文档库 最新最全的文档下载
当前位置:文档库 › 材料热力学作业

材料热力学作业

材料热力学作业
材料热力学作业

1、什么是热力学?动力学?

热力学是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科。工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。

热力学(thermodynamics)是自然科学的一个分支,主要研究热量和功之间的转化关系。热力学是研究物质的平衡状态以及与准平衡态,以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的物理、化学过程的学科。热力学适用于许多科学领域和工程领域,如发动机,相变,化学反应,甚至黑洞等等。

热力学,全称热动力学,是研究热现象中物态转变和能量转换规律的学科;

它着重研究物质的平衡状态以及与准平衡态的物理、化学过程。

热力学是热学理论的一个方面。热力学主要是从能量转化的观点来研究物质的热性质,它揭示了能量从一种形式转换为另一种形式时遵从的宏观规律。热力学是总结物质的宏观现象而得到的热学理论,不涉及物质的微观结构和微观粒子的相互作用。因此它是一种唯象的宏观理论,具有高度的可靠性和普遍性。热力学三定律是热力学的基本理论。

热力学定律

* 热力学第零定律:说明热平衡和温度的关系。

* 热力学第一定律:能量守恒定律的一种特殊形式——在一个封闭系统里,所有种类的能量,形式可以转化,但既不能凭空产生,也不会凭空消失。

* 热力学第二定律:孤立系统熵(失序)不会减少——简言之,热不能自发的从冷处转到热处,任何高温的物体在不受热的情况下,都会逐渐冷却。

* 热力学第三定律:不可能以有限程序达到绝对零度——换句话说,绝对零度永远不可能达到。

动力学(Dynamics)是经典力学的一门分支,主要研究运动的变化与造成这变化的各种因素。换句话说,动力学主要研究的是力对于物体运动的影响。运动学则是纯粹描述物体的运动,完全不考虑导致运动的因素。更仔细地说,动力学研究由于力的作用,物理系统怎样随着时间的演进而改变。动力学的基础定律是艾萨克·牛顿提出的牛顿运动定律。对于任意物理系统,只要知道其作用力的性质,引用牛顿运动定律,就可以研究这作用力对于这物理系统的影响。在经典电磁学里,物理系统的动力状况涉及了经典力学与电磁学,需要使用牛顿运动定律、麦克斯韦方程、洛伦兹力方程来描述。自20世纪以来,动力学又常被人们理解为侧重于工程技术应用方面的一个力学分支。动力学是机械工程与航空工程的基础课程。

动力学的基本内容包括质点动力学、质点系动力学、刚体动力学、达朗贝尔原理等。以动力学为基础而发展出来的应用学科有天体力学、振动理论、运动稳定性理论,陀螺力学、外弹道学、变质量力学,以及正在发展中的多刚体系统动力学、晶体动力学等。

2.材料热力学是从能量角度研究材料,试举出和你研究领域相近的两种应

用热力学理论来研究材料的例子。

1. Nb表面合金化对Ti6Al4V腐蚀行为的影响,钛合金具有比强度高等特性,是适合于航空航天等领域应用的先进材料.然而未加处理的钛合金通常存在耐磨性差及高温易氧化等问题,无法满足应用要求.此外,钛合金在大气、海水等一般环境下具有较强的耐蚀性,但是在一些特殊介质里,如还原性酸中容易受到腐蚀.为了解决上述问题,适当的表面改性处理是十分必要的.因此钛合金表面改性技术近年来成为材料科学热点研究领域之一.

钛合金中加入铌元素可显著提高耐蚀性及高温抗氧性能.Ti-45 Nb就是一种新型耐蚀钛合金采用双辉技术在Ti6Al4V合金表面进行Nb表面合金化处理,形成具有类似Ti45 Nb成分的表面Ti-Nb合金层,提高其抗蚀性及高温抗氧化性能,同时又保留了基体材料比强度高的特性.

基体Ti6Al4V和Ti-Nb合金层在5%H2SO4溶液中电化学腐蚀极化曲线如图4所示.由图4可以看出Ti-Nb合金层较基体Ti6Al4V自腐蚀电位提高约400mV,从电化学腐蚀热力学角度表明Ti-Nb合金层抗腐蚀能力提高了.由阳极极化曲线看出,两者趋势是一样的,都发生了钝化.

图5是基体Ti6Al4V和Ti-Nb合金层在5%HCl溶液中电化学腐蚀极化曲线.由图可以看出Ti-Nb合金层较基体Ti6Al4V自腐蚀电位提高约60 mV,从热力学角度表明抗腐蚀能力提高了.基体Ti6Al4V和Ti-Nb合金层阳极极化曲线基本相似,均表现为电流密度随着电位的升高而增大,它没有发生钝化现象,始终处于活性溶解区

由图6可以看出Ti-Nb合金层在315%NaCl溶液中较基体Ti6Al4V自腐蚀电位提高约160 mV,表明Nb表面合金化后增加了Ti6Al4V热力学稳定性,耐蚀性提高.由Ti6Al4V阳极极化曲线看出,电流密度随着电位的升高而增大,也就是说它没有发生钝化现象,始终处于活性溶解区;由Ti-Nb合金层阳极极化曲线可以看出,在0121 V~0139 V左右发生钝化,在电位达113 V之后,发生二次钝化,说明Ti-Nb 合金层在3. 5%NaCl水溶液中出现钝化膜破裂后自修复的现

象。

结论:电化学腐蚀研究表明:在5% H2SO4、5% HCl、3.5%NaCl溶液中Ti-Nb合金层较基体Ti6Al4V抗腐蚀能力有一定的提高。

2.分析法

基于溶液电化学性质的化学分析方法。电化学分析法是由德国化学家C.温克勒

尔在19世纪首先引入分析领域的,仪器分析法始于1922年捷克化学家 J.海洛夫斯基建立极谱法。电化学分析法的基础是在电化学池中所发生的电化学反应。

电化学池由电解质溶液和浸入其中的两个电极组成,两电极用外电路接通。在两个电极上发生氧化还原反应,电子通过连接两电极的外电路从一个电极流到另一个电极。根据溶液的电化学性质(如电极电位、电流、电导、电量等)与被测物质的化学或物理性质(如电解质溶液的化学组成、浓度、氧化态与还原态的比率等)之间的关系,将被测定物质的浓度转化为一种电学参量加以测量。

根据国际纯粹化学与应用化学联合会倡议,电化学分析法分为三大类:①既不涉及双电层,也不涉及电极反应,包括电导分析法、高频滴定法等。②涉及双电层,但不涉及电极反应,例如通过测量表面张力或非法拉第阻抗而测定浓度的分析方法。③涉及电极反应,又分为两类:一类是电解电流为0,如电位滴定;另一类是电解电流不等于0,包括计时电位法、计时电流法、阳极溶出法、交流极谱法、单扫描极谱法、方波极谱法、示波极谱法、库仑分析法等。

3.金属的防腐蚀问题,大部分金属腐蚀是电化学腐蚀问题。

根据电化学腐蚀原理,依靠外部电流的流入改变金属的电位,从而降低金属腐蚀速度的一种材料保护技术。按照金属电位变动的趋向,电化学保护分为阴极保护和阳极保护两类。①阴极保护。通过降低金属电位而达到保护目的的,称为阴极保护。根据保护电流的来源,阴极保护有外加电流法和牺牲阳极法。外加电流法是由外部直流电源提供保护电流,电源的负极连接保护对象,正极连接辅助阳极,通过电解质环境构成电流回路。牺牲阳极法是依靠电位负于保护对象的金属(牺牲阳极)自身消耗来提供保护电流,保护对象直接与牺牲阳极连接,在电解质环境中构成保护电流回路。阴极保护主要用于防止土壤、海水等中性介质中的金属腐蚀。②阳极保护。通过提高可钝化金属的电位使其进入钝态而达到保护目的的,称为阳极保护。阳极保护是利用阳极极化电流使金属处于稳定的钝态,其保护系统类似于外加电流阴极保护系统,只是极化电流的方向相反。只有具有活化 - 钝化转变的腐蚀体系才能采用阳极保护技术,例如浓硫酸贮罐、氨水贮槽等。

3.你研究课题的研究内容是什么,拟用几种分析、检测方法,课题研究中

有无热力学现象,试简单介绍。

课题:TiNi合金表面双辉等离子渗Mo合金化后的表面结构和性能

采用双辉等离子表面合金化技术对TiNi合金进行表面渗钼合金化处理;采用光学显微镜、辉光放电光谱仪和扫描电镜对合金化试样的截面及表面进行表征,采用显微硬度计、硬度计、往复磨损试验机及白光干涉仪对合金化试样的表面硬度、结合强度及摩擦学性能进行了测试。采用电化学测试对表面耐蚀性能进行研究。

金相分析是金属材料试验研究的重要手段之一,采用定量金相学原理,由二维金相试样磨面或薄膜的金相显微组织的测量和计算来确定合金组织的三维空间形貌,从而

建立合金成分、组织和性能间的定量关系。将计算机应用于图像处理,具有精度高、速度快等优点,可以大大提高工作效率。

计算机定量金相分析正逐渐成为人们分析研究各种材料,建立材料的显微组织与各种性能间定量关系,研究材料组织转变动力学等的有力工具。采用计算机图像分析系统可以很方便地测出特征物的面积百分数、平均尺寸、平均间距、长宽比等各种参数,然后根据这些参数来确定特征物的三维空间形态、数量、大小及分布,并与材料的机械性能建立内在联系,为更科学地评价材料、合理地使用材料提供可靠的数据。

辉光放电光谱仪:

主要用途:

?导电材料和非导电材料的基体、镀层(涂层)中的化学元素含量分析;

?热处理工件(渗碳、渗氮)等的元素深度定量分析;

?导电材料表面覆盖有一层或多层导电或不导电镀层(涂层)中化学元素

的分析;

?非导体材料表面覆盖有一层或多层导电或不导电镀层(涂层)中化学元

素的分析;

扫描电镜:

扫描电子显微镜的制造是依据电子与物质的相互作用。当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x

射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光

区域产生的电磁辐射。同时,也可产生电子-空穴对、晶格振动(声子)、

电子振荡(等离子体)。原则上讲,利用电子和物质的相互作用,可以获取

被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电

子结构和内部电场或磁场等等。

1 显微结构的分析

在陶瓷的制备过程中,原始材料及其制品的显微形貌、孔隙大小、晶界和团聚程度等将决定其最后的性能。扫描电子显微镜可以清楚地反映和记录这些微观特征,是观察分析样品微观结构方便、易行的有效方法,样品无需制备,只需直接放入样品室内即可放大观察;同时扫描电子显微镜可以实现试样从低倍到高倍的定位分析,在样品室中的试样不仅可以沿三维空间移动,还能够根据观察需要进行空间转动,以利于使用者对感兴趣的部位进行连续、系统的观察分析。扫描电子显微镜拍出的图像真实、清晰,并富有立体感,在新型陶瓷材料的三维显微组织形态的观察研究方面获得了广泛地应用。

由于扫描电子显微镜可用多种物理信号对样品进行综合分析,并具有可以直接观察较大试样、放大倍数范围宽和景深大等特点,当陶瓷材料处于不同的外部条件和化学环境时,扫描电子显微镜在其微观结构分析研究方面同样显示出极大的优势。主要表现为:⑴力学加载下的微观动态(裂纹扩展)研究;⑵加热条件下的晶体合成、气化、聚合反应等研究;⑶晶体生长机理、生长台阶、缺陷与位错的研究;⑷成分的非均匀性、壳芯结构、包裹结构的研究;⑸晶粒相成分在化学环境下差异性的研究等。

2 纳米尺寸的研究

纳米材料是纳米科学技术最基本的组成部分,可以用物理、化学及生物学的方法制备出只有几个纳米的“颗粒”。纳米材料的应用非常广泛,比如通常陶瓷材料具有高硬度、耐磨、抗腐蚀等优点,纳米陶瓷在一定的程度上也可增加韧性、改善脆性等,新型陶瓷纳米材料如纳米称、纳米天平等亦是重要的应用领域。纳米材料的一切独特性主要源于它的纳米尺寸,因此必须首先确切地知道其尺寸,否则对纳米材料的研究及应用便失去了基础。纵观当今国内外的研究状况和最新成果,该领域的检测手段和表征方法可以使用透射电子显微镜、扫描隧道显微镜、原子力显微镜等技术,但高分辨率的扫描电子显微镜在纳米级别材料的形貌观察和尺寸检测方面因具有简便、可操作性强的优势被大量采用。另外如果将扫描电子显微镜与扫描隧道显微镜结合起来,还可使普通的扫描电子显微镜升级改造为超高分辨率的扫描电子显微镜。

3 铁电畴的观测

压电陶瓷由于具有较大的力电功能转换率及良好的性能可调控性等特点在多层陶瓷驱动器、微位移器、换能器以及机敏材料与器件等领域获得了广泛的应用。随着现代技术的发展,铁电和压电陶瓷材料与器件正向小型化、集成化、多功能化、智能化、高性能和复合结构发展,并在新型陶瓷材料的开发和研究中发挥重要作用。铁电畴(简称电畴)是其物理基础,电畴的结构及畴变规律直接决定了铁电体物理性质和应用方向。电子显微术是观测电畴的主要方法,其优点在于分辨率高,可直接观察电畴和畴壁的显微结构及相变的动态原位观察(电畴壁的迁移)。

扫描电子显微镜观测电畴是通过对样品表面预先进行化学腐蚀来实现的,由于不同极性的畴被腐蚀的程度不一样,利用腐蚀剂可在铁电体表面形成凹凸不平的区域从而可在显微镜中进行观察。因此,可以将样品表面预先进行化学腐蚀后,利用扫描电子显微镜图像中的黑白衬度来判断不同取向的电畴结构。对不同的铁电晶体选择合适的腐蚀剂种类、浓度、腐蚀时间和温度都能显示良好的畴图样。

在实际分析工作中,往往在获得形貌放大像后,希望能在同一台仪器上进行原位化学成分或晶体结构分析,提供包括形貌、成分、晶体结构或位向在内的丰富资料,以便能够更全面、客观地进行判断分析。为了适应不同分析目的的要求,在扫描电子显微镜上相继安装了许多附件,实现了一机多用,成为一种快速、直观、综合性分析仪器。把扫描电子显微镜应用范围扩大到各种显微或微区分析方面,充分显示了扫描电镜的多种性能及广泛的应用前景。

目前扫描电子显微镜的最主要组合分析功能有:X射线显微分析系统(即能谱仪,EDS),主要用于元素的定性和定量分析,并可分析样品微区的化学成分等信息;电子背散射系统(即结晶学分析系统),主要用于晶体和矿物的研究。随着现代技术的发展,其他一些扫描电子显微镜组合分析功能也相继出现,例如显微热台和冷台系统,主要用于观察和分析材料在加热和冷冻过程中微观结构上的变化;拉伸台系统,主要用于观察和分析材料在受力过程中所发生的微观结构变化。扫描电子显微镜与其他设备组合而具有的新型分析功能为新材料、新工艺的探索和研究起到重要作用。

成像

二次电子和背散射电子可以用于成像,但后者不如前者,所以通常使用二次电子

课题中的热力学现象:

电化学分析:电化学腐蚀中金属电位高低与金属活动性之间一般还是有规律可循的,在特定的介质条件下,电位较负的金属活泼性比较大,电位较正的金属活泼性较小。电位较负的金属在电化学腐蚀的过程中通常作为阳极,而电位较正的金属通常作为阴极;作为阳极的金属就会因腐蚀而受到破坏,而阴极却没有太大的破坏。

化学腐蚀与电化学腐蚀有着本质的不同,化学腐蚀通常发生在高温,干燥的环境下。

电化学腐蚀是金属因发生了电化学反应而受到的破坏,通常要有第二类导体(即离子导体)的参与,阳极和阴极通常要分区域进行(均匀腐蚀阳极,阴极区域很难区分),这是与化学腐蚀一个重要的区别。

极化曲线:

表示电极电位与极化电流或极化电流密度之间的关系曲线。如电极分别是阳极或阴极,所得曲线分别称之为阳极极化曲线(anodic polarization curve)或阴极极化曲线(cathodic polarization curve)。

极化曲线分为四个区,活性溶解区、过渡钝化区、稳定钝化区、过钝化区。

极化曲线可用实验方法测得。分析研究极化曲线,是解释金属腐蚀的基本规律、揭示金属腐蚀机理和探讨控制腐蚀途径的基本方法之一。

极化曲线以电极电位为纵坐标,以电极上通过的电流为横坐标获得的曲线称为极化曲线。它表征腐蚀原电池反应的推动力电位与反应速度电流之间的函数关系。直接从实验测得的是实验极化曲线。而构成腐蚀过程的局部阳极或者局部阴极上单独电极反应之电位与电流关系称为真实极化

曲线,即理想极化曲线。

热力学作业

第三章 热力学作业 3-9 0.32kg 的氧气作如图3-36所示的循环,循环路径为abcda , V 2= 2V 1, T 1= 300K ,T 2=200K ,求循环效率。设氧气可以看做理想气体。 解: mol M M mol 10032 .032.0===ν 氧气为双原子分子, R c v 25= a-b 为等温过程,0=?E J V V RT A Q 412 11110728.12ln 30031.810ln ?=???===ν 此过程系统从外界吸热J 410728.1?,全部用来向外做功。 b-c 为等体过程,A =0 () J T T c E Q v 4122100775.2)300200(31.82 510?-=-???=-=?=ν 此过程系统向外放热J 4100775.2?,系统内能减少J 4100775.2?。 c-d 过程为等温过程,E ?=0 J V V RT A Q 42 1 22310152.121ln 20031.810ln ?-=???===ν 此过程外界对系统做功J 410152.1?,系统向外放热J 410152.1? d-a 为等体过程,A =0 () ()J T T c E Q v 4214100775.220030031.82 510?=-???=-=?=ν 此过程系统从外界吸热J 4100775.2?,使内能增加J 4100775.2?。 热机效率为 ()()%14.150775 .2728.1152.10775.20775.2728.1==-吸放吸++-+=Q Q Q η

3-14 一个卡诺致冷机从0℃的水中吸收热量制冰,向27℃的环境放热。若将 5.0kg 的水变成同温度的冰(冰的熔解热为 3.35×105J /kg ),求:(l )放到环境的热量为多少?(2)最少必须供给致冷机多少能量? 解: 设高温热源温度为T 1,低温热源温度为T 2 T 1=27+273=300K ,T 2=0+273=273K (1) 设此致冷机从低温热源吸热为Q 2,则 J ==Q 65210675.11035.30.5??? 设此致冷机致冷系数为ε,则 11.10273300273212 == -T T T =-ε 由212 -Q Q Q =ε,可得放到环境中的热量为 J ==Q Q =Q 666 22 110841.110675.111.1010675.1???++ε (2) 设最少必须供给致冷机的能量为A ,则 J =-Q Q A 566211066.110675.110841.1???=-=

第八章的热力学作业(答案详解)

一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0>?A B E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板 分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真 空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是(A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ . 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0...... 0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得: B A B A T T V V =,2B A T T ∴=,B A A T T T -=

热力学作业 答案

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体 积 V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A → C 等温过程;A → D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板 抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=, ∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过

热力学作业答案

热力学作业答案 The pony was revised in January 2021

第八章 热力学基 础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ.

【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为 E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得: B A B A T T V V =,2B A T T ∴=,B A A T T T -=

化工热力学大作业

化工热力学大作业

1、计算下,乙醇(1)-水(2)体系汽液平衡数据 (1)泡点温度和组成的计算 计算气液平衡数据方法(步骤): 1、由C2H5OH 以及H2O ,查得两物质临界参数Tc1、Tc 2、Pc1、Pc2、ω查得antonio 方程中C2H5OH 和H2O 参数A1,B1,C1,A2,B2,C2,进入2 2、利用总压强P 总=,带入antonio 方程i i i s i C T B A p +-=ln 得T1,T2,进入3 3、假设x1,x2数据,从小到大假设,并取为间隔,逐次递增,由T=T1*x1+T2*x2, 并另各V i ??初值均为1,进入4 4、将T 值带入antonio 方程i i i s i C T B A p +-=ln 可得Ps1和Ps2,进入5 5、选择NRTL 方程,计算γi ,进入6 6、利用两物质临界参数以及T 、P 值计算Tr1,Tr2,Prs1,Prs2,再利用对比态法(计算逸度系数的对比态法)计算气态混合物各组元i 的逸度系数,进入7 7、利用平衡方程,V i s i S i i i i P P x y ??γ?=计算y1、y2,进入8 8、计算y1+y2的值,并判断是否进行迭代 9、将yi 归一化,利用混合物维里方程(计算混合物逸度系数的维里方程)结合 混合规则计算各V i ??,返回7 10、判断y1+y2是否与8的值不同,“是”返回6,“否”进入11 11、计算y1+y2,判断是否为1,“否”进入12,“是”进入13 12、调整T 值,如果y1+y2大于1,则把T 值变小,如果y1+y2小于1,则把T 值变大,并返回4 13、得出T 、所有yi 值,并列出表格,进入14 14、将所有按从小到大顺序假设的Xi 值所对应的Yi 值求出,并作出T-X-Y 图,进入15 15、结束

作业(热力学答案)

作业8(热力学) 一、选择题 [ ] 1. 有A 、B 两种不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积内的内能之间的关系为: (A) A B E E V V ????< ? ?????; (B) A B E E V V ????> ? ?????;(C) A B E E V V ????= ? ?????;(D) 无法判定 [ ] 2. 对于室温下的双原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W/Q 为: (A) 1/3; (B) 1/4; (C) 2/5; (D) 2/7 [ ] 3.“ 理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外做功”。对此说法有如下几种评论,其中正确的是: (A) 不违反热力学第一定律,但违反热力学第二定律; (B) 违反热力学第一定律,但不违反热力学第二定律; (C) 不违反热力学第一定律,也不违反热力学第二定律; (D) 违反热力学第一定律,也违反热力学第二定律 [ ] 4.在给出的4个图像中,能够描述一定质量的理想气体在可逆绝热过程中密度随压强变化的图像为: (A) (B) (C) (D) [ ] 5. 一定质量的理想气体经过压缩过程后,体积减小为原来的一半,如果要使外界所做的机械功为最大,那么这个过程应是: (A) 绝热过程; (B) 等温过程;(C) 等压过程;(D) 绝热过程或等温过程均可 [ ] 6. 关于可逆过程和不可逆过程的判断:(1)可逆热力学过程一定是准静态过程;(2)难静态过程一定是可逆过程;(3)不可逆过程就是不能向相反方向进行的过程;(4)凡有摩擦的过程,一定是不可逆过程。以上4种判断正确的是: (A) (1)(2)(3); (B) (1)(2)(4);(C) (2)(4);(D) (1)(4) [ ] 7. 你认为以下哪个循环过程是不可能的: (A) 绝热线、等温线、等压线组成的循环; (B) 绝热线、等温线、等容线组成的循环; (C) 等容线、等压线、绝热线组成的循环; (D) 两条绝热线和一条等温线组成的循环 [ ] 8. 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体.若把隔板抽出进行自由膨胀,达到平衡后: (A) 温度不变,熵增加; (B) 温度升高,熵增加; (C) 温度降低,熵增加; (D) 温度不变,熵不变

工科物理大作业11-热力学

11 11 热力学 班号 学号 姓名 成绩 一、选择题 (在下列各题中,均给出了4个~6个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内) 1. 在下列说法中,正确的是: A .物体的温度愈高,则热量愈多; B .物体在一定状态时,具有一定的热量; C .物体的温度愈高,则其内能愈大; D .物体的内能愈大,则具有的热量愈多。 (C ) [知识点] 内能和热量的概念。 [分析与解答] 内能是物体内部所有分子的热运动动能和分子间相互作用势能的总和,是系统状态(或温度)的单值函数,系统的温度愈高,其内能愈大。 热量是由于系统与外界温度不同而进行的传热过程中所传递的能量的多少,同样温差情况下,不同的传热过程其热量不同,热量是过程量,不是状态的函数。 作功与传热可以改变系统的内能,若系统状态不变(内能也不变),就无需作功与传热,功与热量不会出现。 2. 在下列表述中,正确的是: A .系统由外界吸热时,内能必然增加,温度升高; B .由于热量Q 和功A 都是过程量,因此,在任何变化过程中,(Q +A )不仅与系统的始末状态有关,而且与具体过程有关; C .无摩擦的准静态过程中间经历的每一状态一定是平衡状态; D 能增量为T C M m E m p ?= ?,。 (C ) [知识点] 热量、作功和内能的概念。

[分析与解答] 根据热力学第一定律E A Q ?+=,系统由外界吸热时,可以将吸收的热量全部对外作功,内能不变,等温过程就是这种情况。 系统所吸收的热量和外界对系统做功的总和为系统内能的增量,内能的增量仅与系统始末状态有关,而与过程无关。 准静态过程就是在过程进行中的每一个状态都无限地接近平衡态的过程。由于准静态过程是无限缓慢的,无摩擦的(即无能量耗散),则各中间态都是平衡态。 无论何种过程,只要温度增量T ?相同,内能增量均为 T R M m i E ?= ?2T R C M m m V ?= 1,与过程无关。 3. 一定量某理想气体,分别从同一状态开始经历等压、等体、等温过程。若气体在上述过程中吸收的热量相同,则气体对外做功最多的过程是: A .等体过程; B. 等温过程; C. 等压过程; D. 不能确定。 (B ) [知识点] 热力学第一定律在等值过程中的应用。 [分析与解答] 设在等压、等体和等温过程吸收的热量为0Q ,则 等压过程 T R i T C Q m p ?+=?=2 21 0ν ν 002 2Q i Q T R V p A p <+= ?=?=ν 等体过程 0=Q A ,吸收的热量全部用于增加的内能 等温过程 0=T A ,吸收的热量全部用于对外做功 由热力学第一定律E A Q ?+=知,等压过程,气体吸收来的热量既要对外做功,又要使内能增加;等体过程,气体不对外做功,吸收的热量全部用于增加内能;等温过程,气体吸收的热量全部用于对外做功。因此,当吸收的热量相同时,等温过程对外做功最多。 4. 如图11-1所示,一定量理想气体从体积V 1膨胀到V 2,ab 为等压过程,ac 为等温过程,ad 为绝热过程,则吸热最多的是: A .ab 过程; B. ac 过程; C. ad 过程; D. 不能确定。 (A )

热力学作业(标准答案)

热力学作业(标准答案)

————————————————————————————————作者:————————————————————————————————日期:

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0>?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真 空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ . 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=; 等压过程:A B p p =,根据状态方程pV RT ν=,得: B A B A T T V V =, 2B A T T ∴=,B A A T T T -= p 0

化工热力学大作业---乙醇与水物性分析

化工热力学大作业 学院:化学化工学院 班级: 学号: 姓名: 指导老师:

1.计算101.3kPa下,乙醇(1)-水(2)体系汽液平衡数据 1)泡点温度和组成的计算 已知:平衡压力P,液相组成x1,x2 ???xN V i s i S i i i i P P x y ? ? γ ? =∑ = i i i y y y/ 泡点温度T,汽相组成y1,y2???y n采用以下流程计算:可得到泡点温度和组成

2)露点温度和组成的计算 已知P, 气相组成y1,y2…….yN , s i S i i V i i i P Py x ?γ??= ∑=i i i i x x x / 露点温度T ,液相组成x 1,x 2 ???x n 采用以下流程计算: 可得到露点温度和组成

3)计算过程 运用化工软件Aspen计算 ①选择模板为General with Metric Units;Run Type为物性分析(Property Analysis) ②组分为乙醇(C2H5OH,ETHANOL)和水(H2O)物性方法为NRTL ③乙醇及水的流率均设为50kmol/h初输入温度为25℃,压力为101.325KPa。 ④设定可调变量为乙醇的摩尔分数,变化范围0—1,增量为0.05,则可取20个点。 ⑤选择物性参数露点温度(TDEW)及泡点温度(TBUB),温度均为℃。 最后以乙醇摩尔分数为X坐标,露点温度(TDEW)及泡点温度(TBUB)为Y坐标,得到下表及下图。 NRTL活度系数模型 乙醇取不同摩尔分率时对应的不同泡点温度及露点温度表(NRTL)

露点温度及泡点温度图(NRTL)

热力学基础习题

热力学基础作业 班级:_____________ 姓名:_____________ 学号:_____________ 日期:__________年_______月_______日 成绩:_____________ 一、选择题 1. 一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度 (A) 将升高. (B) 将降低. (C) 不变. (D)升高还是降低,不能确定. [ ] 2. 若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了 (A)0.500. (B) 400. (C) 900. (D) 2100. [ ] 3. 若理想气体的体积为V ,压强为p ,温度为T ,一个分子的质量为m ,k 为玻尔兹曼常量,R 为普适气体常量,则该理想气体的分子数为: (A) pV / m . (B) pV / (kT ). (C) pV / (RT ). (D) pV / (mT ). [ ] 4. 理想气体向真空作绝热膨胀. (A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小. (D) 膨胀后,温度不变,压强不变. [ ] 5. 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值? (A) 等体降压过程. (B) 等温膨胀过程. (C) 绝热膨胀过程. (D) 等压压缩过程. [ ] 6. 如果卡诺热机的循环曲线所包围的面积从图 中的abcda 增大为da c b a '',那么循环abcda 与da c b a ''所作的净功和热机效率变化情况是: (A) 净功增大,效率提高. (B) 净功增大,效率降低. (C) 净功和效率都不变. (D) 净功增大,效率不变. [ ] 7. 两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1 与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知: (A ) 两个热机的效率一定相等. (B ) 两个热机从高温热源所吸收的热量一定相等. c ' d T 2 a b b ' c T 1V O p

西安交通大学传热学大作业

《传热学》上机大作业 二维导热物体温度场的数值模拟 学校:西安交通大学 姓名:张晓璐 学号:10031133 班级:能动A06

一.问题(4-23) 有一个用砖砌成的长方形截面的冷空气通道,形状和截面尺寸如下图所示,假设在垂直纸面方向冷空气和砖墙的温度变化很小,差别可以近似的予以忽略。在下列两种情况下计算:砖墙横截面上的温度分布;垂直于纸面方向上的每米长度上通过墙砖上的导热量。 第一种情况:内外壁分别维持在10C ?和30C ? 第二种情况:内外壁与流体发生对流传热,且有C t f ?=101, )/(2021k m W h ?=,C t f ?=302,)/(422k m W h ?=,K m W ?=/53.0λ

二.问题分析 1.控制方程 02222=??+??y t x t 2.边界条件 所研究物体关于横轴和纵轴对称,所以只研究四分之一即可,如下图: 对上图所示各边界: 边界1:由对称性可知:此边界绝热,0=w q 。 边界2:情况一:第一类边界条件 C t w ?=10 情况二:第三类边界条件

)()( 11f w w w t t h n t q -=??-=λ 边界3:情况一:第一类边界条件 C t w ?=30 情况二:第三类边界条件 )()( 22f w w w t t h n t q -=??-=λ 三:区域离散化及公式推导 如下图所示,用一系列和坐标抽平行的相互间隔cm 10的网格线将所示区域离散化,每个交点可以看做节点,该节点的温度近似看做节点所在区域的平均温度。利用热平衡法列出各个节点温度的代数方程。 第一种情况: 内部角点:

(完整word版)大学物理学热力学基础练习题

《大学物理学》热力学基础 一、选择题 13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( ) (A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。 【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+?知b 2a 过程放热,b 1a 过程吸热】 13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。 【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】 13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。 【提示:等体过程不做功,有Q E =?,而2 mol M i E R T M ?= ?,所以需传5J 】 13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( ) A () C () B () D ()

热力学作业题

文科物理《热力学》习题(计算题) 第一章热平衡与温度(选两题:从1-1至1-4任选一题,1-5至1-7任选一题;多选不限)温馨提示: 本章计算题解题时只需运用中学的知识,即理想气体状态方程。不过,解最后三道题时所用到的气体状态方程的形式为p = nkT。 1-1 定体气体温度计的测温气泡放入水的三相点管的槽内时,气体的压强为6.65×103Pa。求: (1)用此温度计测量373.15K的温度时,气体的压强是多大? (2)当气体压强为2.20×103Pa时,待测温度是多少K?多少o C? 解:视水蒸气为理想气体,视三相点温度约为0℃。P1V=nRT1,P2V=nRT2,P3V=nRT3 P2=(T2/T1)P1=373.15*6650/273.15=9.08×103Pa. T3=(P3/P1)T1=2.2*273.15/6.65=90.37K=-182.78℃. 1-2 自行车的车轮直径为71.12cm,内胎截面直径为3cm。在-3o C的天气里向空胎里打气。打气筒长30cm,截面半径1.5cm。打了20下,气打足了,问此时车胎内压强是多少?设车胎内最后气体温度为7o C。 解:内胎体积V2=(∏*71.12)*(∏*1.5*1.5)=1579.33㎝~3 打入空气V1=∏*1.5*1.5*30*20=4241.15 ㎝~3 P1V1=nRT1,P2V2=nRT2 P2=(V1T2P1)/(V2T1)=(4241.15*280.15)/(1579.33*270.15)=2.78atm 1-3 某柴油机的气缸充满空气,压缩前其中空气的温度为47o C,压强为8.61×104Pa。当活塞急剧上升时,可把空气压缩到原体积的1/17,其时压强增大到4.25×106Pa,求这时空气的温度(分别以K和o C表示)。 解:P1V1=nRT1,P2V2=nRT2, T2=P2V2T1/P1V1=(273.15+47)*425/(8.61*17)=929.59K=656.44℃. 1-4 一氢气球在20o C充气后,压强为1.2atm,半径为1.5m。到夜晚时,温度降为10o C,气球半径缩为1.4m,其中氢气压强减为1.1atm。求已经漏掉了多少氢气(提示:注意气压单位换算)。 解:1atm=101325Pa,P1=121590 Pa,P2=111457.5 Pa T1=293.15 K,T2=283.15 K V1=4/3*∏*1.5*1.5*1.5=14.14 m~3 V2=4/3*∏*1.4*1.4*1.4=11.49 m~3 n1-n2=P1V1/RT1-P2V2/RT2=161.41 mol 1-5 目前可获得的极限真空度为1.00×10-18atm。求在此真空度下1cm3空气内平均有多少个分子?设温度为20 o C。 解:PV=nRT, n=(1.00×10-18*101325/1000000*8.314*293.15)=41.57×10-24mol N=n*6.02×1023≈25个 1-6 “火星探路者”航天器发回的1997年7月26日火星表面白天天气情况是:气压为6.71mbar (1bar=105Pa),温度为-13.3 o C,这是火星表面1cm3内平均有多少个分子? 解:PV=nRT, n=(671/1000000*8.314*259.85)=0.310591652×10-6mol N= n*6.02×1023≈1.87×1017个

热力学基础作业

大学物理课堂作业 热力学基础 一、填空题 1 在p?V图上 (1) 系统的某一平衡态用_____________来表示; (2) 系统的某一平衡过程用________________来表示; (3) 系统的某一平衡循环过程用__________________来表示; 2.处于平衡态A的一定量的理想气体,若经准静态等体过程变到平衡态B,将从外界吸收热量416 J,若经准静态等压过程变到与平衡态B有相同温度的平衡态C,将从外界吸收热量582 J,所以,从平衡态A变到平衡态C的准静态等压 过程中气体对外界所作的功为____________________. 3.一定量的某种理想气体在等压过程中对外作功为200 J.若此种气体为单 原子分子气体,则该过程中需吸热_____________ J;若为双原子分子气体,则 需吸热______________ J. 4.可逆卡诺热机可以逆向运转.逆向循环时, 从低温热源吸热,向高温热源放热,而且吸的热量和放出的热量等于它正循环时向低温热源放出的热量和从高温热源吸的热量.设高温热源的温度为T1 =450 K , 低温热源的温度为T2 =300 K, 卡诺热机逆向循环时从低温热源吸热Q2 =400 J,则该卡诺热机逆向循环一次外界必须 作功W=_________. 5. 一热机从温度为727℃的高温热源吸热,向温度为527℃的低温热源放热.若 热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_____ ____________ J. 6. 从统计的意义来解释, 不可逆过程实质上是一个________________________ __________________________的转变过程, 一切实际过程都向着_____________ _____________________________的方向进行. γC p/C V为已知)的循环过程如T-V图所示,其中CA为绝热过程,7. 1 mol 理想气体(设= A点状态参量(T1,V1)和B点的状态参量(T2,V2)为已知.试求C点的状态参量:

工程热力学大作业

1、根据班级序号自己计算参数 利用通用压缩因子图确定氧气在温度为313K(113+10×20号),比体积为0.0074m3/kg时的压力。 2、工程热力学中为什么要引入“可逆过程”? 3、以空调制热(班级序号为双号)为例,画出工作原理图、工热关系图,指出其中的代价、收益和经济性指标分别是什么。 4、在热力学发展历史中,有哪些科学家做出贡献?至少列出5人及其成就。 答:(1)J.R.von迈尔:他提出了能量守恒理论,认定热是能的一种形式,可与机械能互相转化,并且从空气的定压比热容与定容比热容之差计算出热功当量。 (2)焦耳:他的实验结果已使科学界彻底抛弃了热质说,公认能量守恒、而且能的形式可以互换的热力学第一定律为客观的自然规律。热力学的形成与当时的生产实践 迫切要求寻找合理的大型、高效热机有关。 (3)法国人S.卡诺:提出著名的卡诺定理,指明工作在给定温度范围的热机所能达到的效率极限 (4)开尔文(即W.汤姆森)根据卡诺定理制定了热力学温标。 (5)克劳修斯根据卡诺定理提出并发展了熵 5、为什么要引入“焓”和“熵”的概念?它们是如何定义的? 答:“焓”:研究流动能量方程中,为了工程应用的方便,才引入焓。(因为在流动过程中,工质携带的能量除热力学能之外,总伴有推动功,所以为了工程应用的方便起见,把U和PV组合起来,引入焓。) “熵” 6、下面的图是如何得到的?有何作用? 7、一台清水离心泵,若泵中压力最低的点为K点,那么K点的压力与此泵工作时所处温度对应的饱和蒸汽压之间满足何种大小关系时,离心泵中压力最低点的水会汽化为气泡? 8、一压缩机将1kg温度为T1、压力为p1的空气压缩到温度T2和压力p2,已知压缩过程是多变过程,多变指数为m。 (1)完整推导出T2与T1、p1、p2和m之间的关系式。 (2)空气在压缩机中可以分为三个阶段:首先空气通过吸气阀进入压缩机,此时吸气阀开启、排气阀关闭;接着吸排气阀均关闭,空气被压缩;最后排气阀开启,此时吸气阀仍关闭,空气通过排气阀排出压缩机。推导出这三个阶段分别要消耗多大的功?三者的代数和是多少?

热力学作业答案修订稿

热力学作业答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

第八章 热力学基础 一、选择题 [ A ]1.(基础训练4)一定量理想气体从体积V 1,膨胀到体积V 2分别经历的过程是:A →B 等压过程,A →C 等温 过程;A →D 绝热过程,其中吸热量最多的过程 (A)是A →B. (B)是A →C. (C)是A →D. (D)既是A →B 也是A →C , 两过程吸热一样多。 【提示】功即过程曲线下的面积,由图可知AD AC AB A A A >>; 根据热力学第一定律:E A Q ?+= AD 绝热过程:0=Q ; AC 等温过程:AC A Q =; AB 等压过程:AB AB E A Q ?+=,且0 >?AB E [ B ]2.(基础训练6)如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p 0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是 (A) p 0. (B) p 0 / 2. (C) 2γp 0. (D) p 0 / 2γ. 【提示】该过程是绝热自由膨胀:Q=0,A=0;根据热力学第一定律Q A E =+?得 0E ?=,∴0T T =;根据状态方程pV RT ν=得00p V pV =;已知02V V =,∴ 0/2p p =. [ D ]3.(基础训练10)一定量的气体作绝热自由膨胀,设其热力学能增量为E ?,熵增量为S ?,则应有 (A) 0......0=???=?S E 【提示】由上题分析知:0=?E ;而绝热自由膨胀过程是孤立系统中的不可逆过程,故熵增加。 [ D ]4.(自测提高1)质量一定的理想气体,从相同状态出发,分别经历等温过程、等压过程和绝热过程,使其体积增加1倍.那么气体温度的改变(绝对值)在 (A) 绝热过程中最大,等压过程中最小. (B) 绝热过程中最大,等温过程中最小. (C) 等压过程中最大,绝热过程中最小. (D) 等压过程中最大,等温过程中最小. 【提示】如图。等温AC 过程:温度不变,0C A T T -=;

【大题】工科物理大作业热力学

11 11 热力学 班号学号姓名成绩 一、选择题 (在下列各题中,均给出了4个~6个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内) 1. 在下列说法中,正确的是: A.物体的温度愈高,则热量愈多; B.物体在一定状态时,具有一定的热量; C.物体的温度愈高,则其内能愈大; D.物体的内能愈大,则具有的热量愈多。(C)[知识点] 内能和热量的概念。 [分析与解答] 内能是物体内部所有分子的热运动动能和分子间相互作用势能的总和,是系统状态(或温度)的单值函数,系统的温度愈高,其内能愈大。 热量是由于系统与外界温度不同而进行的传热过程中所传递的能量的多少,同样温差情况下,不同的传热过程其热量不同,热量是过程量,不是状态的函数。 作功与传热可以改变系统的内能,若系统状态不变(内能也不变),就无需作功与传热,功与热量不会出现。 2. 在下列表述中,正确的是: A.系统由外界吸热时,内能必然增加,温度升高; B.由于热量Q和功A都是过程量,因此,在任何变化过程中,(Q+A)不仅与系统的始末状态有关,而且与具体过程有关; C.无摩擦的准静态过程中间经历的每一状态一定是平衡状态; D

能增量为T C M m E m p ?= ?,。 (C ) [知识点] 热量、作功和内能的概念。 [分析与解答] 根据热力学第一定律E A Q ?+=,系统由外界吸热时,可以将吸收的热量全部对外作功,内能不变,等温过程就是这种情况。 系统所吸收的热量和外界对系统做功的总和为系统内能的增量,内能的增量仅与系统始末状态有关,而与过程无关。 准静态过程就是在过程进行中的每一个状态都无限地接近平衡态的过程。由于准静态过程是无限缓慢的,无摩擦的(即无能量耗散),则各中间态都是平衡态。 无论何种过程,只要温度增量T ?相同,内能增量均为 T R M m i E ?= ?2T R C M m m V ?=1,与过程无关。 3. 一定量某理想气体,分别从同一状态开始经历等压、等体、等温过程。若气体在上述过程中吸收的热量相同,则气体对外做功最多的过程是: A .等体过程; B. 等温过程; C. 等压过程; D. 不能确定。 (B ) [知识点] 热力学第一定律在等值过程中的应用。 [分析与解答] 设在等压、等体和等温过程吸收的热量为0Q ,则 等压过程 T R i T C Q m p ?+=?=2 2 10ν ν 00 2 2Q i Q T R V p A p <+= ?=?=ν 等体过程 0=Q A ,吸收的热量全部用于增加的内能 等温过程 0=T A ,吸收的热量全部用于对外做功 由热力学第一定律E A Q ?+=知,等压过程,气体吸收来的热量既要对外做功,又要使内能增加;等体过程,气体不对外做功,吸收的热量全部用于增加内能;等温过程,气体吸收的热量全部用于对外做功。因此,当吸收的热量相同时,等温过程对外做功最多。 4. 如图11-1所示,一定量理想气体从体积V 1膨胀到V 2,ab 为等压过程,ac 为等温过

工程热力学作业

1-1 一立方形刚性容器,每边长1m ,将其中气体的压力抽至1000Pa ,问其真空度为多少毫米汞柱?容器每面受力多少牛顿?已知大气压力为0.1MPa 。 解:p = 1 000 Pa = 0.001 MPa 真空度mmHg Pa MPa MPa MPa p p p b V 56.74299000099.0001.01.0===-=-= 容器每面受力F =p V A = 9 900 Pa×1m 2 =9.9×104 N 1-2 试确定表压力为0.01 MPa 时U 形管压力计中液柱的高度差。(1)U 形管中装水,其密度为1 000 kg/m 3;(2) U 形管中装酒精,其密度为789 kg/m 3。 解: 因为表压力可以表示为p g =ρgΔz ,所以有 g p z g ρ= ? 既有(1)mm m s m m kg Pa g p z g 72.101901972.1/80665.9/10001001.0236==??=?=水ρ (2) mm m s m m kg Pa g p z g 34.129729734.1/80665.9/7891001.02 36==??=?=酒精 ρ 1-7 从工程单位制热力性质查得,水蒸气在500℃、100at 时的比体积和比焓分别为v =0.03347m 3/kg 、h =806.6kcal/kg 。在国际单位制中,这时水蒸气的压力和比热力学能各为多少? 解: 水蒸气压力p =100at×9.80665×104Pa/at = 9.80665×106Pa=9.80665MPa 比热力学能u=h-pv=806.6kcal ×4.1868kJ/kcal)/kg-9806.65kPa ×0.03347m 3/kg = 3377.073kJ-328.228kJ =3048.845kJ 2-1 冬季,工厂某车间要使室内维持一适宜温度。在这一温度下,透过墙壁和玻璃等处,室内向室外每一小时传出0.7×106kcal 的热量。车间各工作机器消耗的动力为是500PS(认为机器工作时将全部动力转变为热能)。另外,室内经常点着50 盏100W 的电灯,要使该车间的温度保持不变,问每小时需供给多少kJ 的热量? 解:要使车间保持温度不变,必须使车间内每小时产生的热量等散失的热量 Q = Q 机+Q 灯+Q 散+Q 补 = 0 Q 机 = 500PSh = 500×2.647796×103 kJ = 1.32×106 kJ Q 灯 = 50×100W×3600s = 1.8×107J = 1.8×104 kJ Q 散 = -0.7×106kcal =- 0.7×106×4.1868kJ = -2.93×106 kJ Q 补 = -Q 机-Q 灯+Q 散 = -1.32×106 kJ-1.8×104 kJ+2.93×106 kJ = 1.592×106 kJ

第六章-热力学基础作业新答案

课件一补充题: (2)先等压压缩,W 2=P(V 2-V 1)=-8.1J 对全过程,有 Q 2=W 2+?E =-8.1J ?E=0 (T 1=T 2) 对全过程 等容升压,W 3=0 (1)等温过程, ?E=0 12211111 V V ln ln V R P V T V Q W ν===561001020 ln 1.0131016.3J 100 -=-??=? [补充题] 把P =1a tm ,V =100cm 3的氮气压缩到20cm 3,求若分别 经历的是下列过程所需吸收的热量Q 、对外所做的功W 及内能增量,(1)等温压缩;(2)先等压压缩再等容升压回到初温。

6-21 一热力学系统由如图6—28所示的状态a 沿acb 过程到达状态b 时,吸收了560J 的热量,对外做了356J 的功。 (1) 如果它沿adb 过 程到达状态b 时,对外做了220J 的功,它吸收了多少热量? (2)当它由状态b 沿曲线ba 返回状态a 时,外界对它做了282J 的功,它将吸收多少热量?是真吸了热,还是放了热? 解: 根据热力学第一定律 Q E W =+ (1)∵a 沿acb 过程达到状态b ,系统的内能变化是: 560356204()ab acb acb E Q W J J J =-=-= 由于内能是状态系数,与系统所经过的过程无关 ∴系统由a 沿adb 过程到达状态b 时204()ab E J = 系统吸收的热量是:204220424()ab adb Q E W J =+=+= (2)系统由状态b 沿曲线ba 返回状态a 时,系统的内能变化: 204()ba ab E E J =-=- 204(282)486()ba ba Q E W J ∴=?+=-+-=- 即系统放出热量486J

相关文档