文档库 最新最全的文档下载
当前位置:文档库 › 直线电机工艺的研究

直线电机工艺的研究

直线电机工艺的研究
直线电机工艺的研究

直线电机装配工艺的研究与应用

摘要:为了提高企业制造技术,加快新技术的开发,促进企业技术进步,随着高速切削、超精密加工等先进制造技术的发展,要求要有很高的驱动推力、快速进给速度和极高的快速定位精度。机床进给系统形成了直线电机直接驱动为主的发展方向。本文阐述了直线电机的工作原理及其功能,并以CKS6125数控车床所采用的直线电机为例,阐述直线电机的装配工艺的关键技术,且对直线电机的主要装配工序进行分析与研究。此次直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。

1.引言

近年来,就如何提高企业制造技术,加快新技术的开发,以被越来越多企业所重视。随着高速切削、超精密加工等先进制造技术的发展,对机床各项性能指标提出了越来越高要求。同时也对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。高速度、高加速度和高精度是现代伺服的要求及发展趋势。直线电动机高速进给单元的应用使进给传动链及其结构发生深刻的变化,机床进给系统形成了直线电机直接驱动为主的发展方向。直线电机的机械结构虽然简单,但制造工艺要求却非常严格,为加快我国高速加工技术的发展与应用,加速我厂数控机床的更新换代,组织力量对直线电机装配工艺过程进行攻关是必要的。

2.直线电机简介

直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机

驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。

我厂在数控车床上应用直线电机在国内是第一家,所以说直线电机在CKS6125数控车床X轴上的应用,是我们对这项新技术的尝试,这项新技术研制的成功,为以后的机床开发和应用打下了基础。由于该项技术为我厂首次试制,直线电机的装配应处在探索中。

CKS6125数控车床X轴直线电机采用的是西门子1FN3永磁同步直线电机,是将初级部构芯(线圈)安装在滑板上,次级部构芯(磁铁)安装在床鞍上而成的一个完整内装式电机。其结构如图1:

图1

1FN3永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

图2

床鞍导轨采用依纳公司的2RUE3SDNLFEG3W2/920滚柱滑块组合导

轨,滑块采用自润滑,另带2-BKESX35DHO 锁紧快,其结构如图3:

图3

3.直线电机装配工艺的关键技术及工艺方案

3.1 直线电机装配工艺的关键技术

根据直线电机的结构特点,直线电机零件加工和装配的主要关键: a)

初、次级部构芯安全装配。 b) 安装直线电机所需工装选择。

端子盒

可选件:精确冷却器

(对环境温度影响< 4 K)

次级部分 初级部分

可选件:连续防护件

(保护次级部分)

动力冷却器

可选件:尾端件

(固定机盖,水流入流出)

可选件:冷却部分

(对环境温度影响< 4 K)

c)安装直线电机螺钉紧固扭矩选择。

d)直线电机初、次级部芯装配。

e)直线电机装配后检查与运车。

3.2直线电机装配工艺方案确定

直线电机机械结构较为简单,但其装配工艺却非常严格。由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁铁磁极力,这对于人的健康和安全有直接的影响,因此装配过程中既要考虑如何保证直线电机的装配精度,也要重视人身安全。按照上述要求制定直线电机装配工序流程为:

装配前准备→将床鞍安装在床身、安装床鞍导轨→预装滑板调整机床精度→将次级部构芯冷却安装在床鞍上并试漏→安装次级部构芯→安装次级部构芯磁性盖板→将初级部构芯冷却器安装在滑板上→安装初级部构芯→安装滑板→检验直线电机安装情况(手动)→连接各冷却和液压管路→完善各部

3.3直线电机装配过程的分析

由于直线电机装配后,拆装非常困难,因此必须做好装配前准备工作。装配前应按目录清点零件,收集所需工装,清洗零件,按图纸对零件进行检测。按照直线电机装配工艺流程进行装配。

一、如何实现直线电机安全装配

由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁磁极力,因此装配过程中要求做到:

a.磁性材料距次级部构芯距离必须保证>100mm。

b.手表、磁性材料(磁卡、软盘等)要远离。

c.安装、维修、维护设备时要带工作手套。

d.带心脏起搏器的人员不得在此设备上工作。

e.不能将强磁体放在次级部构芯附近。

装配直线电机时,为了应急,应最少应准备两个高强度、非磁性材料制造的楔形物(如:不锈钢扁铲),一把锤子(重3kg),用于吸到次级部构芯零件的分开

f.装配前才能拆掉次级部构芯包装箱。

g.装配时至少有2人操作。

h.永远不能把初级部构芯直接放到次级部构芯上。

i.使用钢制工具时要握紧工具,从侧面接近次级部构芯。

j.次级部构芯装好后又做其他工作,要用20mm以上厚的非金属材料(如木头)把它盖好。

k.在初级部构芯和次级部构芯已被装好在直线导轨上之后,要防止由于磁力作用在移动方向上移动。

l.要使用专用安装工具和设备。

二、如何选择安装直线电机所用工装

由于直线电机初级部构芯具有很强的磁力,所以安装直线电机所用工具应采用不锈钢或非金属工具,安装初、次级部构芯时,为防止磁力作用造成的伤害,而采用专用安装装置,所需工装如下:

a.拆卸/安装装置(非磁性材料)。

b.手锤1把(非磁性材料)。

c.(楔形物)2把(非磁性材料)。

d.扳手(不锈钢)。

三、如何选择安装直线电机螺钉和紧固扭矩

安装直线电机为避免磁性,选用了不锈钢A2螺钉,为保证螺钉安装牢固,规定螺钉拧入的深度不少于1.0×d,为增加螺钉的夹持力,给螺钉涂上MoS2润滑脂,为保证初、次级线圈受力均匀,冷却板安装时不变形,紧固螺钉时用扭矩扳手按要求对角紧固。

安装1FN3直线电机用螺钉紧固扭矩单位:N.m

由于直线电机拆装较困难,为保证无杂质,安装前将零件清洗干净。为保证螺钉安装时不蹩进,将螺钉孔进行校正。由于初、次级部构芯气槽尺寸直接影响初、次级部构芯吸引力和进给力,为不减弱直线电机功能,保证初、次级部构芯安装后之间的槽隙为0.8mm,安装前对各零件尺寸链进行校正。为保证直线电机安装精度,安装直线电机前先将滑板与床鞍进行预装,调整好精度后,再将滑板拆下,分别安装初、次级部构芯。

1.次级部构芯的装配

a.用螺钉把次级部构芯固定到床鞍上,将组合分配器轴向放在冷却型材

的插头上,将组合分配器螺钉拧上,为防止冷却型材扭曲变形,不要拧紧螺钉。安装另一端组合分配器,拧紧螺钉。检查次级部构芯冷却系统是否漏油。试漏时采用好冷却介质,避免在直线电机构件上形成冷凝水、湿气。

b.安装次级部构芯。每块次级部构芯紧固后,用防磁板盖上,然后再安

装另一块次级部构芯,避免因磁力造成的伤害。次级部构芯共由四块串联在一起,装配时必须保证贴在次级部构芯支持板上的标示字母“N (北极)”都要对着相同的方向。

c.安装将次级部构芯磁性盖板。安装时先将次级部构芯磁性盖板一端固

定在次级部构芯端块上,另一端与最后一块次级部构芯的外边沿大约45o角从上部定位,抽出隔磁盖板,然后将次级部构芯磁性盖板降下来与次级部构芯对准。当下降时,磁性力能被感觉到盖板马上被释放,然后“喀嚓”一声进入正确位置。检查一下盖板装的位置是否正确,然后将次级部构芯磁性盖板另一端固定在另一块次级部构芯端块上。

2. 初级部构芯的安装

a. 将初级部构芯精密冷却装置、初级部构芯安装在滑板。

b. 将拆卸/安装装置固定在滑板两侧,保证拆卸/安装装置在

最大极限位置。c. 将隔垫放在次级部构芯上,在将滑板放在床鞍上,保证拆卸/安装装置与床鞍接触可靠,慢慢松动螺钉,使滑板慢慢与床鞍导轨块接触,保证螺纹孔对正,用高强度螺钉将滑板紧固在导轨块上。

d. 不能把次级部构芯直接放到次级部构芯上。

e. 次级部构芯已被装好在直线导轨上之后,要防止由于磁力作用在移

动方向上移动。

五、装配运车试验

a.检查直线电机各冷却、液压接头是否连接好,电线连接是否正确,

各保护开关安装是否可靠。

b.直线电机进行耐压、绝缘试验。

c.接通冷却液和液压油,手动移动滑板,移动要均匀,摩擦要小,不

允许有卡住现象,确保在整个行程上都能移动平滑。当手动移动滑板时,均匀有节奏的力的波动因电机结构的不同,这并不表明电机装配或者安装不正确。

d.电机通电后,先在低速下运行,待运行无误后,在逐渐升高

速度。不能用机床的冷却液或润滑剂来冷却直线电机。冷却介质可采用水加防腐剂或低粘度油。

e.介质必须是清洁、过滤过的,最大允许颗粒为100μm。

f.任何环境下,都要防止在直线电机构件上形成冷凝水湿气,

要选择好冷却介质流进温度,一般选择最大流进温度在环境温度以下3℃。如果电机的连续进给力用到100%,那么流进温度应最大限制在35℃。

g.次级部构芯的最高温度不能超过60℃,否则永磁体会被永久消磁。

h.冷却回路的最大压力:10bar。

4. 结论

采用上述方法装配出的直线电机进给系统,经过运车试验,其快速移动速度可达到60m/min,加速度可达1g,定位精度达到0.006mm,重复定位精度达到0.003,满足了试验要求,达到预期目的,直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。

参考文献

1.《制造技术与机床》

2.《机械工艺学》

3.《西门子直线电机设计手册》

直线电机运用

直线电机主要应用于三个方面: 一是应用于自动控制系统,这类应用场合比较多; 二是作为长期连续运行的驱动电机; 三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。 本期讨论直线电机的运用 Linear motor: 直线伺服电机应用 昆山佳德锐自动化系统销售中心 交流论坛: www.hilife.me 工业之美

什么是直线电机特点 1.什么是直线电机 直线电动机(或称线性马达)(Linear motor)是电动机的一种,其原理与传统的电动机不同,直线电机是直接把输入电力转化为线性动能,与传统的扭力及旋转动能不同。直线电机又分为低加速及高加速两大类,当中低加速直线电机适用于磁悬浮列车及 其他地面交通工具,而高加速直线电机能把物件在短时间内加至极高速度,适用于粒子 加速器、制造武器等。2.直线电机是如何工作的 下面简单介绍直线电机类型 和他们与旋转电机的不同,最 常用的直线电机类型是平板式, U型槽式和管式。线圈的典型组 成是三相,有霍尔元件实现无刷 换相,直线电机用HALL换相的 相序和相电流。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer,rotor) 是用环氧材料把线圈压缩在一起制成的,而且磁轨是把磁铁(通常是高能量的稀土磁铁)固 定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度) 和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙 (airgap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋 转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直 线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 3.直线电机分类 管状直线电机 圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以 增加行程。典型的线圈绕组是三相组成的,使用霍尔装置实现无刷换相。推力 线圈是圆柱形的,沿磁棒上下运动。 U型直线电机 U型槽式直线电机有两个介于金属板之间且都对着线圈动子的平行磁轨。动子由导轨系统 支撑在两磁轨中间。动子是非钢的,意味着无吸力且在磁轨和推力线圈之间无干扰力产生。 非钢线圈装配具有惯量小,允许非常高的加速度。线圈一般是三相的,无刷换相。可以用空 气冷却法冷却电机来获得性能的增强。也有采用水冷方式的。这种设计可以较好地减少磁通 泄露因为磁体面对面安装在U形导槽里。这种设计也最小化了强大的磁力吸引带来的伤害 平板直线电机 有三种类型的平板式直线电机(均为无刷):无槽无铁芯,无槽有铁芯和有槽有铁芯。选 择时需要根据对应用要求的理解。无槽无铁芯平板电机是一系列coils安装在一个铝板上。由 于FOCER没有铁芯,电机没有吸力和接头效应(与U形槽电机同)。该设计在一定某些应用中有 助于延长轴承寿命。动子可以从上面或侧面安装以适合大多数应用。这种电机对要求控制速度 平稳的应用是理想的。如扫描应用,但是平板磁轨设计产生的推力输出最低。通常,平板磁轨 具有高的磁通泄露。 无槽有铁芯:无槽有铁芯平板电机结构上和无槽无铁芯电机相似。除了铁芯安装在钢叠片 结构然后再安装到铝背板上,铁叠片结构用在指引磁场和增加推力。磁轨和动子之间产生的吸 力和电机产生的推力成正比,迭片结构导致接头力产生。 无槽有铁芯:这种类型的直线电机,铁心线圈被放进一个钢结构里以产生铁芯线圈单元。 铁芯有效增强电机的推力输出通过聚焦线圈产生的磁场。铁芯电枢和磁轨之间强大的吸引力可 以被预先用作气浮轴承系统的预加载荷。这些力会增加轴承的磨损,磁铁的相位差可减少接头力。 加工产品对比

线性马达(直线电机)的工作原理

所谓线性马达又称为直线电机,是一种将传统的旋转电机沿轴线方向切开后,将旋转电机的初 级展开作为直线电机(线性马达)的定子,次级通电后在电磁力的作用下沿着初级做直线运动,成为直线电机(线性马达)的动子。 我们常说的磁悬浮,往往和直线电机(线性马达)驱动有着很大联系。磁浮运输系统通常采用“线性马达”也就是直线电机作为推进系统的。 线性马达的构成原理 设靠三相交流电力励磁的移动用电磁石 (作为定子),分左右两排夹装在铝板两旁 (但不接触),磁力线与铝板垂直相交,铝板即感应而生电流,因而产生驱动力。由于线性感应马达的定子装在列车上,较导轨短,因此线性感应马达又称为“短定子线性马达”(Short-stator Motor);线性同步马达的原理则是将超导电磁石装于列车上 (当作转子),轨道上则装有三相电枢线圈 (作为定子),当轨道上的线圈供应以可变周波数的三相交流电时,即能驱动车辆。由于车辆移动的速度系依与三相交流电周波数成比例的同步速度移动,故称为线性同步马达,而又 由于线性同步马达的定子装于轨道上,与轨道同长,故线性同步马达又称为“长定子线性马 达”(Long-stator Motor)。 传统轨道运输系统由于使用专用轨道,并以钢轮作为支撑与导引,因此随着速度的增加, 行驶阻力会递增,而牵引力则递减,列车行驶阻力大于牵引力时即无法再加速,故一直无法突 破地面运输系统理论上最高速度每小时375公里的瓶颈。虽然法国TGV曾创下传统轨道运输系统时速515.3公里的世界纪录,但因轮轨材料会有过热疲乏的问题,故现今德、法、西、日等 国之高铁商业营运时速均不超过300公里。

因此,如要进一步提升车辆速度,必须放弃传统以车轮行驶之方式,而采用“磁力悬 浮”(Magnetic Levitation,简称“磁浮”Maglev) 的方式,使列车浮离车道行驶,以减少摩 擦力、大幅提高车辆的速度。此一浮离车道的作法,除不会造成噪音或空气污染外,并可增进 能源使用之效率。另外采用“线性马达”(Linear Motor) 亦可加快该磁浮运输系统的速度, 因此使用线性马达的磁浮运输系统应运而生。 所谓磁浮运输系统就是利用磁力相吸或相斥的原理,使列车浮离车道,此磁力的来源可分 为“常电导磁石”(Permanent Magnets) 或“超导磁石”(Super Conducting Magnets, SCM)。所谓的常电导磁石就是一般的电磁铁,即只有通电时才具有磁性,电流一切断则磁性消失,由 于列车在极高速时集电困难,故常电导磁石仅能适用于采用磁力相斥原理、速度相对较慢 (约300kph) 的磁浮列车;至于速度高达500kph以上的磁浮列车 (利用磁力相吸原理),就非使用 通一次电就永久具有磁性 (因此列车可以不用集电) 之超导磁石不可。 因磁浮运输系统是利用磁力相吸或相斥的原理,故导致其分为“电动悬 浮”(Electrodynamic Suspension, EDS) 与“电磁悬浮”(Electromagnetic Suspension, EMS) 两种型态。电动悬浮 (EDS) 是利用同性相斥的原理,当列车经由外力而移动,装置于列车上的常电导磁石产生移动磁场,而在轨道上的线圈产生感应电流,此电流再生磁场,由于此二磁场 方向相同,故列车与轨道间产生互斥力,列车随即由此互斥力举升而悬浮。因列车的悬浮是靠 两磁场作用力相互平衡而达成,故其悬浮高度可固定不变 (约10 ~ 15mm),列车即因此具有相 当之稳定性。此外,列车必须先以其他方式启动,其所带之磁场才能产生感应电流与磁场,车 辆才会悬浮;因此,列车必须装置车轮以便“起飞”与“降落”之用,当速度达40kph以上时,列车开始悬浮 (即“起飞”),车轮自动收起;同理当速度渐减不再悬浮时,车轮自动放下以便滑行 (即“降落”)。通常采用电动悬浮 (EDS) 的系统,只能以“线性同步马达”(Linear Synchronous Motor, LSM) 作为推进系统,且其速度相对较慢 (约300kph)。 电动悬浮系统 (EDS) 与线性同步马达 (LSM) 的组合 电磁悬浮 (EMS) 则是利用异性相吸的原理,列车两侧向导轨环抱 (类似跨座式单轨系统),列车环抱的下部装有电磁石,导轨的底部装有钢板代替线圈,此时导轨之钢板在上,而列车之 电磁石在下,当通电励磁时,电磁石产生之磁场吸引力吸引列车向上,列车因重力而下沉,两

直线电机资料20110302

直线电机基础 编辑本段直线电机也称线性电机,线性马达,直线马达 在实际工业应用中的稳定增长,证明直线电机可以放心的使用。下面简单介绍直线电机类型和他们与旋转电机的不同. 最常用的直线电机类型是平板式和U 型槽式,和管式。线圈的典型组成是三相,有霍尔元件实现无刷换相.图示直线电机用HALL换相的相序和相电流. 该图直线电机明确显示动子(forcer, rotor)的内部绕组.磁鉄和磁轨.动子是用环氧材料把线圈压成的。而且,磁轨是把磁铁固定在钢上。 直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。 直线电机经常简单描述为旋转电机被展平,而工作原理相同。动子(forcer, rotor) 是用环氧材料把线圈压缩在一起制成的.而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上.电机的动子包括线圈绕组,霍尔元件电路板,电热调节器(温度传感器监控温度)和电子接口。在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙(air gap)。同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。 直线电机的控制和旋转电机一样。象无刷旋转电机,动子和定子无机械连接(无刷),不象旋转电机的方面,动子旋转和定子位置保持固定,直线电机系统可以是磁轨动或推力线圈动(大部分定位系统应用是磁轨固定,推力线圈动)。用推力线圈运动的电机,推力线圈的重量和负载比很小。然而,需要高柔性线缆及其管理系统。用磁轨运动的电机,不仅要承受负载,还要承受磁轨质量,但无需线缆管理系统。 相似的机电原理用在直线和旋转电机上。相同的电磁力在旋转电机上产生力矩在直线电机产生直线推力作用。因此,直线电机使用和旋转电机相同的控制和可编程配置。直线电机的形状可以是平板式和U 型槽式,和管式.哪种构造最适合要看实际应用的规格要求和工作环境。 编辑本段圆柱形动磁体直线电机 圆柱形动磁体直线电机动子是圆柱形结构。沿固定着磁场的圆柱体运动。这种电机是最初发现的商业应用但是不能使用于要求节省空间的平板式和U 型槽式直线电机的场合。圆柱形动磁体直线电机的磁路与动磁执行器相似。区别在于线圈可以复制以增加行程。典型的线圈绕组是三相组成

直线电机原理

,提高系统精确度,所以得到广泛的应用。直线电动机的种类按结构形式可分为;单边扁平型、双边扁平型、圆盘型、圆筒型(或称为管型)等;按工作原理可分为:直流、异步、同步和步进等。下面仅对结构简单,使用方便,运行可靠的直线异步电动机做简要介绍。 直线异步电动机的结构主要包括定子、动子和直线运动的支撑轮三部分。为了保证在行程范围内定子和动子之间具有良好的电磁场耦合,定子和动子的铁心长度不等。定子可制成短定子和长定子两种形式。由于长定子结构成本高、运行费用高,所以很少采用。直线电动机与旋转磁场一样,定子铁心也是由硅钢片叠成,表面开有齿槽;槽中嵌有三相、两相或单相绕组;单相直线异步电动机可制成罩极式,也可通过电容移相。直线异步电动机的动子有三种形式: (1)磁性动子动子是由导磁材料制成(钢板),既起磁路作用,又作为笼型动子起导电作用。 (2)非磁性动子,动子是由非磁性材料(铜)制成,主要起导电作用,这种形式电动机的气隙较大,励磁电流及损耗大。 (3)动子导磁材料表面覆盖一层导电材料,导磁材料只作为磁路导磁作用;覆盖导电材料作笼型绕组。 因磁性动子的直线异步电动机结构简单,动子不仅作为导磁、导电体,甚至可以作为结构部件,其应用前景广阔。 直线异步电动机的工作原理和旋转式异步电动机一样,定子绕组与交流电源相连接,通以多相交流电流后,则在气隙中产生一个平稳的行波磁场(当旋转磁场半径很大时,就成了直线运动的行波磁场)。该磁场沿气隙作直线运动,同时,在动子导体中感应出电动势,并产生电流,这个电流与行波磁场相互作用产生异步推动 直线异步电动机主要用于功率较大场合的直线运动机构,如门自动开闭装置,起吊、传递和升降的机械设备,驱动车辆,尤其是用于高速和超速运输等。由于牵引力或推动力可直接产生,不需要中间连动部分,没有摩擦,无噪声,无转子发热,不受离心力影响等问题。因此,其应用将越来越广。直线同步电动机由于性能优越,应用场合与直线异步电动机相同,有取代趋势。直线步进电动机应用于数控绘图仪、记录仪、数控制图机、数控裁剪机、磁盘存储器、精密定位机构等设备中。

直线电机发展应用综述 (1)(1).

直线电机在数控机床上的应用综述 所在学院:机械工程学院 学科专业:机械工程 学生:解瑞建 学号:12847920 指导教师:董颖怀 天津科技大学机械工程学院 二零一二年十二月二十七日

摘要 简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有很大的优势。利用直线电机结构简单、运动平稳、噪声小、运动部件摩擦小、磨损小、使用寿命长、安全可靠性等特性,采用直线电机的开放式数控系统使机床驱动控制技术获得新发展。介绍几个直线电机应用的实例,指出直线电机进给驱动技术将是高速机床未来的发展方向。 关键词:直线电机数控机床驱动控制高速机床 0 引言 数控机床正在向高精密、高速、高复合、高智能和环保的方向发展。高精密和高速加工对传动及其控制提出了更高的要求:更高的动态特性和控制精度,更高的进给速度和加速度,更低的振动噪声和更小的磨损。在传统的传动链中,作为动力源的电动机要通过齿轮、蜗轮副,皮带、丝杠副、联轴器、离合器等中间传动环节才能将动力送达工作部件。在这些环节中产生了较大的转动惯量、弹性变形、反向间隙、运动滞后、摩擦、振动、噪声及磨损。虽然在这些方面通过不断的改进使传动性能有所提高,但问题很难从根本上解决,于是出现了“直接传动”的概念,即取消从电动机到工作部件之间的各种中间环节。随着电机及其驱动控制技术的发展,电主轴、直线电机、力矩电机的出现和技术的日益成熟,使主轴、直线和旋转坐标运动的“直接传动”概念变为现实,并日益显示出巨大的优越性。直线电机及其驱动控制技术在机床进给驱动上的应用,使机床的传动结构出现了重大变化,并使机性能有了新的飞跃。 图0 SUPT Motion公司生产的一种直线电机

直线电机工艺的研究

直线电机装配工艺的研究与应用

摘要:为了提高企业制造技术,加快新技术的开发,促进企业技术进步,随着高速切削、超精密加工等先进制造技术的发展,要求要有很高的驱动推力、快速进给速度和极高的快速定位精度。机床进给系统形成了直线电机直接驱动为主的发展方向。本文阐述了直线电机的工作原理及其功能,并以CKS6125数控车床所采用的直线电机为例,阐述直线电机的装配工艺的关键技术,且对直线电机的主要装配工序进行分析与研究。此次直线电机试装的成功,为我厂机床更新换代,经济的发展起到了积极的推动作用。 1.引言 近年来,就如何提高企业制造技术,加快新技术的开发,以被越来越多企业所重视。随着高速切削、超精密加工等先进制造技术的发展,对机床各项性能指标提出了越来越高要求。同时也对机床进给系统的伺服性能提出了更高的要求:要有很高的驱动推力、快速进给速度和极高的快速定位精度。高速度、高加速度和高精度是现代伺服的要求及发展趋势。直线电动机高速进给单元的应用使进给传动链及其结构发生深刻的变化,机床进给系统形成了直线电机直接驱动为主的发展方向。直线电机的机械结构虽然简单,但制造工艺要求却非常严格,为加快我国高速加工技术的发展与应用,加速我厂数控机床的更新换代,组织力量对直线电机装配工艺过程进行攻关是必要的。 2.直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机

驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 我厂在数控车床上应用直线电机在国内是第一家,所以说直线电机在CKS6125数控车床X轴上的应用,是我们对这项新技术的尝试,这项新技术研制的成功,为以后的机床开发和应用打下了基础。由于该项技术为我厂首次试制,直线电机的装配应处在探索中。 CKS6125数控车床X轴直线电机采用的是西门子1FN3永磁同步直线电机,是将初级部构芯(线圈)安装在滑板上,次级部构芯(磁铁)安装在床鞍上而成的一个完整内装式电机。其结构如图1: 图1 1FN3永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

直线电机的概述

直线电机的基本结构与工作原理 一直线电机的基本结构 图1-1所示的a和b分别表示了一台旋转电机和一台直线电机。 图1-1 旋转电机和直线电机示意图 a)旋转电机 b)直线电机直线电机可以认为是旋转电机在结构方面的一种演变,它可看作是将一台旋转电机沿径向剖开,然后将电机的圆周展成直线,如图1-2所示。这样就得到了由旋转电机演变而来的最原始的直线电机。由定子演变而来的一侧称为初级,由转子演变而来的一侧成为次级。 图1-2 由旋转电机演变为直线电机的过程 a)沿径向剖开 b)把圆周展成直线图1-2中演变而来的直线电机,其初级和次级长度是相等的,由于在运行时初级和次级之间要做相对运动,如果在运动开始时,初级与次级正巧对齐,那么在运动中,初级与次级之间互相耦合的部分越来越少,而不能正常运动。为了保

证在所需的行程范围内,初级和次级之间的耦合能保持不变,因此世界应用时,是将初级与次级制造成不同的长度。由于段初级在制造成本上,运行的费用上均比短次级低得多,因此一般采用短初级长次级。如图1-3所示。 图1-3 单边型直线电机 a)短初级 b)短次级 在图1-3中所示的直线电机中仅在一边安放初级,对于这样的结构型式称为单边型直线电机。特点是在初级与次级之间存在着很大的法向吸力,一般这个法向吸力在钢次级时约为推力的10倍左右,大多数场合这种吸力是不希望存在的。 图1-4 双边型直线电机 a)短初级 b)短次级 在图1-4中所示的直线电机在次级的两边都装上了初级。这样这个法向吸力就可以相互抵消,这种结构型式称为双边型。 上述介绍的直线电机称为扁平型直线电机,是目前应用最为广泛的,除此之外直线电机还可以做成圆筒型(也称管型)结构,它也可以看作是由旋转电机演

直线电机开发及应用研究

2009年第1期 唐丽婵,等:基于LabVIEW 的无线远程温度监控系统 25 文章编号:1674-540X(2009)01-025-07 收稿日期:2009-01-15 作者简介:王振滨(1973-),男,博士研究生,主要从事分数阶线性系统和电气传动方面的研究工作,E mail:wangzhenbing@https://www.wendangku.net/doc/1b13149210.html, 直线电机开发及应用研究 王振滨1, 余鹿延2, 周守国3 (1.上海电气集团股份有限公司中央研究院,上海200070; 2.上海赛科现代交通设备有限公司,上海200023; 3.上海捷晟电机有限公司,上海200075) 摘 要:介绍了直线电机国内外的发展现状,指出永磁同步直线电机将是直线电机今后的发展方向。阐述了永磁同步直线电机的磁阻力产生的原因及其造成的推力波动对永磁同步直线电机控制性能的影响,并归纳出减小磁阻力的方法。最后简要介绍了上海电气中央研究院在开展永磁同步直线电机研究及应用的情况。 关键词:永磁同步直线电机;磁阻力;控制;开发与应用中图分类号:T M 33 文献标识码:A The Development and Application Research of Linear Motors W A N G Zhenbin 1 ,YU L uyan 2 ,ZH O U S houguo 3 (1.Shang hai Elect ric Group Co.Lt d.Cent ral A cademe,Shang hai 200070,China;2.Shanghai SEC M odern Traffic Equipment Co.Ltd.,Shanghai 200023,China; 3.Shanghai Jie Sheng M ot or Co.,Ltd.,Shanghai 200075,China) Abstract:It intro duces the up to date researches o f linear mo to rs hom e and abro ad,and points out permanent magnet linear synchronous m otors (PMLSM )w ill be the development dir ectio n of linear motor s in the future.T he r easo ns orig inated fr om detent for ce of PM LSMs are illustrated as w ell as the influences of the thrust force r ipple caused by it on the control per for mances of PM LSMs,and the methods o f reducing detent force is summed up.Finally,a brief introduction is g iven of the researches and applications of PM LSM s made by Shanghai Electr ic Gr oup Co.Ltd.Centr al A cademe. Key words:PM LSM;detent force;contr ol;development and applicatio n 1 直线电机国内外研究现状 1.1 快速发展的永磁直线电机技术 永磁直线电动机具有结构简单、体积小、无电 励,效率高、单位推力大等优点,随着稀土永磁材料、电磁场数值计算与分析、智能控制理论以及计算机技术的不断发展,永磁直线电动机的发展越来越快,己成为学术研究和开发应用的热点。永磁直

高性能无铁芯直线电机线圈

1.高性能无铁芯直线电机线圈 电阻小于10Ω,电感小于10mH,电气时间常数小于2ms,工作电压大于直流300V,峰值电流小于30A,连续电流小于10A,峰值推力大于700N,连续推力大于150N,线圈重量小于3kg。 2.高性能无铁芯直线电机磁轨 磁轨高度小于100mm,厚度小于55mm,有效行程大于200mm。 3.五轴超精密运动控制器 运行RT Linux实时操作系统,64位系统架构,支持标准C语言,支持32个独立坐标系,伺服更新频率大于20kHz,配有双千兆网口、光电隔离IO卡、模拟量和数字量反馈接口、手轮通道,5轴模拟量控制通道,220V独立电源供电。 4.线性放大器 要求真正的AB类放大器,零交越失真,支持串口通讯、正余弦电机换相,输出电压大于+\-50V,接收+/- 10V控制指令,峰值电流大于15A,连续电流大于5A,长度小于40cm,宽度小于25cm,高度小于15cm,重量小于10kg。 5.电器控制柜 防护等级:IP56,证书:CE、ROHS、IP56,材质:优质冷轧钢板,安装板为镀锌板,门板厚度2.0mm,安装板厚度2.5mm,柜体厚度为1.5mm,表面处理:酸洗磷化,外部粉末涂层,颜色:RAL7035/RAL7032织纹或平光,标准配置:前门、后门、背板、顶板、底板、安装板1块、密封条、门锁(平板锁)、铰链。包含电气控制柜设计、装配、电缆制作及布线、控制器与放大器调试。 6.四轴超精密运动控制器 运行RT Linux实时操作系统,64位系统架构,支持标准C语言,支持32个独立坐标系,伺服更新频率大于20kHz,配有双千兆网口、光电隔离IO卡、模拟量和数字量反馈接口、手轮通道,4轴模拟量控制通道,220V独立电源供电。 7.角度编码器 不锈钢材质,分辨率大于8000 Lines/Rev,系统精度优于+/- 5 arc sec,最大允许转速大于3000 rpm。磁性材质,分辨率大于20000 cts/Rev,最大允许转速大于10000rpm。 8.光栅尺及读数头 膨胀系数0.6 μm/m/°C,信号周期20um,精度+/- 1um,1Vpp模拟量信号输出,有效量程大于200mm。 9.五轴控制手轮 五轴控制通道,三档分辨率可调,RS422信号输出,含急停按钮。 10.密闭放松插头 不锈钢外壳,M23规格,螺纹连接,IP67防护等级,内部屏蔽位于外壳上,同轴360度连接,皇冠型电缆尾夹。 11.主轴无框力矩电机 力矩常数0.41 Nm/Arms,反电动势24.77 Vrms/krpm,电感2.145mH,电阻0.757Ω,堵转力矩3.52Nm,

直线电机的工作原理

直线电机的工作原理 直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。它可以看成是一台旋转电机按径向剖开,并展成平面而成,如图1所示。 由定子演变而来的一侧称为初级,由转子演变而来的一侧称为次级。在实际应用时,将初级和次级制造成不同的长度,以保证在所需行程范围内初级与次级之间的耦合保持不变。直线电机可以是短初级长次级,也可以是长初级短次级。考虑到制造成本、运行费用,目前一般均采用短初级长次级。 直线电动机的工作原理与旋转电动机相似。以直线感应电动机为例:当初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,将感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。 直线电机的优缺点介绍

直线电机是一种将电能转化为动能的机械装置,通常应用于工业生产当中。与直线电机相对应的一种装置是旋转电机,两者的工作原理类似。但是直线电机是进行直线运动的电机,而旋转电机是进行旋转运动的电机。直线电机可以直接将电能转化为动能,而不需要中间装置。 直线电机的优点 直线电机一般有平板式、U型式、管式几种。直线电机的工作系统是通过内部直线导轨来完成工作,用环保材料将线圈压缩成电路板的动子和电热调节器连接,然后在稀土磁铁的磁轨上进行动力推动,不需要像旋转电机一样,将动子固定在旋转轴承的支撑架上来保证相

对运动部分的稳定,通过直接反馈位置的直线编码器装置,就可以直接测量负载位置,从而保证负载位置的精确度。 由上看出,直线电机因为不需要中间转换装置,所以操作简单,非常适合进行非离心力的运动。直线电机的优势主要有以下几点: 首先,结构简洁。直线电机直接产生直线运动,位置精确度高,更为节省成本、稳定可靠、操作和维护简便。 第二,运动效率高。直线电机的气垫和磁垫中间存在缝隙,在运动时,不会出现机械接触,也不会出现摩擦和噪音,对零部件的损伤较小,从而具有较高的工作效率,可以进行高速直线运动。

直线电机的应用

直线电机的应用 直线电机凭借高速度、高加速、高精度及行程不受限制等特性在物流系统、工业加工与装配、信息及自动化系统、交通与民用以及军事等领域发挥着十分重要的作用。 直线电机主要应用场合:一是应用于自动控制系统,这类应用场合比较多;其次是作为长期连续运行的驱动电机;三是应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 直线电机可以在几秒钟内把一架几千公斤重的直升飞机拉到每 小时几百公里的速度,它在真空中运行时,其时速可达几千上万公里。在军事上,人们利用它制成各种电磁炮,并试图将它用于导弹、火箭的发射;在工业领域,直线电机被用于生产输送线,以及各种横向或垂直运动的一些机械设备中;直线电机除具有高速、大推力的特点以外还具有低速、精细的另一特点,例如,步进直线电机,它可以做到步距为1μm的精度,因此,直线电机又被应用到许多精密的仪器设备中,例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等。除此之外,直线电机还被用于各种各样的民用装置中,如电动门、电动窗、电动桌、椅的移动,门锁、电动窗帘的开、闭等等,尤其在交通运输业中,人们利用直线电机制成了时速达500km以上的磁浮列车。

直线电机可以认为是旋转电机在结构方面的一种变形,它可以看作是一台旋转电机沿其径向剖开,然后拉平演变而成。近年来,随着自动控制技术和微型计算机的高速发展,对各类自动控制系统的定位精度提出了更高的要求,在这种情况下,传统的旋转电机再加上一套变换机构组成的直线运动驱动装置,已经远不能满足现代控制系统的要求,为此,近年来世界许多国家都在研究、发展和应用直线电机,使得直线电机技术发展速度加快,应用领域越来越广。 直线电机的优点是:结构简单、反应速度快、灵敏度高、随动性好、密封性好、不怕污染、适应性强(由于直线电机本身结构简单,又可做到无接触运行,因此容易密封,各部件用尼龙浸渍后,采用环氧树脂加以涂封,这样它就不怕风吹雨打,或有毒气体和化学药品的侵蚀,在核辐射和液体物质中也能应用)、工作稳定可靠、寿命长(直线电机是一种直接传动的特种电机,可实现无接触传递,故障少,几乎不需要维修,又不怕振动和冲击)、额定值高(直线电机冷却条件好,特别是长次级接近常温状态,因此线负荷和电流密度可以取得很高)、有精密定位和自锁的能力(和控制系统相配合,可做到0.001mm的位移精度和自锁能力)。 直线电机能直接产生直线运动,这一点对直线运动机械设计者和使用者有很大的吸引力。不少直线运动的机械是由旋转电机传动的,必须配置由旋转运动变为直线运动的机械传动装置,使得整个装置机构庞大,成本较高和效率较低。采用直线感应电机,不但省去了机械

直线电机工艺分析

直线电机简介 直线电机是将直线位移机构的传动元件和执行元件相结合。按能量转换定理,进给机构的直线电机可分为同步电动机和异步电动机。直线电机结构紧凑、功率损耗小、快移速度高、加速度高、运动噪声低等优点,直线电机驱动方式与旋转电机驱动方式的最大区别是,取消了从电动机到工作台之间的一切机械中间传动环节,实现了“零传动”,避免了丝杠传动中的反向间隙、惯性、摩擦力和刚性不足等缺点,使机床的性能大大提高。这项新技术国际上只有几家较大的机床公司把它应用到机床行业,而我国直线电机的设计制造技术刚刚起步,尚末形成批量生产规模,直线电机各项性能指标和国外尚有较大差距。 图1 永磁同步直线电机主要有初级部分、次级部分、初级部构芯型材、精密冷却部分组成,其结构如图2:

图2 图3: 图3 1.直线电机装配工艺的关键技术及工艺方案 1.1 直线电机装配工艺的关键技术 根据直线电机的结构特点,直线电机零件加工和装配的主要关键: a) 初、次级部构芯安全装配。 b) 安装直线电机所需工装选择。 c) 安装直线电机螺钉紧固扭矩选择。 端子盒 可选件:精确冷却器 (对环境温度影响< 4 K) 次级部分 初级部分 可选件:连续防护件 (保护次级部分) 动力冷却器 可选件:尾端件 (固定机盖,水流入流出) 可选件:冷却部分 (对环境温度影响< 4 K)

d)直线电机初、次级部芯装配。 e)直线电机装配后检查与运车。 1.2直线电机装配工艺方案确定 直线电机机械结构较为简单,但其装配工艺却非常严格。由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁铁磁极力,这对于人的健康和安全有直接的影响,因此装配过程中既要考虑如何保证直线电机的装配精度,也要重视人身安全。按照上述要求制定直线电机装配工序流程为: 装配前准备→将床鞍安装在床身、安装床鞍导轨→预装滑板调整机床精度→将次级部构芯冷却安装在床鞍上并试漏→安装次级部构芯→安装次级部构芯磁性盖板→将初级部构芯冷却器安装在滑板上→安装初级部构芯→安装滑板→检验直线电机安装情况(手动)→连接各冷却和液压管路→完善各部 1.3直线电机装配过程的分析 由于直线电机装配后,拆装非常困难,因此必须做好装配前准备工作。装配前应按目录清点零件,收集所需工装,清洗零件,按图纸对零件进行检测。按照直线电机装配工艺流程进行装配。 一、如何实现直线电机安全装配 由于直线电机次级构芯的永磁体有一个强大的静态磁场和相当高铁磁极力,因此装配过程中要求做到: a.磁性材料距次级部构芯距离必须保证>100mm。 b.手表、磁性材料(磁卡、软盘等)要远离。 c.安装、维修、维护设备时要带工作手套。 d.带心脏起搏器的人员不得在此设备上工作。

直线电机工作原理及其驱动技 术的 应用

直线电机工作原理及其驱动技术的应用 摘要:简述了直线电机工作原理及其驱动技术,并且举例说明了直线电机直接驱动与传统数控机床“旋转伺服电机+滚珠丝杠”的传动方式对比具有的巨大优势。介绍了直线电机进给驱动技术在数控机床上的几个应用实例,指出直线电机进给驱动技术将是高速数控机床未来发展的方向。 引言 随着航空航天、汽车制造、模具加工、电子制造行业等领域对高效率地进行加工的要求越来越高,需要大量高速数控机床。机床进给系统是高速机床的主要功能部件。而直线电机进给系统彻底改变了传统的滚珠丝杠传动方式存在的弹性变形大、响应速度慢、存在反向间隙、易磨损等先天性的缺点,并具有速度高、加速度大、定位精度高、行程长度不受限制等优点,令其在数控机床高速进给系统领域逐渐发展为主导方向。 1 直线电机及其驱动技术 现代先进的驱动技术主要分为两大类:一类为电磁式的,另一类则为非电磁式的。 电磁类的现代先进的驱动技术主要由现代电磁类驱动器与现代控制系统组成,它的驱动器包括传统改进型的电磁驱动器与新发展型的电磁驱动器。它们中有旋转的、直线的、磁浮的、电磁发射的等等。除了在一般通用电机技术基础上改进获得的电机技术外,还有更多的是在通用电机技术基础上进一步发展的新型电机技术,如直线电机技术、无刷直流电机技术、开关磁阻电机技术和各种新型永磁电机技术等。 直线电机是一种将电能直接转换成直线运动机械能而不需通过中问任何转换装置的新颖电机,它具有系统结构简单、磨损少、噪声低、组合性强、维护方便等优点。旋转电机所具有的品种,直线电机几乎都有相对应的品种,其应用范围正在不断扩大,并在一些它所能独特发挥作用的地方取得了令人满意的效果。 直线电机结构示意图如下图所示。直线电机是将传统圆筒型电机的初级展开拉直,变初级的封闭磁场为开放磁场,而旋转电机的定子部分变为直线电机的初级,旋转电机的转子部分变为直线电机的次级。在电机的三相绕组中通入三相对称正弦电流后,在初级和次级间产生气隙磁场,气隙磁场的分布情况与旋转电机相似,沿展开的直线方向呈正弦分布。当三相电流随时问变化时,使气隙磁场按定向相序沿直线移动,这个气隙磁场称为行波磁场。当次级的感应电流和气隙磁场相互作用便产生了电磁推力,如果初级是固定不动的,次级就能沿着行波磁场运动的方向做直线运动。即可实现高速机床的直线电机直接驱动的进给方式,把直线电机的初级和次级分别直接安装在高速机床的工作台与床身上。由于这种进给传动方式的传动链缩短为0,被称为机床进给系统的“零传动”。 与“旋转伺服电机+滚珠丝杠”传动方式相比较,直线电机直接驱动有以下优点:(1)高速度,目前最大进给速度可达100~200m/min。(2)高加速度,可高达2g~10g。(3)定位精度高,由于只能采用闭环控制,其理论定位精度可以为0,但由于存在检测元件安装、测量误差,实际定位精度不可能为0。最高定位精度可达0.1~0.01m。(4)

直线电机在城市轨道交通系统中的应用

直线电机在城市轨道交通系统中的应用 摘要:介绍了直线电机工作原理和直线电机电动车特点,以及日本利用直线电机的地铁和常导磁悬浮交通系统发展的概况。 城市交通在城市的发展过程中愈来愈重要,而城市轨道交通占据突出的位置。由于近年来科学技术的发展和进步,包括地铁、轻轨交通、单轨交通、新交通系统以及磁悬浮交通系统等城市轨道交通的形式变化多样。在改善城市交通的时候,各个城市根据自己城市的具体特点选择交通系统的范围也更宽。安全、舒适、高密度运行,通过引入新技术达到节能,保护环境,降低成本,从结构和性能上采取措施,不断进行改进,保持先进性是城市轨道交通存在的价值。在城市轨道交通系统中,根据车辆的特点,采用直线电机作为驱动电机又提供了一种新的选择。 1 直线电机的工作原理 通常,电动机是旋转型的。定子包围着圆筒形的转子,定子形成磁场,在转子中流过电流,使转子产生旋转力矩。而直线电机则是将两个圆筒形部件展开成平板状,面对面,定子在相应于转子移动的长度方向上延长,转子通过一定的方式被支承起来,并保持稳定,形成转子和定子之间的空隙。 直流电机、感应电机、同步电机等都可做成直线电机,但是,直流电机在结构上无法做成无整流子型,所以,直线电机一般为感应电动机和同步电动机。这些交流电动机的1次侧有作为定子侧的,也有作为转子侧即移动体侧的。例如,超导磁悬浮中,同步电动机的定子(地上)是1次侧,旋转磁场在地上移动;而地铁的直线电机,感应电动机的旋转磁场装在车上,2次侧固定在地上。前者的空隙靠左右导向线圈保持,而后者靠车轮保持。 产生推进力的原理与电动机产生力矩的原理一样,在直线电机地铁中,安装在转向架上的直线电动机沿前进方向产生移动磁场。让面对该磁场、安装在地上的反作用板(相当于2次线圈)中通过2次电流(涡电流),由这个2次电流切割磁场产生的力作为反作用力,安装在转向架上的直线电动机得到推进力。 直线电机的基本缺点是很难将定子与转子空隙做成象旋转式电机那么小,旋转式是无限循环的,而直线电动机是有端头的。为此,泄漏磁通多,电气—机械能量转换的效率低,如果要得到相同的输出,逆变器的容量需要比旋转式大。 2 直线电机电动车的特点 在使用旋转式电机的电动车中,一般是通过齿轮减速将旋转力矩转换为列车的牵引力,同时也受到轮轨间粘着的限制。 直线电机电动车的推进力和制动力都利用直线电机,如上所述,有1次侧在车上和地上2种。1次侧在车上时,要将VVVF逆变器和直线电机装载在车上,使车辆重量增加,车辆价格高;但在地面上的设备仅只有反作用板,又降低了建设费用。1次侧在车上的方式已在一部分地铁得到了实际应用。 在直线电机的电动车中,推进力由铺设在钢轨间的反作用板直接传递,所以不受粘着的限制,有可能从滑行和空转产生的各种问题中解脱出来,有利于通过大坡道(最大坡度可达60‰~80‰)和小半径曲线(最小半径为50 m)的线路。此外,由于直线电机无转动部件,所以不需要轴承和润滑机构,使之结构简单,延长寿命,这是其最大的特点。 在旋转电动机中,旋转力矩与其直径的平方成正比,所以要得到大的旋转力矩,电动机的直径就要增大,在直线电机中,这相当于将相应的部分在长度方向延长,而高度方向可以减小。在大型电机中,如果是1级齿轮减速,车轮直径也必须加大;而在直线电机驱动中,则不必如此,所以,可以减小车轮的直径,这将使车辆的地板面的高度降低。

直线电机的结构及工作原理

直线电机的结构及工作原理 来源:本站整理作者:佚名2010年02月25日 17:43 分享 订阅 [导读]直线电机的结构直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相 关键词:直线电机 直线电机的结构 直线电机的结构可以看作是将一台旋转电机沿径向剖开,并将电机的圆周展开成直线而形成的。其中定子相当于直线电机的初级,转子相当于直线电机的次级,当初级通入电流后,在初次级之间的气隙中产生行波磁场,在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。 直线电机的工作原理 设想把一台旋转运动的感应电动机沿着半径的方向剖开,并且展平,这就成了一台直线感应图电动机。 初级做得很长,延伸到运动所需要达到的位置,也可以把次级做得很长;既可以初级固定、次级移动,也可以次级固定、初级移动. 通入交流电后在定子中产生的磁通,根据楞次定律,在动体的金属板上感应出涡流。设引起涡流的感应电压为E,金属板上有电感L和电阻R,涡流电流和磁通密度将按费来明法则产生连续的推力F。 直线电机的特点 高速响应由于系统中直接取消了一些响应时间常数较大的如丝杠等机械传动件,使整个闭环控制系统动态响应性能大大提高,反应异常灵敏快捷。 位精度高线驱动系统取消了由于丝杠等机械机构引起的传动误差减少了插补时因传动系统滞后带来跟踪误差。通过直线位置检测反馈控制,即可大大提高机床的定位精度。传动环节的弹性变形、摩擦磨损和反向间隙造成的运动滞后现象,同时提高了其传动刚度。 速度快、加减速过程短 行程长度不受限制在导轨上通过串联直线电机,就可以无限延长其行程长度。 动安静、噪音低由于取消了传动丝杠等部件的机械摩擦,且导轨又可采用滚动导轨或磁垫悬浮导轨(无机械接触),其运动时噪音将大大降低。 效率高由于无中间传动环节,消除了机械摩擦时的能量损耗。 直线电机的应用 直线电机主要应用于三个方面: 应用于自动控制系统,这类应用场合比较多; 作为长期连续运行的驱动电机; 应用在需要短时间、短距离内提供巨大的直线运动能的装置中。 U槽无刷直线电机可以直接驱动,无需将转动转为线性运动,机械结构简单可靠。电机运行超平稳,无齿槽效应,动态响应速度极快,惯量小,加速度可达20G,速度达到10-30m/s,低速1μm/s时运动平滑,刚性高,结构紧凑,可选配直线编码器做高精度位置控制,其位置精度取决于所选编码器。

直线电机在城市轨道交通系统中的应用!!

中 国 铁 路 城 市交通在城市的发展过程中愈来愈重要,而城市轨道交通占 据突出的位置。由于近年来科学技术的发展和进步,包括地铁、轻轨交通、单轨交通、新交通系统以及磁悬浮交通系统等城市轨道交通的形式变化多样。在改善城市交通的时候,各个城市根据自己城市的具体特点选择交通系统的范围也更宽。安全、舒适、高密度运行,通过引入新技术达到节能,保护环境,降低成本,从结构和性能上采取措施,不断进行改进,保持先进性是城市轨道交通存在的价值。在城市轨道交通系统中,根据车辆的特点,采用直线电机作为驱动电机又提供了一种新的选择。 1 直线电机的工作原理 通常,电动机是旋转型的。定子包围着圆筒形的转子,定子形成磁场,在转子中流过电流,使转子产生旋转力矩。而直线电机则是将两个圆筒形部件展开成平板状,面对面,定子在相应于转子移动的长度方向上延 直线电机 在城市轨道交通系统中的应用 俞展猷:铁道科学研究院工程咨询有限公司,研究员,北京,100081 摘 要:介绍了直线电机工作原理和直线电机电动车特点,以及日本利用直线电机的地铁和常导磁悬浮交通系统发展的概况。关键词:直线电机;城市轨道交通;地铁;磁悬浮;电动车 长,转子通过一定的方式被支承起来,并保持稳定,形成转子和定子之间的空隙。 直流电机、感应电机、同步电机等都可做成直线电机,但是,直流电机在结构上无法做成无整流子型,所以,直线电机一般为感应电动机和同步电动机。这些交流电动机的1次侧有作为定子侧的,也有作为转子侧即移动体侧的。例如,超导磁悬浮中,同步电动机的定子(地上)是1次侧,旋转磁场在地上移动;而地铁的直线电机,感应电动机的旋转磁场装在车上,2次侧固定在地上。前者的空隙靠左右导向线圈保持,而后者靠车轮保持。 产生推进力的原理与电动机产生力矩的原理一样,在直线电机地铁中,安装在转向架上的直线电动机沿前进方向产生移动磁场。让面对该磁场、安装在地上的反作用板(相当于2次线圈)中通过2次电流(涡电流),由这个2次电流切割磁场产生的力作为反作用力,安装在转向架上的直线 电动机得到推进力。 直线电机的基本缺点是很难将定子与转子空隙做成象旋转式电机那么小,旋转式是无限循环的,而直线电动机是有端头的。为此,泄漏磁通多,电气—机械能量转换的效率低,如果要得到相同的输出,逆变器的容量需要比旋转式大。 2 直线电机电动车的特点 在使用旋转式电机的电动车中,一般是通过齿轮减速将旋转力矩转换为列车的牵引力,同时也受到轮轨间粘着的限制。 直线电机电动车的推进力和制动力都利用直线电机,如上所述,有1次侧在车上和地上2种。1次侧在车上时,要将VVVF逆变器和直线电机装载在车上,使车辆重量增加,车辆价格高;但在地面上的设备仅只有反作用板,又降低了建设费用。1次侧在车上的方式已在一部分地铁得到了实际应用。 在直线电机的电动车中, 推进力 直线电机在城市轨道交通系统中的应用 俞展猷 城市轨道与交通

相关文档