在频域中则运用低通滤波技术。 图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。 1.2图像平滑应用 图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传 输、分析、动画制作、媒体合成等多个方面。该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。处理对象是在图像生成、传输、处理、显示等过程中受到多种因素扰动形成的加噪图像。在图像处理体系中,图像平滑是图像复原技术针对“一幅图像中唯一存在的退化是噪声”时的特例。 1.3噪声模型 1.3.1噪声来源 一幅图像可能会受到各种噪声的干扰,而数字图像的实质就是光电信息,因此图像噪声主要可能来源于以下几个方面:光电传感器噪声、大气层电磁暴、闪电等引起的强脉冲干扰、

基于Retinex算法图像增强的MATLAB实现

基于Retinex算法视频增强的MATLAB实现 一、读书笔记 1:数字图像文件简介 BMP文件:Windows操作系统中的标准图像文件格式,能够被多种Windows应用程序所支持。 GIF文件:GIF文件的数据是一种基于LZW算法的连续色调的无损压缩格式,不属于任何应用程序。 JPEG图像格式:后缀名为.jpg或者.jpeg,是一种有损压缩格式。 ICO文件:Windows的图标文件格式的一种,可以存储单个图案、多尺寸、多色板的图标文件 HDF文件:层次型数据格式可以存储不同类型的图像和数码数据,有函数库。 PNG文件:常用于JAVA程序、网页和S60中。 TIFF文件:主要用来存储包括照片和艺术图在内的文件格式。 DICOM文件:数字影像和通信标准。 2:基于MATLAB图像处理基础 1)图像数据类型 double类型:图像处理最常用的数据类型,也是matlab中默认的数 据类型。图像数据的取值范围为0-1。 Unit8类型:常用于从存储设备中读取数据时,操作不能使结果超出 [0,255]. Unit16类型:用于精度较高的图像中。 Logical类型:常用于二值图像中,可用true、false或关系运算符 得到。 2)数据类型转换 3)文件信息读取

Matlab提供imfinfo函数来实现所有格式(除DICOM)的信息读取,调用形式: info=imfinfo(’filename’) 4)读取图像 使用imread可以将图像读入matlab环境,语法: imread (‘filename’),其中,filename是一个含有文件全名的字符串。 函数size可给出一副图像的行数和列数 >>size(f) Ans= 1024 1024 5)显示图像 在matlab桌面上显示图像一般用imshow,语法: imshow (f,G) 其中,f是一个图像数组,G为显示该图像的灰度级数。若将G省略,则默认256.语法 imshow(f,[low high])会将小于或等于low的显示为黑色,大于或等于high的显示为白色,介于两者之间的值以默认的级数显示为中等亮度值。语法 imshow(f,[])可以将变量low设置为数组f的最小值,将high 设置为f的最大值。 6)保存图像 使用imwrite函数可将图像写入磁盘,语法; Imwrite(f,’filename’) Filename必须是一个可识别的文件格式扩展名 另一种常用但只用于jpeg图像的函数imwrite,其语法为 Imwrite(f,’filename.jpg’,’quality’,q), Q为一个0到100的整数,q越小,图像退化越严重 3:亮度变换与空间滤波 1)函数imadjust是对灰度图像进行亮度变换的基本IPT工具。语法 g=imadjust(f,[low_in high_in],[low_out high_out],gamma) 将low_in至high_in之间的值映射到low_out至high_out之间的值,其他的值被剪切掉了。 2)对数和对比度的拉伸变换 对数变换通过以下表达式实现: g=c*log(1+double(f)) 3)阈值变换 表达式:g=1./(1+(m./(double(f)+eps)).^E) Eps可避免f出现0值的溢出现象 4)计算并绘制图像直方图 函数:imhist(f); 直方图均衡化有函数histep实现,语法:g=histep(f,nlev) Nelv为输出图像制定的灰度等级 5)空间滤波: 工具箱使用函数imfilter来实现线性空间滤波,语法 g=imfilter(f,w,filter_mode,boundary_options,size_options)

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

一种新的低照度彩色图像增强算法(精)

第28卷第9期2011年9月计算机应用研究 Application Research of Computers Vol.28No.9Sep.2011 一种新的低照度彩色图像增强算法 李小霞,李铖果,邹建华,韩雪梅 (西南科技大学信息工程学院,四川绵阳621010) 摘 * 要:为了增强彩色图像而不引起色彩失真,在HSV 颜色空间中保持色相不变,提出了采用分段对数变换增 采用边缘保持增强色调的低照度彩色图像增强算法。实验结果强饱和度结合在多尺度Retinex 算法的基础上, 表明,该方法在保持图像色相和图像边缘的情况下,显著改善了图像的视觉效果,提高了图像的亮度和对比度。25幅低照度图像的平均亮度、20.93%和29.88%,标准偏差和对比度分别提高了94.95%、相对于带色彩恢复的多尺度Retinex 算法的熵和对比度增量分别提高了7.34%和151.51%,效果优于Retinex 算法。关键词:低照度;彩色图像增强;分段对数变换;边缘保持;饱和度;色调;Retinex 算法中图分类号:TP391 文献标志码:A 文章编号:1001-3695(2011)09-3554-02 doi :10.3969/j.issn.1001-3695.2011.09.100 New low illumination color image enhancement algorithm

LI Xiao-xia ,LI Cheng-guo ,ZOU Jian-hua ,HAN Xue-mei (School of Information Engineering ,Southwest University of Science &Technology ,Mianyang Sichuan 621010,China ) Abstract :In order to avoid the color distortion during the image enhancement ,this paper proposed a new low illumination color image enhancement method combining the saturation enhancement with segment logarithmic transformation and value en-hancement with edge retaining (S_log-V_edge)based on the multi-scale Retinex (MSR )algorithm without changing the hue in the HSV color space.Results show that this method can improve the low illumination images ’visual effect and enhance the image brightness and contrast while retaining the image hue and edge.The 25low illumination images average value ,standard 20.93%and 29.88%individually ,the entropy and con-deviation and contrast incremental value are increased by 94.95%, showing trast incremental value are 7.34%and 151.51%more than the multi-scale Retinex with color restoration (MSRCR ), the effects are better than Retinex methods. Key words :low illumination ;color image enhancement ;segment logarithmic transformation ;edge retainment ;saturation ;value ;Retinex algorithm 0引言 在图像采集或视频监控的应用中,经常会有夜视或背光等 V_edge)对低照基于边缘保持的色调分量增强的方法(S_log-度彩色图像进行增强。

基于retinex的图像去雾算法

I=imread('1.jpg'); R = I(:, :, 1); G = I(:, :, 2); B = I(:, :, 3); R0 = double(R); G0 = double(G); B0 = double(B); [N1, M1] = size(R); Rlog = log(R0+1); Rfft2 = fft2(R0); sigma1 = 128; F1 = fspecial('gaussian', [N1,M1], sigma1); Efft1 = fft2(double(F1)); sigma2 = 256; F2 = fspecial('gaussian', [N1,M1], sigma2); Efft2 = fft2(double(F2)); sigma3 = 512; F3 = fspecial('gaussian', [N1,M1], sigma3); Efft3 = fft2(double(F3)); DR0 = Rfft2.* Efft1; DR = ifft2(DR0); DRlog = log(DR +1); Rr1 = Rlog - DRlog; DR0 = Rfft2.* Efft2; DR = ifft2(DR0); DRlog = log(DR +1); Rr2 = Rlog - DRlog; DR0 = Rfft2.* Efft3; DR = ifft2(DR0); DRlog = log(DR +1); Rr3 = Rlog - DRlog; Rr = (Rr1 + Rr2 +Rr3)/3; a = 125; II = imadd(R0, G0); II = imadd(II, B0); Ir = immultiply(R0, a); C = imdivide(Ir, II); C = log(C+1); Rr = immultiply(C, Rr); EXPRr = exp(Rr); MIN = min(min(EXPRr)); MAX = max(max(EXPRr)); EXPRr = (EXPRr - MIN)/(MAX - MIN); EXPRr = adapthisteq(EXPRr); Glog = log(G0+1); Gfft2 = fft2(G0); DG0 = Gfft2.* Efft1;

相关文档