文档库 最新最全的文档下载
当前位置:文档库 › 机械压缩式热泵制盐工艺简述

机械压缩式热泵制盐工艺简述

机械压缩式热泵制盐工艺简述
机械压缩式热泵制盐工艺简述

机械压缩式热泵制盐工艺简述

黄 成

(自贡市蓝光应用技术研究所,四川自贡 643000)

摘 要: 对热泵制盐(M VR)技术的原理、组成、工艺、技术参数及主要投资运行费用对比进行了简要介绍。

关键词: 热泵;制盐;机械压缩式;技术经济

中图分类号:TQ051.5 文献标识码:A 文章编号:1673-6850(2010)04-0042-03 Co mpendi u m of theM echan i cal Co mpressed

H eat Pu mp T echnology

HUANG Cheng

(Zigong Lg w y Application Techno logy I nstitute,Sichuan Zigong643000,Ch i n a)

A bstrac t: Based on pu m p sa lt(M VR)techno logy,process and pr i nciple,t he m a i n techn i ca l para m ete rs and the cost o f i nvest ment contrast i s br i e fly i ntroduced.

K ey word s: heat pu m p;;sa lt producti on;m echan ica l co m pressed;techn i ca l econom y

1 前言

目前能源价格居高不下,有目共睹。制盐业属高耗能行业,传统制盐业的万元工业增加值能耗指标高达15t标煤左右。在能源价格飞速上涨的今天,企业面临了巨大的成本压力。由于国内普遍采用的是成熟可靠的多效真空蒸发(简称ME)制盐技术,虽然经过盐业科技工作者在技术上的不断创新发展,挖潜节能,制盐技术经济水平有了大幅提高。但与能源上涨速度相比,仍然显得很局促。机械压缩式热泵(MVR)和多效真空蒸发(ME)技术的能耗分析在很早以前就论证过,因评价标准不一,结论也不统一。最终让企业认可的是企业效益和环境保护。

据有关资料介绍,机械压缩式热泵(简称MVR)技术于1917年由瑞士Su lzer-Escher W yss Ltd发明的,奥地利Reichenhall的MVR设备安装于1925年。国内自贡张家坝化工厂于1989年引进一套MVR制盐装置,运行了四年,规模为13t/h,电耗为148k W h/t盐,蒸发水量为3160kg/t盐。补充蒸汽129kg/t。因为各种因素而被淘汰。经过多年发展,热泵制盐技术在国外得到了长足发展,其工艺及热泵压缩机可靠性及效率方面有了质的飞跃,国内大型发电装置的发电效率及环保性也得到了大幅提高,国内蒸汽成本,电力成本发生较大变化。于是科技术工作者又一次将眼光投向了热泵制盐技术。国内在井矿盐企业中,中盐金坛正在引进120万t/a

收稿日期:2009-05-12

作者简介:黄成(1976-),男,工程师,主要从事真空制盐及盐化工程工艺设计。

动力学研究[J].中国粉体技术,2006,(5):24-27.

[25]陈志航,向兰,张英才,等.双注-水热法制备高分散氢氧化镁

纳米片[J].无机化学学报,2006,22(6):1062-1066.

[26]Dalai Ji n,Xiaoyun Gu,X i aoji ng Yu,et al.H ydrother mal synt hesis a nd

characterizati on of hexagonalM g(OH)2nano-flake as a fla me retard ant[J].M ateri als Ch e m i stry and Physics,2008,112(3),962-965. [27]刘烨,景殿策,王宝和,等.氢氧化镁纳米棒的制备及热分解动

力学研究[J].河南化工,2008,25(1):25-27.

[28]P Jeevananda m,R S M u luku tla,Z Y ang,H Kw en,K J K labunde.

Nanocrys t als to nanorods:A precurs or app roach for t h e syn t hesis of m agnesi um hyd rox i de nanorods from m agnesiu m oxych lori d e n ano rods starti ng fro m nanocrystalli n e m agnesi um ox i de[J],Che m.M a ter.,2007,19(22):5395-5403.

[29]王相田,郑乾,汪瑾,等.高纯纳米氢氧化镁制备工艺[A].2007

年中国镁盐行业年会暨节能 降耗 环保技术信息交流会论文集[C],2007.

[30]鞠景喜,曾昌凤,张利雄,等.微通道反应器在微-纳米材料合

成中的应用研究进展[J].化工进展,2006,25(2):152-157.

42

盐业与化工

Journa l o f Salt and Che m ical Industry

第39卷 第4期

2010年7月

MVR 制盐装置。在全国制盐业中走在了前例。2 机械压缩式热泵原理

热泵是一种利用高位能使热量从低位热源流向高位热源的装置。热泵虽然要消耗一定量的高位能,但所供给的热量却是消耗的高位能与吸取的低位热量的总和。因此,采用热泵装置可以节约高位能。热泵的工作原理与制冷机相同,都是按热机的逆循环工作的。

机械压缩式热泵工作时,首先采用生蒸汽加热卤水到沸点,来自蒸发器的低温低压二次蒸汽为压缩机所吸入,通过压缩机的绝热压缩作用,提高二次蒸汽的压力和饱和温度,然后送回原蒸发器的加热室,作为加热蒸汽使用。压缩机在此过程中消耗一定的有用能。加热蒸汽进入加热室后与卤水换热,蒸发出水份,即二次蒸汽。二次蒸汽为压缩机吸入,形成循环过程。

3 热泵制盐工艺原理图(见图

1)

图1 热泵制盐工艺原理图

4 热泵制盐工艺的组成部份

根据热泵工作原理,热泵制盐主要由以下几个基本部分组成:

(1)蒸发系统

由蒸发罐及加热室、循环泵等组成,由于热泵制盐通常为单效蒸发,因此蒸发罐的直径都很大,以60万t/a 盐算,其蒸发罐直径可达12m 左右。加热室面积也很大,通常取有效温差5 ~6 ,经测算,温差取得越大,其热平衡建立越困难,也就是说可能需要额外补生蒸汽。加上各种温差损失,总的温差有20 左右较为合理。对压缩机来说,其压缩

比也就在2.0左右,对压缩机来说功耗较为合理。限于加热室及循环泵的制造难度,通常选择两台加热室及两台循环泵较为合理。单套蒸发罐的生产能力在60万t/a 盐及以下较为合适。

(2)二次蒸汽洗涤系统

二次蒸汽由于会夹带料液虽然经过捕沬,即使是很微量也会对压缩机叶轮造成巨大的冲击、腐蚀、结垢。张家坝制盐化工厂引进的我国第一套10万t/a 热泵制盐系统就曾经发生过压缩机转子结垢问题。因此洗涤完全及再次除雾显得非常重要。直接引入影响到压缩机使用寿命及工作稳定性。

(3)蒸汽压缩系统

在热泵制盐工艺中压缩机通常采用开放式离心式压缩机。离心式制冷压缩机(centrifuga l re frigera tionco m pressor)是一种速度型的压缩机。它具有下列特点:动平衡特性好,振动小,基础要求简单;故障少、工作可靠、寿命长;机组单位制冷量的重量、体积及安装面积小;机组的运行自动化程度高,制冷量调节范围广,且可连续无级调节,经济方便;压缩机的一级压力比不大,在压力比较高时,需采用多级压缩;压缩负荷越大,效率越高;因此非常适合大流量蒸汽的低压缩比压缩。

(4)压缩蒸汽过热度消除系统

二次蒸汽为压缩机所吸入,经压缩机绝热压缩后,二次蒸汽的温度及压力均提高,此时压缩后蒸汽呈过热状态。为减少过热度对冷凝传热的不利影响,因此需要增设一过热度消除器。

(5)进罐卤水预热系统

一方面为了充分利用低位热能,另一方面从热平衡计算来看,进罐卤水必须预热到近沸点进料,否

则需要额外补充二次蒸汽,系统热量才能达到平衡。

一套有效的预热系统是保证热泵制盐系统正常运行的关键。冷凝水的余热要充分利用,母液的余热也要充分利用。通常需要设置多级预热措施。并且需要有备用及倒换系统。其材质选用上,也主要选择钛材为主。

(6)离心脱水干燥系统

对于生产固体盐来说,离心脱水及干燥系统也是必不可少的。按照制盐行业的经验,通常选择双级活塞推料离心机,这个机型在国内较为成熟可靠。不需要引进。干燥系统通常也选择内热式干燥床,热效率很高。也无需引进。

43

2010年7月黄 成:机械压缩式热泵制盐工艺简述

(7)冷凝水系统

热泵制盐压缩系统是选用的开放式压缩系统,是直接压缩二次蒸汽,提高能源品位,同样在加热室的传热过程主要还是相变传热。蒸汽冷凝成水,因此冷凝水在加热室需要及时排出。并且要充分利用冷凝水的低位热能,也及回收高品位冷凝水。

(8)生蒸汽系统

由于在热泵制盐系统运行初期需要投入蒸汽建立热循环,以及为保障蒸发系统的热平衡不被破坏,主要是预热措施不到位时。保障系统的正常运行。还有盐的干燥也需要蒸汽。因此需要有完善的生蒸汽系统。对于新系统来说需要新建小型锅炉,对于老系统来说可充分利用原有系统。

(9)其它系统

根据物料不同,通常有卤水处理系统、石膏晶种法需要有石膏系统。含硝卤水需要有提硝系统等。

5 热泵制盐工艺的主要技术参数选择

热泵制盐参数的选择需结合物料特性,主要考虑热平衡、压缩比、有效温差。通常蒸汽参数的选择以蒸发罐正压操作为限,压缩机的工作性能与进汽压力及压缩比有关。进汽压力高,蒸汽密度较大,相对压缩比率更低,对提高压缩效率有利,对设备制造及材质要求相应提高。压缩比越大,压缩机效率越低,通常压缩比取值不大于2.2。各运行参数的最终确定需要根据热平衡试算后确定(见表1)。

表1 主要工艺技术参数

加热室

绝对压力/kPa328.6汽温/136蒸汽热焓/(K k J kg-1)2.727蒸汽潜热/(K k J kg-1)2.155

蒸发室

绝对压力/kPa189.96汽温/118.00

液温/128.00蒸汽潜热/(K k J kg-1)2.207蒸汽热焓/(K k J kg-1)2.701蒸汽比容/(m3 kg-1)0.9463料液沸点升损失/10

温差损失合计/3.5有效传热温差/5

6 热泵制盐技术经济性分析

以热泵制盐与目前流行五效真空制盐作简单技术经济比较(见表2)。

表2 主要运行费用比较

项目五效热泵单价/元电耗/k W h251400.8汽耗/t0.850200

吨盐汽电成本/t190112.00

按照60万t/a制盐规模,机械压缩式热泵制盐与五效真空蒸发制盐其投资均在1.1亿元~1.5亿元之间。投资差额不大。从表2可以看出,按现阶段的汽电成本,热泵制盐系统运行汽电费用可节约78元/t盐以上,其效益显而易见。

7 结论

根据能源价格发展趋势,汽电成本差距越来越大,运用热泵制盐技术是当前要重点研究的内容。将热泵制盐技术与真空制盐技术相接合,克服了盐厂以往以汽定电带来的电富余状况,对盐厂来说是非常有益的。热泵制盐技术,通过最近十多年来的发展,在国外运用非常普遍。技术可靠,且经济又节能,是值得当前大力推广的。当然热泵技术与现有真空制盐装置的有机衔接,做到最大程度的节约也是需要重点研究的内容。

根据卤水状况,分为硫酸钙型和硫酸钠型,以及海水饱和卤。根据不同的卤水状况采用不同的工艺措施与热泵制盐技术相接合是目前需要重点研究的内容。硫酸钙型卤水,需考虑采用石膏晶种法或采用卤水净化工艺。硫酸钠型卤水采用MVR技术加母液盐硝联产方法。或者其它方法,都需要更多的去对比研究。海水饱和卤因含有氯化钾、氯化镁、硫酸镁及少量硫酸钙。为了有效提高资源利用率,防止二次污染,节约土地资源,有效提高经济效益。采用MVR技术也具有相当可行性。

[参考文献]

[1]俞性佑,章世鑫.多效蒸发制盐与热泵法(蒸汽机械压缩)制盐

中蒸发能耗的分析与比较[J].中国井矿盐,1993,6.

[2]许景媛,李方清.热压制盐技术在国内的发展前景探析[J].中

国井矿盐,2007,7.

[3]李成春.机械压缩蒸发实验装置的研究[A].中国化工学会化

工机械和自动化学会学术交流会论文集.

[4]陈大钧.关于引进热压制盐工程中腐蚀问题的探讨[J].中国

井矿盐,1994,6.

[5]陈铸.V71-4压缩机振动原因分析及其对策[J].中国井矿盐,

1993,4.

44盐业与化工 第39卷第4期

往复式压缩机技术问答

往复式压缩机技术问答 1.什么叫增压机和循环机? 答:所谓增压机和循环机是按压缩机的工艺用途来区分的,增压机一般用于将某一相对低压系统的气体压缩后输入另一相对高压的系统,压缩比较大、流量较小,新氢压缩机为增压机; 而循环机一般用于将同一系统的气体升压后建立循环,压缩比相对较小、流量较大,循环氢压缩机为循环机。 2.压力、温度、容积三者有何关系? 答:压力、温度、容积三者之间有如下关系: ①一定量的理想气体,在一定温度下,容积与压力(绝压) 成反比,P1V1=P2V2; ②一定量的理想气体,当容积不变时,压力与绝对温度成 正比,P1/P2=T1/T2; ③一定量的理想气体,在一定压力下,容积与绝对温度成 正比,V1/V2=T1/T2。 3.什么是活塞行程? 答:活塞在气缸内作往复运动时所跨越的最大距离叫活塞行程。 4.什么叫气缸工作容积? 答:活塞在气缸中由一端止点移到另一端止点所让出来的空间,叫做气缸工作容积。内止点、外止点,气缸的盖侧、箱侧。 5.怎样计算气缸工作容积? 答:气缸工作容积可按下列公式计算:设D为气缸直径,米; S为活塞行程,米;d为活塞杆直径,米;则气缸工作容积为: ①对单动压缩机 V=лD2S/4 ②复动压缩机: V=л(2D2-d2)S/4 6.什么是压缩比? 答:压缩比是指压缩机排气终了时的终压力P2(绝对压力)与吸气终了时的初压力P1(绝对压力)之比。以ε示,即: ε=P2/P1 7.什么是气缸的有害空间? 答:气缸有害空间是指当压缩机的活塞在气缸中到达止点位置时,在活塞与气缸盖之间形成空间。这个有害空间又叫做余隙容积。 8.有害空间过大有什么不利? 答:气缸中有害空间的存在,使活塞不能将缸内气体全部无遗

空气源热泵压缩机与空调压缩机的比较

空气源热泵压缩机与空调压缩机的比较随着家用热泵热水器市场的快速增长,以前采用“空调外机结构设计”的模式会逐渐被打破。国内多家压缩机厂家纷纷投入热泵专用压缩机开发,以期为热泵热水器的健康发展提供核心保障。热泵热水器的运行模式与空调存在很大差异,决定了热泵专用压缩机与空调压缩机在设计理念上存在差异。 无故障长期稳定运行 热泵热水器与空调相比,运行时间方面存在很大差异,热泵热水器系统运行时间要远高于空调。热泵热水器的运行时间取决于以下因素: 1、空调在夏季使用频率高,但热水器却是日用品,并且冬季运行时间特别长。冬季加热一箱水的时间是夏季的数倍,因此需要确认热泵热水器在冬季的运行模式。根据统计计算,热泵热水器有2/3的寿命是在冬季消耗的。 2、因为热泵的出水温度在55度以上,随着使用的进行,水箱温度会下降,当下降到45度左右时,压缩机就需要启动运行,因此压缩机基本都是运行在冷凝温度较高的区

域。冷凝温度是影响压缩机寿命的主要因素,在运行相同时间的条件下,热泵热水器中压缩机所受的综合负荷要远高于空调中的压缩机。 3、消费者购买热泵热水器的主要动力是节能、方便,消费者会因此而多用水,这也增加了热泵的工作时间。 4、如果热泵热水器用于采暖+生活热水场合,可能会在整个采暖季节长期运行。 综合以上各类因素,可知热泵热水器主机会向小型化发展,实际运行时间会大幅度增加。要保证在热泵热水器生命周期里不发生故障,压缩机需要能够承受20000小时的实际运行,因此,使用热泵专用压缩机是非常必要的。 系统设计时的注意事项:在实际的系统设计时,也要遵循热泵运行的规则,这样才能真正发挥热泵专用压缩机的功能。 节流装置要保证宽范围 无论是分体式还是放于室外的整体式热泵热水器,其蒸发温度都非常宽。为了在宽范围内进行有效节流,建议不要采用单根毛细管,而是采用膨胀阀或者多组毛细管,以应对环境温度的变化,保证在所有运行条件下都有吸气过热度。同时也要避免液体直接进入压缩机,特别是冬季。

氯碱生产工艺流程(1)

氯碱生产工艺流程 氯碱系统是由电解,盐水,氯氢,液氯,冷冻,盐酸,漂液,蒸发,循环水组成的系统。其主要流程是盐水生产的精盐水经电解生成主要成分是氢氧化钠,NaCl的电解液和Cl2,H2三种物质。电解液由蒸发经浓缩,并分离其中的NaCl,加水溶解后供盐水工序生产精盐水用。氢氧化钠经冷却沉降后,送成品桶作为成品销售。Cl2在氯氢工序通过洗涤冷却,干燥,压缩输送到液氯,盐酸,PVC,三氯氢硅。氯碱片区主要是送液氯和盐酸。Cl2在液氯经冷冻送来的-35℃冷冻盐水液化为液氯,液氯尾气送盐酸和漂液生产盐酸和漂液用。H2是经氯氢工序洗涤冷却,压缩输送到PVC,三氯氢硅,盐酸。氯碱片区送盐酸,在合成炉与Cl2燃烧生成氯化H2体,经水吸收后生成成品盐酸供销售出售。液氯尾气在漂液生产池中与石灰水生成漂液供销售出售。 氯碱车间工艺流程简述 一.氯碱车间基本概况 电解工艺流程简图: 直流电 H2 冷凝水 2.氯处理工序工艺流程简述: 电解生产70-85℃的湿Cl2,经Cl2洗涤塔用工业水洗涤后,进入Ⅰ段钛冷却器用工业水冷却,再进入Ⅱ段钛冷却器用+5℃盐水进一步冷却到12-15℃,然后进入泡沫干燥塔、泡罩塔用硫酸干燥,干燥后的Cl2经过酸雾捕集器后用Cl2压缩机压缩输送到各用氯岗位。 Cl2处理工艺流程简图: 电解来湿Cl2

处理工艺流程简述: 电解生产80℃的湿H2经Ⅰ段、Ⅱ段H2洗涤塔用工业水洗涤后,送H2压缩机加压后经过Ⅰ段H2冷却器用工业水对其进行冷却,再进入Ⅱ段H2冷却器用+5℃盐水进行冷却到12℃,经过水捕雾器进入H2分配台至各用氢单位。 H2处理工艺流程简图: 膜过滤盐水工艺流程简述:

空气源热泵机组设计应用及案例分析

空气源热泵机组设计应用及案例分析 空气源热泵机组(简称“热泵机组”)自二十世纪四十年代发明至今,其技术已日臻完善,广泛应用于办公楼、宾馆、娱乐业、厂房、住宅等各行各业不同规模的工程中,市场占有率一直较高,究其原因,皆因其有如下优点:热泵机组夏季供冷,冬季供热,不需另设锅炉房;主机安装在屋顶,可省去冷冻机房、锅炉房土建投资及冷热系统投资;COP值较高,自动化程度高。 一、热泵机组类型及其特点: 1.涡旋式压缩机热泵机组: 涡旋式压缩机为容积式压缩机,具有运转平稳、振动小、噪音低等优点,常用于空气-空气热泵机组,适用于中、小型工程。 2.活塞式压缩机热泵机组: 活塞式压缩机为容积式压缩机,结构复杂、转速低、振动大、噪音大、单机容量较小,多机头组合可拼装成100万大卡/时左右热泵机组,COP=3.0~3.5; 3.螺杆式压缩机热泵机组: 螺杆式压缩机也为容积式压缩机,结构简单、运转平稳、振动小、噪音低、寿命长,COP=3.5~4.5,适用于中、小型工程,多机头热泵机组可用于较大工程。单螺杆为平衡式单向运转,磨损小,无轴向推力,其排气效率比双螺杆略低。 二、热泵机组设计: 1.选用原则: 热泵机组有优点也有缺点,与同容量单冷冷水机组相比,其用电量大,造价高,冬季随室外气温下降制热量衰减严重、结霜严重等,因此,①当某工程有蒸汽源时,空调冷热源应尽量采用“单冷冷水机组加热交换器”方案。无锡市正在形成城市蒸汽热力网,我们应优先采用以上方案。②本人认为医院、宾馆等对冬季采暖温度要求较高的工程不适宜采用热泵机组,办公楼、饭店等工程则较适宜,因为它们一般白天使用,热泵机组制热量衰减小,就算采暖效果差些,室内人员可多穿衣服,影响小些。 2.选型方法:

往复式压缩机的基本知识及原理

.活塞式压缩机的基本知识及原理 活塞式压缩机的分类: (1)按气缸中心线位置分类 立式压缩机:气缸中心线与地面垂直。 卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。 对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。(如果相对列活塞相向运动又称对称平衡式) 角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。有分L型、V型、W型和S型。 (2)按气缸达到最终压力所需压级数分类 单级压缩机:气体经过一次压缩到终压。 两级压缩机:气体经过二次压缩到终压。 多级压缩机:气缸经三次以上压缩到终压。 (3)按活塞在气缸内所实现气体循环分类 单作用压缩机:气缸内仅一端进行压缩循环。 双作用压缩机:气缸内两端进行同一级次的压缩循环。 级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。 (4)按压缩机具有的列数分类 单列压缩机:气缸配置在机身的一中心线上。 双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。 多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。 活塞式压缩机工作原理: 当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞式压缩机的基本结构 活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。 1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。 2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。 3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。大中型压缩机多用联接器和法兰连接结构,使用可靠,调整方便,使活塞杆与十字头容易对中,但结构复杂。 5、气缸:气缸主要由缸座、缸体、缸盖三部分组成,低压级多为铸铁气缸,设有冷却水夹层;高压级气缸采用钢件锻制,由缸体两侧中空盖板及缸体上的孔道形成泠却水腔。气缸采用缸套结构,安装在缸体上的缸套座孔中,便于当缸套磨损时维修或更换。气缸设有支承,用于支撑气缸重量和调整气缸水平。 6、活塞:活塞部件是由活塞体、活塞杆、活塞螺母、活塞环、支承环等零件组成,每级活塞体上装有不同数量的活塞环和支承环,用于密封压缩介质和支承活塞重量。活塞环采用铸铁环或填充聚四氟乙烯塑料环;当压力较高时也可以采用铜合金活塞环;支承环采用四氟或直接在活塞体上浇铸轴承合金。 活塞与活塞杆采用螺纹连接,紧固方式有直接紧固法,液压拉伸法,加热活塞杆尾部法等,加热活塞杆尾部使其热胀产生弹性伸长变形,将紧固螺母旋转一定角度拧至规定位置后停止加热,待杆冷却后恢复变形,即实现紧固所需的预紧力。活塞杆为钢件锻制成,经调质处理及表面进行硬化处理,有较高的综合机械性能和耐磨性。活塞体的材料一般为铝合金或铸铁。

压缩机生产工艺流程

压缩机生产工艺流程 图四 旋转式压缩机生产流程 (1)板金加工 板金工艺是运用各种加工方法将板金材料加工成型出所须形状、尺寸的工艺统称。 主要加工工艺:冲压、焊接、切削、清洗、热处理; 加工部件:主壳体部件、上壳体、下壳体、机架、定子铁芯、转子铁芯部件; 板金车间加工的零部件经过清洗、抽检后,送装配车间。 关键过程/特殊过程:焊接、热处理 (2)部品加工(机械加工) 部品加工车间主要承担旋转式压缩机泵体部分的加工,泵体称之为压缩机的心脏,所以该车间是重要的加工车间,其设备最多,投资最大。 主要加工工艺:车削、磨削、清洗; 加工部件:气缸、曲轴、滚动活塞、滑片、主、副轴承; 加工特点:部品配合的表面加工精度、尺寸精度控制在μ级;清洗、检查要求严格(使用超声波清洗机清洗;气动量仪、专用检具检测,多数尺寸、精度进行全检)。 关键过程:气缸、曲轴、滚动活塞精磨 (3)卷线(电机)车间 卷线车间进行电机定子绝缘纸、电磁线以及引出线的插入、整形和检查;目前有2条生产线,生产自动化程度高。 关键过程:线圈绝缘检测 (4)装配车间 装配车间是将从机加工、板金、电机加工的部件进行选配、组装、壳体焊接、表面涂装、性能检测;涉及的检查项目有:工序间的装配尺寸检查、电气性能检查、整机密封性以及最终的安全和性能检查。装配是压缩机生产过程中的关键工序,压缩机装配无论从设备、工艺及装配环境、人员素质都有较高的要求。主要 加工 清洗 部品保管 外购部件 选配 ※总装 性能检查 压缩机入库 外购部件 外购材料 ※板金加工 ※部品加工 ※卷线加工 受入检查

工艺流程如下: 选配→阀片铆接→泵体装配→转子热套→壳体热套→壳体和储液器焊接→气密检查→涂装→真空干燥→在线试验 特殊过程:壳体和储液器焊接、涂装 关键过程:真空干燥、在线试验

热泵压缩机和空调压缩机的区别

随着家用空气能热水器(热泵热水器)市场的深入,以前采用“空调外机结构设计”的模式将会逐渐被打破。继2009年热泵专用压缩机并推广以来,国内多家压缩机厂家纷纷投入热泵专用压缩机开发,以期为热泵热水器的健康发展提供核心保障。热泵热水器的运行模式与空调存在很大差异,决定了热泵专用压缩机与空调压缩机在设计理念上存在差异。随着家用热泵热水器市场的快速增长,以前采用“空调外机结构设计”的模式会逐渐被打破。 无故障长期稳定运行 热泵热水器与空调相比,运行时间方面存在很大差异,热泵热水器系统运行时间要远高于空调。热泵热水器的运行时间取决于以下因素: 空调在夏季使用频率高,但热水器却是日用品,并且冬季运行时间特别长。冬季加热一箱水的时间是夏季的数倍,因此需要确认热泵热水器在冬季的运行模式。根据统计计算,热泵热水器有2/3的寿命是在冬季消耗的。 因为热泵的出水温度在55度以上,随着使用的进行,水箱温度会下降,当下降到45度左右时,压缩机就需要启动运行,因此压缩机基本都是运行在冷凝温度较高的区域。冷凝温度是影响压缩机寿命的主要因素,在运行相同时间的条件下,热泵热水器中压缩机所受的综合负荷要远高于空调中的压缩机。 消费者购买热泵热水器的主要动力是节能、方便,消费者会因此而多用水,这也增加了热泵的工作时间。 如果热泵热水器用于采暖+生活热水场合,可能会在整个采暖季节长期运行。 综合以上各类因素,可知热泵热水器主机会向小型化发展,实际运行时间会大幅度增加。要保证在热泵热水器生命周期里不发生故障,压缩机需要能够承受20000小时的实际运行,因此,使用热泵专用压缩机是非常必要的。 空调与热泵热水器运行模式的差异对比 系统设计时的注意事项 在实际的系统设计时,也要遵循热泵运行的规则,这样才能真正发挥热泵专用压缩机的功能。具体要注意到以下几方面: 节流装置要保证宽范围 无论是分体式还是放于室外的整体式热泵热水器,其蒸发温度都非常宽。为了在宽范围内进行有效节流,建议不要采用单根毛细管,而是采用膨胀阀或者多组毛细管,以应对环境温度的变化,保证在所有运行条件下都有吸气过热度。同时也要避免液体直接进入压缩机,特别是冬季。 观察液击、浸入现象,评估风险 针对静态加热储热式热泵热水器,“冷媒迁移”是回避不了的问题:即压缩机停止工作后,处于冷凝器处于高水温环境中,压缩机/蒸发器逐渐冷却,温差导致冷媒逐渐迁移至蒸发器和压缩机。 冷媒发生“聚集”,压缩机再次启动时,聚集在蒸发器中的冷媒很可能直接进入压缩机。也就是说热泵热水器发生液击的程度比空调要严重得多。这个现象已经经过多次试验得到验证。这也是热泵专用压缩机采用超大容量弧形储液器设计的原因之一(缓解液击、提升吸气过热度)。因此,在开发热泵热水器时,需要观察液击、浸入现象,评估风险。 注意压缩机底部过热度的问题 这一点是在系统设计时容易被忽略的地方,但却是极端重要的。所谓压缩机底部过热度,其定义为:压缩机底部温度—冷凝温度。如果该值为零或者小于零,此时压缩机本体就成了一个“冷凝器”,冷媒会慢慢在压缩机壳体内冷凝成液体而沉积在压缩机底部,被当做“润滑油”泵到压缩机泵体各滑动面上。液态冷媒是没有润滑功能的,其结果是压缩机泵体摩擦对偶全面磨耗,发生“咬缸堵转”只是个时间的问题。

热泵压缩机保护系统

热泵压缩机防止进水保护系统 商用型热泵热水器凭着其高效节能、经济耐、安全环保、适应性强的优点广泛应用到酒店、宾馆、学校等场所。 1.高效节能 由工作原理可知,热泵机组能从周围空气获取大量的免费热量,一般情况下,每消耗1度电大约能产生3~4度电以上的热量。 机组的能效比(COP)平均可达3~4以上,相当于热效率超过300%~400%,比用直接电加热方式节能67~75%以上。 运行费用是普通电热水器的1/4,燃气热水器的1/3,燃油热水器的1/2.5,太阳能热水器的1/1.5。 2.经济耐用 由于效率高,运行费用低,是电锅炉的1/3~1/4还少,而且可以大大降低供电负荷,节约电力增容费。 跟燃气燃油锅炉比较,无需相应的燃料供应系统,因此无需燃料输送费用和管理费用。设备紧凑,操作、维护简单,无需人工管理费用。 机组安装在室外,比如裙楼或顶层屋面、敞开的阳台等处,无需设立专门的设备房,不占用有效的建筑面积,节省土建投资。 压缩机、热交换器和主要零部件均选用名牌优质产品,运行可靠,使用寿命长。 外壳采用镜面不锈钢,高雅美观,经久耐用,不易生锈。 3. 安全环保 热泵机组对大气及环境无任何污染,而且节能效果明显,属于绿色环保类产品,符合我国目前的能源、环保方面的基本政策。 热泵机组设有高低压异常保护、压缩机过载保护、风机过热保护、缺相保护、漏电保护、传感器故障保护、限温保护等多种自动安全保护功能。 与传统的热水锅炉相比,没有相应的燃料供应和烟气排放系统,系统安全、卫生、清洁,没有燃料泄露、火灾、爆炸等安全隐患。 4. 适应性强 空气源热泵型热水机组的工作性能随室外气候变化比较明显,室外环境温度在0~40℃范围内,热泵机组都能正常工作。 热泵机组提供可达60℃以上的热水,充分满足卫生热水、泳池恒温和采暖等各种需求。与水箱配套使用,充分利用夜间优惠电价时段来加热,预先储存大量的热水。 可多台机组并联满足更大量的热水需求,另外,在热水需求量减少的季节或需要检修时,可以停用部分机组而不影响其他机组运行。 随着商用型热泵热水器的广泛应用,其暴露出来的故障也层次出不同。例如:压缩机烧掉、电路板故障、换热器冻裂进水导致压缩机进水等。这些故障都导致整机不能正常工作,最终就影响到整个供应水系统不能运作。而且维修材料费用、人工费用不低。在众多的故障当中,最严重的是换热器冻裂,冷水进入制冷系统最终进入压缩机内导致压缩机液击故障,需要更换压缩机和换热器。 现在市场上的商用型热泵热水器,遇到这种故障的唯一解决方案就是更换压缩机和换热器。虽然更换了之后是从根本上解决问题,但一旦更换了这两件主要部件的材

压缩机工艺流程

Digital Tach/Hourmeter with Overspeed Trip Point Installation Instructions for SHD30 and SHD30-45 Models SHD3-97051N Revised 05-03 Replaces SHD-96113N Section 20 (00-02-0288) Description The SHD30 and SHD30-45 models are microprocessor-based digital tachometers with hourmeter and overspeed trip point. The overspeed trip point can be connected as either a form “C”relay output or as a normally open SCR output. In Class I, Div. 2, hazardous locations the SHD30 form “C”relay contact is restricted for use with Murphy non-incendive or intrinsically-safe instruments. In non-hazardous locations the relay contact may be used to switch resistive loads not exceeding 0.5 A @ 30 VDC or 125 V AC. When connected as a normally open SCR, the output is rated 0.5 A, 350 VDC continuous and can switch up to 3 A @ 350 VDC momentary. The SCR output may be used to switch designated normally open sensor inputs. Specifications Power input: CD ignition: 90 to 350 VDC. 150 μA typical @ 90 VDC; 300 μA @ 350 VDC.Magnetic Pickup: 5 to 120 Vrms. 325 μA typical @ 5 Vrms, 100 Hz; 450 μA typical @ 5 Vrms, 1 kHz;1 mA typical @ 5 Vrms, 5 kHz; 2 mA typical @ 5 Vrms, 10 kHz;15 mW max. @ 5 Vrms, 10 kHz; 2.8 W max. @ 120 Vrms, 10 kHz.Backup Battery: 2 replaceable, long life Lithium batteries, Panasonic CR2032or equivalent, 3 V, 220 mAh power. Operating Temperature: -4°to 158°F (-20°to 70°C).Storage Temperature: -40°to 300°F (-40°to 150°C).Ignition Frequency Range: 3 to 666 Hz. Magnetic Pickup Frequency Range: 1 to 10 kHz.Overspeed Output: Connected to S.C.R. (Silicon Controlled Rectifier)terminals:0.5 A, 350 VDC continuous. Connected to Form “C” Relay terminals: Relay Contact, 0.5 A, 30 VDC, 125 VAC resistive. Tachometer Accuracy: ±0.5% of the display reading or ±1 RPM whichever is greater. Hourmeter Range: 0 to 65535 hrs. Hourmeter Accuracy: ±15 minutes per year. Approvals: CSA approved for Cl. I, Div. 2, Grps. C & D hazardous areas. Mounting The SHD30 is designed for installation in panels from 0.032 to 0.125 in. (1 to 3 mm) thick. A round hole, 3-1/8 in. (79 mm) in diameter is needed for mounting. Install the unit within a weatherproof enclosure to protect it from the elements. Keep the unit away from ignition coils and coil leads; a mini-Please read the following information before installing . A visual inspection for any damage which may have occurred during shipping is recommended. It is your responsibility to have a qualified person install the unit, and make sure it conforms with NEC and local codes. 3/16 in (5 mm)SHD30 Dimensions SHD30-45 Dimensions/Mounting

风冷热泵机组

风冷热泵机组 风冷热泵机组是由压缩机--换热器--节流器--吸热器--压缩机等装置构成的一个循环系统。冷媒在压缩机的作用下在系统内循环流动。它在压缩机内完成气态的升压升温过程(温度高达100℃),它进入换热器后释放出高温热量加热水,同时自己被冷却并转化为流液态,当它运行到吸热器后,液态迅速吸热蒸发再次转化为气态,同时温度下降至零下20℃ --30℃,这时吸热器周边的空气就会源源不断地将低温热量传递给冷媒。冷媒不断地循环就实现了空气中的低温热量转变为高温热量并加热冷水过程。 风冷热泵机组特点 1.风冷热泵机组属中小型机组,适用于200-10000 平方米的建筑物。 2.空调系统冷热源合一,更适用于同时采暖和制冷需求的用户,同时省去了锅炉房。 3.机组户外安装,省去了冷冻机房,节约了建筑投资。 4.风冷热泵机组的一次能源利用率可达90%,节约了能源消耗,大大降低了用户成本。 5.无须冷却塔,同时省去了冷却水泵和管路,减少了附加设备的投资。 6.无冷却水系统动力消耗,无冷却水损耗,更适用于缺水地区。风冷热泵机组性能分析冷热量这个参数是决定风冷热泵正常使用的最关键参数,它是指风冷热泵的进风温度、进出水温度在设计工况下时其所具备的制冷量或制热量。它可从有关厂家提供的产品样本中查得。但目前在设计中也发现这样的情况,那就是有的厂商所提供的样本参数并未经过测试而是抄自其它厂家的相关样本。这给设计人员的正确选型带来了一定困难。因此笔者建议在有条件的情况下设计人员可根据有关厂家的风冷热泵所配置的压缩机型号,从压缩机生产厂家处获得该压缩机的变工况性能曲线,根据热泵的设计工况查得该压缩机在热泵设计工况下的制冷量和制热量,从而判断该样本所提供参数的真伪。 COP值 该值是确定风冷热泵性能好坏的重要参数,其值的高低直接影响到风冷热泵使用中的耗电量,因此,应尽量选择COP值高的机组。目前我国国家标准是COP值为2.57,多数进口或合资品牌的COP 在3 左右,个别进口品牌的高效型机组其值可达到3.8。 噪声 噪声也是衡量一台风冷热泵机组的重要参数,它直接关系到热泵运行时对周围环境的影响。国内有关专家曾根据工程实测对各类进口热泵的噪声划分为三档,第一档在85dB 以上、第二档在75~85dB之间、第三档在75dB 以下。我们在进行工程设计选型中应优先选择噪声在80dB 以下的机组。 外型尺寸风冷热泵机组大多布置在室外屋顶,它在进行设备布置时对设备与周围墙面的间距、设备之间的间距都有明确要求,因此我们在进行设备选型时必须考虑所选设备尺寸是否符合设备布置的尺寸要求。在性能相同的前提下应优先选用尺寸较小的机组,以减小设备的占地面积。 运行重量 由于风冷热泵机组大多布置在屋面,因此在选型时必须考虑屋面的承重能力,必要时应 与结构专业协商,增强屋面的承重能力。但在设备选型时我们应优先选择运行重量较轻的机组。 风冷热泵机组系统分析 风冷热泵机组的系统分析,就是在风冷热泵的选型过程中除了比较各自的制冷量、制热

合成气生产甲醇工艺流程图

编号:No.20课题:合成气生产甲醇工艺流程 授课容:合成气制甲醇工艺流程 知识目标: ●了解合成气制甲醇过程对原料的要求 ●掌握合成气制甲醇原则工艺流程 能力目标: ●分析和判断合成气组成对反应过程及产品的影响 ●对比高压法与低压法制甲醇的优缺点 思考与练习: ●合成气制甲醇工艺流程有哪些部分构成? ●对比高压法与低压法制甲醇的优缺点 ●合成气生产甲醇对原料有哪些要求?如何满足? 授课班级: 授课时间:年月日

四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序,见图5-1。 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法一般有湿法和干法两种。脱硫工序在整个制甲醇工艺流程中的位置,要根据原料气的制备方法而定。如以管式炉蒸汽转化的方法,因硫对转化用镍催化剂也有严重的毒害作用,脱硫工序需设置在原料气设备之前;其它制原料气方法,则脱硫工序设置在后面。 二是调节原料气的组成,使氢碳比例达到前述甲醇合成的比例要求,其方法有两种。

合成气生产甲醇工艺流程

编号:No.20课题:合成气生产甲醇工艺流程授课内容:合成气制甲醇工艺流程 知识目标: ●了解合成气制甲醇过程对原料的要求 ●掌握合成气制甲醇原则工艺流程 能力目标: ●分析和判断合成气组成对反应过程及产品的影响 ●对比高压法与低压法制甲醇的优缺点 思考与练习: ●合成气制甲醇工艺流程有哪些部分构成? ●对比高压法与低压法制甲醇的优缺点 ●合成气生产甲醇对原料有哪些要求?如何满足? 授课班级: 授课时间:年月日

四、生产甲醇的工艺流程 (一)生产工序 合成气合成甲醇的生产过程,不论采用怎样的原料和技术路线,大致可以分为以下几个工序,见图5-1。 或氧、空气 图5-1 甲醇生产流程图 1.原料气的制备 合成甲醇,首先是制备原料氢和碳的氧化物。一般以含碳氢或含碳的资源如天然气、石油气、石脑油、重质油、煤和乙炔尾气等,用蒸汽转化或部分氧化加以转化,使其生成主要由氢、一氧化碳、二氧化碳组成的混合气体,甲醇合成气要求(H2-CO2)/(CO+CO2)=2.1左右。合成气中还含有未经转化的甲烷和少量氮,显然,甲烷和氮不参加甲醇合成反应,其含量越低越好,但这与制备原料气的方法有关;另外,根据原料不同,原料气中还可能含有少量有机和无机硫的化合物。 为了满足氢碳比例,如果原料气中氢碳不平衡,当氢多碳少时(如以甲烷为原料),则在制造原料气时,还要补碳,一般采用二氧化碳,与原料同时进入设备;反之,如果碳多,则在以后工序要脱去多余的碳(以CO2形式)。 2.净化 净化有两个方面: 一是脱除对甲醇合成催化剂有毒害作用的杂质,如含硫的化合物。原料气中硫的含量即使降至1ppm,对铜系催化剂也有明显的毒害作用,因而缩短其使用寿命,对锌系催化剂也有一定的毒害。经过脱硫,要求进入合成塔气体中的硫含量降至小于0.2ppm。脱硫的方法

水源热泵压缩机过热分析

压缩机过热分析 水源热泵机组一台,复盛压缩机,压缩机型号SR-6H,干式机组,报压缩机机内保护,压缩机运行工况为蒸发器进水温度31.2摄氏度,出水温度为27.8摄氏度,低压压力3.6公斤左右,冷凝器进水温度为33.7摄氏度,开机3至5分钟,出水温度在37摄氏度左右,高压为20.8公斤压力,压缩机排气温度一直升高,排气温度至90摄氏度时,压缩机液喷打开,此时液喷管路温度大致有50至55摄氏度,复盛压缩机机组液喷为直接进压缩机吸气关断阀处,当液喷打开后压缩机运转1至2分钟出现电机内埋电阻跳开,电机端用手摸温度在40摄氏度左右(热但不明显烧手)。 压缩机正常运转时的发热量不应该引起过热。正常的电机发热、压缩热以及摩擦热在设计压缩机时均做过认真的考虑,并有相应的冷却措施。然而在实际使用中,由于超范围使用、电源不正常、电机过载、制冷剂泄漏、冷凝压力太高等问题引起的电机高温、排气温度过高、润滑油焦糊等过热现象比较常见,并已成为压缩机常见故障之一。气缸排气温度是判断压缩机是否过热的重要指标之一。由于测量上的困难,实际应用中是通过测量排气管表面的温度(即排气管温度)来判断是否过热。由于润滑油到150°C时会变得很稀薄,在175°C左右将开始分解变质,因此气缸排气温度应该控制在150°C以内,而排气管温度通常比排气温度低

10~40°C。因此,如果排气管温度超过135°C,一般认为压缩机已经处于严重过热状态;而如果排气温度低于120°C,压缩机温度正常。空调压缩机和冰箱压缩机的排气温度通常还要低一些。 高温对压缩机电机和润滑油具有很大的危害。长时间过热,不仅会降低电机绝缘性能和可靠性,缩短电机寿命,而且还会降低润滑油的润滑能力,甚至引起润滑油碳化和酸解。 润滑油碳化后润滑能力大大降低,将引起曲轴、连杆、活塞、活塞环等严重磨损,甚至会出现抱轴、卡缸等堵转现象以及由堵转而引起的连杆折断事故。碳化油还会在阀片和阀板上结碳,引起阀片泄漏和阀片断裂。润滑油中的酸性物质会腐蚀绕组漆包线、降低绕组的绝缘性能。酸化润滑油还会引起镀铜现象。 实际中,润滑油碳化总是伴随着酸解,因而磨损和腐蚀总是行影相随。磨损产生的细小金属屑夹杂于润滑油中,一方面削弱了润滑油的润滑作用;另一方面,细小的金属屑由于磁性而聚集于电机绕组中,构成导电回路。漆包线绝缘层被腐蚀后就可能出现一些微小的裸露点,很容易引起局部放电。如果金属粒形成导电回路,立即会短路或击穿,烧毁电机。

往复式压缩机方案汇总

1 工程概况 1.1 新建64万吨/年乙烯装置热区废碱氧化包(GB-501)内包含一套湿式氧化空气压缩机组,位号为CB-501X。本压缩机为四列、水冷式、M型少油润滑湿式氧化空气压缩机。四级压缩,将空气由常压压缩至4.83Mpa(G)。布置方式为单层平面布置,其整体结构简图见图1。 电机 1.2 主要的技术参数 1.2.1压缩机 1)排气量(吸入状态) 46 m3/min 2)各级吸入压力 0.001/0.128/0.513/1.636MPa(G) 3)各级排气压力 0.128/0.513/1.636/4.83MPa(G) 4)各级吸入温度 38/40/40/40 C° 5)各级排气温度 136/155/158/157 C°

6)冷却水进水温度 33 C° 7)冷却水排水温度≤43 C° 8)润滑油压力(G) 0.25~0。35MPa 9)进水压力(G) 0.45MPa(进出水压差0.2MPa) 10)压缩机转速 420r/min 11)轴功率 435Kw 12)活塞行程 240mm 13)各级气缸直径 610/430/270/175 mm 14)噪声(声功率级) ≤85Db(A) 15)最大零件重量(机身部件) 4276Kg 16)传动方式异步电机直联传动 17)主机外形尺寸(长、宽、高) 7990*6078*3836mm 1.2.2电动机 a.型号 YAKK6303-14WTH b.形式异步电动机 c.额定功率 500Kg d.额定电压 6000V e.同步转速 428r/min f.电机重量 9910Kg 2编制依据 2.1 《压缩机、风机、泵安装工程施工及验收规范》 GB50275-98 2.3 《化工机器安装工程施工及验收规范(中小型活塞式压缩机)》 HGJ206-92 2.4 《化工机器安装工程施工及验收规范(对置式压缩机)》》 HGJ204-83 2.5 《化工机器安装施工及验收规范(通用规定)》 HGJ203-83 2.6 湿式氧化空气压缩机组随机资料(沈阳远大压缩机制造有限公司)4M10(Y2).CM 2.7 MITSYBISHI HEAVY INDUSTRIES,LTD提供的废碱回收工艺包 (GB-501)的设计资料; 3 施工基本程序 往复式压缩机组施工程序见图3-1。 4 压缩机的主要结构特征: 4.1主要零部件 4.1.1机体由机身,中体组成,机身中体材料为灰铸铁.它们之间用螺栓连接成一体,并分

机电设备生产工艺流程

机组生产工艺流程 一、主机生产工艺流程图: 具体生产步骤: 1、原材料采购 公司原材料采购有严格执行的工作流程:专业采购人员首先收集原材料的消耗需求,将必备的原料质量标准和采购数量向《合格供应商名录》范围内的同类货品供应商广泛发出询价议价通知,然后将收集到的各供应商提交原材料样本送检,筛选出合格样本,再进行具体的询价议价后,提交采购决策人进行采购决策;组织安排与供应商的合同,并封存样本作为合同执行的辅助材料;货物到厂后,经过检测和化验合格后,组织入库,而对检验不合格的原材料一律不得使用,由采购人员安排退货。公司还在制度中严格规定,财务部门安排付款时,必须收到合格的检化验单,否则不得支付货款;生产部门必须取得合格的检化验单后,才能将相关货品投入生产使用。 2、进货检验

原材料到厂后,由厂内熟悉产品性能的技术人员对其进行严格检验,保证进厂的产品均为合格产品。 3、下料 根据生产要求合理安排人手,产线工人根据设计图纸要求,进行下料作业。4、焊接成型 由持有上岗证的技术工人对下料进行焊接。焊接要求:铜管之间的焊接使用铜焊丝,铜件与钢件、钢件与钢件的焊接使用高银焊丝,氧气与乙炔共同燃烧基础上,在150°高温下,使焊丝溶解成液态,在铜件与铜件及铜件与钢件或钢件与钢件的焊口处焊接,要求不出现焊眼,确保其气密性。 5、打压试漏 打压试漏:为确保空调主机的内循环系统的密闭性,需使用打压设备以氮气为媒介打压试漏。用压力表为测压工具,根据不同机型而达到不同的压力标准。在保压24小时后,应无降压情况。 6、抽真空 抽真空:在完全封闭,内部系统畅通的情况下,使用真空泵抽机组内空气,根据真空表指示,30分钟,30Pa以下, 确保主机内处于真空状态。 7、冷媒充注 冷媒充注:在作抽真空工序后,充注氟。在充注前确保主机各个阀门完全关闭。充注过程中,氟瓶高于主机机身,而且确保氟瓶、充注管、和主机的连接无漏气现象。 8、整机调试 8.1空负荷试车

往复式压缩机的基本知识及原理精编

往复式压缩机的基本知 识及原理精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

.活塞式压缩机的基本知识及原理 活塞式压缩机的分类: (1)按气缸中心线位置分类 立式压缩机:气缸中心线与地面垂直。 卧式压缩机:气缸中心线与地面平行,气缸只布置在机身一侧。 对置式压缩机:气缸中心线与地面平行,气缸布置在机身两侧。(如果相对列活塞相向运动又称对称平衡式) 角度式压缩机:气缸中心线成一定角度,按气缸排列的所呈现的形状。有分L型、V型、W型和S型。 (2)按气缸达到最终压力所需压级数分类 单级压缩机:气体经过一次压缩到终压。 两级压缩机:气体经过二次压缩到终压。 多级压缩机:气缸经三次以上压缩到终压。 (3)按活塞在气缸内所实现气体循环分类 单作用压缩机:气缸内仅一端进行压缩循环。 双作用压缩机:气缸内两端进行同一级次的压缩循环。 级差式压缩机:气缸内一端或两端进行两个或两个以上的不同级次的压缩循环。 (4)按压缩机具有的列数分类 单列压缩机:气缸配置在机身的一中心线上。 双列压缩机:气缸配置在机身一侧或两侧的两条中心线上。 多列压缩机:气缸配置在机身一侧或两侧的两条以上中线上。 活塞式压缩机工作原理:

当活塞式压缩机的曲轴旋转时,通过连杆的传动,活塞便做往复运动,由气缸内壁、气缸内的工作容积则会发生周期性变化。活塞式压缩机的活塞从气缸盖处开始运动时,气缸内的工作容积逐渐增大,这时,气体即沿着进气管,推开进气阀而进入气缸,直到工作容积变到最大时为止,进气阀关闭;活塞式压缩机的活塞反向运动时,气缸内工作容积缩小,气体压力升高,当气缸内压力达到并略高于排气压力时,排气阀打开,气体排出气缸,直到活塞运动到极限位置为止,排气阀关闭。当活塞式压缩机的活塞再次反向运动时,上述过程重复出现。总之,活塞式压缩机的曲轴旋转一周,活塞往复一次,气缸内相继实现进气、压缩、排气的过程,即完成一个工作循环。 活塞式压缩机的基本结构 活塞式压缩机基本原理大致相同,具有十字头的活塞式压缩机,主要有机体、曲轴、连杆、十字头、气缸、活塞、填料、气阀等组成。 1、机身:主要由中体、曲轴箱、主轴瓦(主轴承)、轴承压盖及连接和密封件等组成。曲轴箱可以是整体铸造加工而成,也可以是分体铸造加工后组装而成。主轴承采用滑动轴承,安装时应注意上下轴承的正确位置,轴承盖设有吊装螺孔和安装测温元件的光孔。 2、曲轴:曲轴是活塞式压缩机的主要部件之一,传递着压缩机的功率。其主要作用是将电动机的旋转运动通过连杆改变为活塞的往复直线运动。 3、连杆:连杆是曲轴与活塞间的连接件,它将曲轴的回转运动转化为活塞的往复运动,并把动力传递给活塞对气体做功。连杆包括连杆体、连杆小头衬套、连杆大头轴瓦和连杆螺栓。 4、十字头:十字头是连接活塞与连杆的零件,它具有导向作用。十字头与活塞杆的连接型式分为螺纹连接、联接器连接、法兰连接等。大中型压缩机多

空气源热泵机组压缩机技术

空气源热泵机组压缩机技术 夏季制热工况本身对空气源热泵机组来说就是一种不好的运行工况,正常的做法应该是夏季用来制冷水,这样空气源热泵机组的排气温度、运行压力、压缩机回油都会比较好。既然市场有需求,而欧美国家也盛行用空气源热泵机组来制取生活热水,技术上是完全可行的,也符合国家倡导的节能降耗的政策,对用户来说也节约了大量的运行费用。 鉴于空气源热泵机组原来几十年来都是夏天用来制取冷水,秋冬季用来制取热水,直到20世纪80年代中期石油危机产生后,欧美国家为了节能才用在冬夏季制取热水,而且水温也由原来的40℃~45℃提高到50℃~60℃。这样一来对空气源热泵机组的配件选型、设计,尤其是空气源热泵机组的匹配提出了更高的要求。 目前市场上所能够买到的压缩机都是压缩机厂商专门为分体空调和小型中央空调配套用而设计生产的,也就是夏天用于制冷、冬季用于制热的压缩机,鉴于此,热泵热水器厂家选用压缩机的范围就比较窄,目前选用的基本都是中温型压缩机,也就是小型中央空调用的压缩机。高温型压缩机(也叫T3工况压缩机),主要用于超高(低)环境温度。高水温、高湿结霜等恶劣工况使用的品种。 高温型能够承受压缩机排气温度130℃,而普通中温压缩为

115℃;高温型压缩机出厂寿命测试按高压31.5kg长期运行,而普通中温型则按26.5kg运行测试;压缩机内置超高压自动卸载功能,而普通型即无此功能。空气源热泵机组作为一个多种配件组合运行的机件,必须多部件都尽可能保持最佳的运行状态,尤其是核心部件压缩机,影响压缩机寿命的直接因素主要有排回气温度、高(低)压、回油状况。大热天制热水,本身属于恶劣工况,压缩机的运行尽量以保护其不受损伤,以能保证热水的供应为主,而不是为了提高效率,而压缩机总是在高排气温度、高压状态下运转。热天效率过高,回气温度也高,造成压缩机回油不好,润滑不好易损坏,同时回气温度高、排气温度也高,压缩机润滑油被烧焦面造成压缩机损坏是比较常见的问题,也是空气源热泵热水器易烧压缩机及寿命大大缩短的原因。中温压缩机本身就不太适合在高温下运行。大热天用空气源热泵制热水,本身强其所难,这时本应用于制冷水而现在都用于制热水,所以工况对机组运行很不好。实际上,空气源热泵热水器的设计应该是大热天以提倡“爱护”为主,制热是适可而止,冬季制热水是其职责所在,也适合机组在较好的工况下制热水而不受损伤,这时效率高一点是对的,但也不能只一味追求高效率,否则也会出现回气温度高,引起排气温度也高、回油不好及油润滑不好的现象,对压缩造成热伤甚至损坏。 目前空气源热泵市场早已过了前几年追求超高效率的时代,而转到提高稳定性及机组寿命上了。1.夏天用低速,冬天用高速以减

相关文档
相关文档 最新文档