文档库 最新最全的文档下载
当前位置:文档库 › 第9讲2013高考复习教学案之平面向量及其应用

第9讲2013高考复习教学案之平面向量及其应用

第9讲2013高考复习教学案之平面向量及其应用
第9讲2013高考复习教学案之平面向量及其应用

第9讲 平面向量及其应用

1. 掌握平面向量的加减运算、平面向量的坐标表示、平面向量数量积等基本概念、运算及其简单应用.复习时应强化向量的数量积运算,向量的平行、垂直及求有关向量的夹角问题要引起足够重视.

2. 在复习中要注意数学思想方法的渗透,如数形结合思想、转化与化归思想等.会用向量解决某些简单的几何问题.

1. 在 ABCD 中,AB →=a ,AD →=b ,AN →=3NC →,M 为BC 的中点,则MN →=________.(用

a 、

b 表示)

2.设a 与b 是两个不共线向量,且向量a +λb 与-(b -2a )共线,则λ=________.

3.若向量a ,b 满足|a |=1,|b |=2且a 与b 的夹角为π3

,则|a -b |=________.

4.已知向量P =a |a|+b |b|

,其中a 、b 均为非零向量,则|P |的取值范围是________.

【例1】 已知向量a =????1sinx ,-1sinx ,b =(2,cos2x).

(1) 若x ∈????0,π2,试判断a 与b 能否平行?

(2) 若x ∈????0,π3,求函数f(x)=a·

b 的最小值.

【例2】 设向量a =(4cosα,sinα),b =(sinβ,4cosβ),c =(cosβ,-4sinβ).

(1) 若a 与b -2c 垂直,求tan(α+β)的值;

(2) 求|b +c |的最大值;

(3) 若tanαtanβ=16,求证:a ∥b .

【例3】 在△ABC 中,已知2AB →·AC →=3|AB →|·|AC →|=3BC 2,求角A ,B ,C 的大小.

【例4】 已知△ABC 的角A 、B 、C 所对的边分别是a 、b 、c ,设向量m =(a ,b),n =(sinB ,sinA),p =(b -2,a -2) .

(1) 若m ∥n ,求证:△ABC 为等腰三角形;

(2) 若m ⊥p ,边长c =2,角C =π3

,求△ABC 的面积 .

1. (2008·安徽)在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),

则BD →=________.

2.(2011·上海)在正三角形ABC 中,D 是BC 上的点,AB =3,BD =1,则AB →·AD →=________.

3.(2011·江苏)已知e 1,e 2是夹角为2π3

的两个单位向量,a =e 1-2e 2,b =k e 1+e 2,若a·b =0,则实数k 的值为________.

4.(2011·浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形

的面积为12

,则α与β的夹角θ的取值范围是________.

5.(2010·江苏)在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1).

(1) 求以线段AB 、AC 为邻边的平行四边形两条对角线的长;

(2) 设实数t 满足(AB →-tOC →)·OC →=0,求t 的值.

6.(2011·陕西)叙述并证明余弦定理.

(2010·江苏泰州一模)(本小题满分14分)在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c.

(1) 设向量x =(sinB ,sinC),向量y =(cosB ,cosC),向量z =(cosB ,-cosC),若z ∥(x +y ),求tanB +tanC 的值;

(2) 已知a 2-c 2=8b ,且sinAcosC +3cosAsinC =0,求b.

解:(1) 由题意:x +y =(sinB +cosB ,sinC +cosC),(1分)

∵ z ∥(x +y ),

∴ cosB(sinC +cosC)=-cosC(sinB +cosB),

∴ cosBsinC +cosCsinB =-2cosBcosC ,(3分)

cosBsinC +cosCsinB cosBcosC

=-2, 即:tanB +tanC =-2. (6分) (2) ∵ sinAcosC +3cosAsinC =0,

∴ sinAcosC +cosAsinC =-2cosAsinC ,(8分)

∴ sin(A +C)=-2cosAsinC ,

即:sinB =-2cosAsinC.(10分)

∴ b =-2c·b 2+c 2-a 22bc

,(12分) ∴ -b 2=b 2+c 2-a 2,

即:a 2-c 2=2b 2,又a 2-c 2=8b ,

∴ 2b 2=8b ,

∴ b =0(舍去)或4.(14分)

(完整版)平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM = DO 31,点N 在线段OC 上,且ON =OC 3 1 ,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1 2 (a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =1 3OC , 所以AM =AD +DM =b +1 3DO =b +13×12(a -b )=16a +56 b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=2 3(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=1 2 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =1 2(AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

高中数学《平面向量的实际背景及基本概念》公开课优秀教学设计

第二章平面向量 2.1平面向量的实际背景及基本概念 教学设计 一、内容和内容解析 向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何和三角函数的一种工具,它有着丰富的现实背景和物理背景。向量是刻画位置的重要数学工具,在诸如卫星定位、飞船设计等领域有着广泛的应用。向量也是刻画物理量——力、位移、速度、加速度、动量、电场强度这些物理量的数学工具,它体现了数学和物理的天然联系。向量的学习有助于学生认识数学和实际生活以及物理学科的紧密联系,体会向量在刻画和解决实际问题中的作用,从中感受数学的应用价值。在教学中需要引导学生对现实原型的观察分析和比较,得出抽象的数学模型,所以本节内容是渗透“数学抽象”很好的载体。在本节中,学生将了解平面向量丰富的实际背景,理解平面向量的意义,能用向量的语言和方法表达和解决数学和物理中的一些问题。 本节课是一节概念课,在向量基本概念的形成过程中,需要将学生已有的旧知识作为新知识的固着点和生长点,在探究向量的几何表示时让学生经历以物理中学习力的图示,位移的表示,速度的表示为起点,归纳并确定向量的几何表示以及符号表示,而在探索向量间的特殊关系时,引导学生借助图形进行,这样不仅使研究有序,同时更锻炼学生的直观想象能力,有助于感受向量集数与形于一身的特性。通过类比学习数量的过程,让学生自然的获得新知识的探究方向,在基本概念的学习中,要让学生体验概念的生成过程,获得这些概念的“基本思路”即获得数学研究对象,认识数学新对象的基本方法,用数学的观点刻画和研究现实事物的方法和途径。 二、目标和目标解析 1. 通过对平面向量概念的抽象概括,体验数学概念的形成过程,了解平面向量的实际背景; 2. 理解平面向量的意义和两个向量相等的含义; 3. 理解平面向量的几何表示和基本要素,会用有向线段表示向量,会判断零向量,单位向量,能做一个向量和已知向量相等,能根据图形判定向量是否是平

人教A版数学必修四第二章平面向量导学案

第二章 平面向量 1.向量和差作图全攻略 两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握. 一、向量a 、b 共线 例1.如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向; (2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |. 作法.在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB → =a +b ,具体作法是:当a 与b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下: 例2.如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向. 作法.在平面上任取一点O ,作OA →=a ,OB →=b ,则BA → =a -b .事实上a -b 可看作是a +(- b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下: 二、向量a 、b 不共线 如果向量不共线,可以应用三角形法则或平行四边形法则作图.

例3.如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1.(应用三角形法则) (1)一般情况下,应在两已知向量所在的位置之外任取一点O . 第一步:作OA → =a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA → 与a 同向. 第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB → 作成与b 的方向相反.) 第三步:作OB →,即连接OB ,在B 处打上箭头,OB → 即为a +b . 作图如下: (2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB → =b ; 第三步:连接AB ,在A 处加上箭头,向量BA → 即为a -b . 作图如下: 点评.向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2.(应用平行四边形法则) 在平面上任取一点A ,以点A 为起点作AB → =a , AD → =b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB → =a -b .作图如下:

平面向量练习题(附答案)

平面向量练习题 一.填空题。 1. BA CD DB AC +++等于________. 2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________. 4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________. 5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与CD 共线,则|BD |的值等于________. 7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______. 8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______ 9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____ 11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 . 14.将圆22 2=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 二.解答题。 1.设平面三点A (1,0),B (0,1),C (2,5). (1)试求向量2+的模; (2)试求向量与的夹角;

2018版高中数学平面向量2.1平面向量的实际背景及基本概念导学案新人教A版必修4含解析

2.1平面向量的实际背景及基本概念 【学习目标!1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区 别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念. ET问题导学-------------------------- 知识点一向量的概念 思考i在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?答案面积、质量只有大小,没有方向;而速度和位移既有大小又有方向 思考2两个数量可以比较大小,那么两个向量能比较大小吗? 答案数量之间可以比较大小,而两个向量不能比较大小 梳理向量与数量 (1)向量:既有大小,又有方向的量叫做向量 (2)数量:只有大小,没有方向的量称为数量. 知识点二向量的表示方法 思考1向量既有大小又有方向,那么如何形象、直观地表示出来? 答案可以用一条有向线段表示. 思考2 0的模长是多少? 0有方向吗? 答案 0的模长为0,方向任意. 思考3单位向量的模长是多少? 答案单位向量的模长为1个单位长度. 梳理(1)向量的几何表示:向量可以用一条有向线段表示.带有方向的线段叫做有向线段, 它包含三个要素:起点、方向、长度,如图所示. 以A为起点、B为终点的有向线段记作X B ⑵向量的字母表示:向量可以用字母a, b , c,…表示(印刷用黑体a, b, c,书写时用 b , c). ⑶向量AB勺大小,也就是向量AB勺长度(或称模),即有向线段AB勺长度,记作|AB.长度为 0的向量叫做零向量,记作 0;长度等于1个单位的向量,叫做单位向量 . 知识点三相等向量与共线向量

高中数学第二章平面向量章末小结导学案无答案新人教A版必修

第二章平面向量章末小结 【本章知识体系】 - 1 -

2 【题型归纳】 专题一、平面向量的概念及运算 包含向量的有关概念、加法、减法、数乘。向量的加法遵循三角形法则和平行四边形法则,减法可以转化为加法进行运算。利用向量证明三点共线时,应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线. 1、1.AB →+AC →-BC →+BA →化简后等于( ) A .3A B → B.AB → C.BA → D.CA → 2、在平行四边形ABCD 中,OA →=a ,OB →=b ,OC →=c ,OD →=d ,则下列运算正确的是( ) A .a +b +c +d =0 B .a -b +c -d =0 C .a +b -c -d =0 D .a -b -c +d =0 3、已知圆O 的半径为3,直径AB 上一点D 使AB →=3AD →,E 、F 为另一直径的两个端点, 则DE →·DF →=( ) A .-3 B .-4 C .-8 D .-6 4、如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则在以a , b 为基底时,AC →可表示为________,在以a , c 为基底时,AC →可表示为 ________. 5、下列说法正确的是( ) A .两个单位向量的数量积为1 B .若a ·b =a ·c ,且a ≠0,则b =c C .AB →=OA →-OB → D .若b⊥c ,则(a +c )·b =a ·b 专题二、平面向量的坐标表示及坐标运算 向量的坐标表示及运算强化了向量的代数意义。若已知有向线段两端点的坐标,则应先求向量的坐标,解题过程中,常利用向量相等,则其坐标相同这一原则。 6、已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( ) A .1 B. 2 C .2 D .4 7、设向量a =(1,-3),b =(-2,4),c =(-1,-2),若表示向量4a,4b -2c,2(a -c ),d 的有向线段首尾相接能构成四边形,则d =( ) A .(2,6) B .(-2,6) C .(2,-6) D .(-2,-6) 8、已知a =(1,1),b =(1,0),c 满足a ·c =0,且|a |=|c |,b ·c >0,则c =________. 专题三、平面向量的基本定理 平面向量的基本定理解决了所有向量之间的相互关系,为我们研究向量提供了依据。 9、已知AD 、BE 分别为△ABC 的边BC 、AC 上的中线,设AD →=a ,BE →=b ,则BC →等于( ) A.43a +23b B.23a +43 b C.23a -43b D .-23a +43 b

平面向量简单练习题

试卷第1页,总5页 一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥,则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+= ,则向量b 与a 的夹角为( ) 6.设向量(0,2),==r r a b ,则, a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→→b a ( ) 8.已知()()0,1,2,3-=-=b a ,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a = ,(2,)b y =- ,若向量,a b 共线,则3a b + =( ) 10.平面向量a 与b 的夹角为60 ,(2,0)a = ,1b = ,则2a b + = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→→?b a 等于 13.若1,2,,a b c a b c a ===+⊥ 且,则向量a b 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB =(cos120°,sin120°),AC =(cos30°,sin30°),则△ABC 的形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--= 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b 满足0,1,2,a b a b ?=== 则2a b -= ( ) 21.设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 ( ) 23.化简AC - BD + CD - AB = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF ( )

高考数学一轮复习第25讲平面向量的概念及运算精品学案

2013年普通高考数学科一轮复习精品学案 第25讲 平面向量的概念及运算 一.课标要求: (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件。 二.命题走向 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2013年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.要点精讲 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小。 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量)

【人教A版】2020高中数学必修四导学案:第二章平面向量_含答案

第二章 平面向量 1 向量和差作图全攻略 两个非零向量的和差作图,对同学们是一个难点,这里对其作图方法作出细致分析,以求尽快掌握. 一、向量a 、b 共线 例1 如图,已知共线向量a 、b ,求作a +b . (1)a 、b 同向; (2)a 、b 反向,且|a |>|b |; (3)a 、b 反向,且|a |<|b |. 作法 在与a 平行的同一条直线上作出三个向量OA →=a ,AB →=b ,OB → =a +b ,具体作法是:当 a 与 b 方向相同时,a +b 与a 、b 的方向相同,长度为|a |+|b |;当a 与b 方向相反时,a +b 与a 、b 中长度长的向量方向相同,长度为||a |-|b ||.为了直观,将三个向量中绝对值最 大的向量沿与a 垂直的方向稍加平移,然后分别标上a ,b ,a +b .作图如下: 例2 如图,已知共线向量a 、b ,求作a -b . (1)a 、b 同向,且|a |>|b |; (2)a 、b 同向,且|a |<|b |; (3)a 、b 反向. 作法 在平面上任取一点O ,作OA →=a ,OB →=b ,则BA → =a -b .事实上a -b 可看作是a +(- b ),按照这个理解和a +b 的作图方法不难作出a -b ,作图如下: 二、向量a 、b 不共线 如果向量不共线,可以应用三角形法则或平行四边形法则作图.

例3 如图,已知向量a 、b . 求作:(1)a +b ;(2)a -b . 作法1 (应用三角形法则) (1)一般情况下,应在两已知向量所在的位置之外任取一点O . 第一步:作OA → =a ,方法是将一个三角板的直角边与a 重合,再将直尺一边与三角板的另一直角边重合,最后将三角板拿开,放到一直角边过点O ,一直角边与直尺的一边重合的位置,在此基础上取|OA →|=|a |,并使OA → 与a 同向. 第二步:同第一步方法作出AB →=b ,一定要保证方向相同且长度相等.(此处最易错的是把AB → 作成与b 的方向相反.) 第三步:作OB →,即连接OB ,在B 处打上箭头,OB → 即为a +b . 作图如下: (2)第一步:在平面上a ,b 位置之外任取一点O ; 第二步:依照前面方法过O 作OA →=a ,OB → =b ; 第三步:连接AB ,在A 处加上箭头,向量BA → 即为a -b . 作图如下: 点评 向量加法作图的特点是“首尾相接,首尾连”;向量减法作图的特点是“共起点,连终点,箭头指被减”. 作法2 (应用平行四边形法则) 在平面上任取一点A ,以点A 为起点作AB → =a , AD → =b ,以AB ,AD 为邻边作?ABCD ,则AC →=a +b ,DB → =a -b .作图如下:

平面向量的概念学案

必修4第二章 平面向量 2.1.1 向量的概念与几何表示 【内容分析】 向量这一概念是由物理学和工程技术抽象出来的,反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,它也是解决一些数学问题的工具.向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题。向量与代数、三角、几何均有密切的联系与交汇,是沟通代数、几何与三角函数的一种工具,在数学和物理学科中具有广泛的应用和极其重要的地位,也是高考的必考点. 【学习目标】 1.通过物理学中力的分析等实例,知道向量的实际背景,能能举例说明向量的概念; 2.会用几何法表示向量,掌握向量的模,能举例说出零向量、单位向量、平行向量概念的含义; 3.通过对向量的学习,使同学们初步认识现实生活中的向量和数量的本质区别,掌握对向量与数量的识别能力,培养同学们认识客观事物与数学本质的能力. 【学习重点】理解并掌握向量、零向量、单位向量、相等向量、平行向量的概念,会用几何法表示向量. 【难点提示】平面向量概念的理解以及平行向量、相等向量的区别和联系. 【学法提示】1.请同学们课前将学案与教材7479P 结合进行自主学习(对教材中的文字、图象、表格、符号、观察、思考、说明与注释、例题、阅读与思考、小结等都要仔细阅读)、小组组织讨论,积极思考提出更多、更好、更深刻的问题,为课堂学习做好充分的准备; 2.在学习过程中用好“十二字学习法”即:“读”、“挖”、“举”、“联”、“用”、“悟”、“听”、“问”、“通”、“总”、“研”、“会”,请在课堂上敢于提问、敢于质疑、敢于讲解与表达. 【学习过程】 一、学习准备 1.请同学们回顾一下,从小学到现在你们学过或知道哪些度量单位、度量方法? 2.我们见过的线段的长度、物体的重量、水的温度、任意角的弧度等有哪些特点? 3.思考:如图2.1.1-1,老鼠由A 向西北逃窜,猫在B 处向东 追去,请问猫能否追到老鼠吗?为什么? 4.生活中还存在着与长度、温度不同特征的“量”吗? 图2.1.1-2中的AB 属于什么“两”呢?这就是本节课要研 究的问题! 二、学习探究 1.向量的物理背景与概念 阅读探究 请同学们结合“学习准备”的问题,仔细阅读课 本P72-74页,可知在现实生活中,我们会遇到很多量,其中一 些量在取定单位后用一个实数就可以表示出来,如长度、质量等. 还有一些量,如我们在物理中所学习的位移、弹力、速度以及上面 图2.1.1-2的AB 等量,它们有怎样的特点呢? A B C D 图2.1.1-1

平面向量经典练习题(含答案)

高中平面向量经典练习题 【编著】黄勇权 一、填空题 1、向量a=(2,4),b=(-1,-3),则向量3a-2b的坐标是。 2、已知向量a与b的夹角为60°,a=(3,4),|b | =1,则|a+5b | = 。 3、已知点A(1,2),B(2,1),若→ AP=(3,4),则 → BP= 。 4、已知A(-1,2),B(1,3),C(2,0),D(x,1),若AB与CD共线,则|BD|的值等于________。 5、向量a、b满足|a|=1,|b|= 2 ,(a+b)⊥(2a-b),则向量a与b的夹角为________。 6、设向量a,b满足|a+b|= 10,|a-b|= 6 ,则a·b=。 7、已知a、b是非零向量且满足(a-2b)⊥a,(b-2a)⊥b,则a与b的夹角是。 8、在△ABC中,D为AB边上一点,→ AD = 1 2 → DB, → CD = 2 3 → CA + m → CB,则 m= 。 9、已知非零向量a,b满足|b|=4|a|,a⊥(2a+b),则a与b的夹角是。 10、在三角形ABC中,已知A(-3,1),B(4,-2),点P(1,-1)在中线AD 上,且→ AP= 2 → PD,则点C的坐标是()。 二、选择题 1、设向量→ OA=(6,2),→ OB=(-2,4),向量→ OC垂直于向量→ OB,向量 → BC平行于 →OA,若→ OD + → OA= → OC,则 → OD坐标=()。 A、(11,6) B、(22,12) C、(28,14) D、(14,7) 2、把A(3,4)按向量a(1,-2)平移到A',则点A'的坐标() A、(4 , 2) B、(3,1) C、(2,1) D、(1,0) 3、已知向量a,b,若a为单位向量, 且 | a| = | 2b| ,则(2a+ b)⊥(a-2b),则向量a与b的夹角是()。 A、90° B、60° C、30° D、0° 4、已知向量ab的夹角60°,| a|= 2,b=(-1,0),则| 2a-3b|=()

平面向量及其应用专题(有答案)

一、多选题 1.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知 cos cos 2B b C a c =-, 4 ABC S = △,且b = ) A .1cos 2 B = B .cos 2 B = C .a c += D .a c +=2.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列 ABC 有关的结论,正确的是( ) A .cos cos 0A B +> B .若a b >,则cos2cos2A B < C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径 D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++= 3.在ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,下列说法正确的有( ) A .::sin :sin :sin a b c A B C = B .若sin 2sin 2A B =,则a b = C .若sin sin A B >,则A B > D . sin sin sin +=+a b c A B C 4.已知点()4,6A ,33,2B ??- ??? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2? ? ??? C .14,33?? - - ??? D .(7,9) 5.已知向量a =(2,1),b =(1,﹣1),c =(m ﹣2,﹣n ),其中m ,n 均为正数,且(a b -)∥c ,下列说法正确的是( ) A .a 与b 的夹角为钝角 B .向量a 在b C .2m +n =4 D .mn 的最大值为2 6.下列关于平面向量的说法中正确的是( ) A .已知A 、 B 、 C 是平面中三点,若,AB AC 不能构成该平面的基底,则A 、B 、C 共线 B .若a b b c ?=?且0b ≠,则a c = C .若点G 为ΔABC 的重心,则0GA GB GC ++= D .已知()12a =-,,()2,b λ=,若a ,b 的夹角为锐角,则实数λ的取值范围为1λ< 7.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八边形ABCDEFGH ,其中1OA =,则下列结论正确的有( )

2019-2020学年新教材高中数学 第六章 平面向量及其应用 6.1 平面向量的概念学案 新人教A版必修第二册

6.1 平面向量的概念 问题导学 预习教材P2-P4的内容,思考以下问题: 1.向量是如何定义的?向量与数量有什么区别? 2.怎样表示向量?向量的相关概念有哪些? 3.两个向量(向量的模)能否比较大小? 4.如何判断相等向量或共线向量?向量AB →与向量BA → 是相等向量吗? 1.向量的概念及表示 (1)概念:既有大小又有方向的量. (2)有向线段 ①定义:具有方向的线段. ②三个要素:起点、方向、长度. ③表示:在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →. ④长度:线段AB 的长度也叫做有向线段AB →的长度,记作|AB → |. (3)向量的表示 ■名师点拨 (1)判断一个量是否为向量,就要看它是否具备大小和方向两个因素.

(2)用有向线段表示向量时,要注意AB → 的方向是由点A 指向点B ,点A 是向量的起点,点 B 是向量的终点. 2.向量的有关概念 (1)向量的模(长度):向量AB →的大小,称为向量AB →的长度(或称模),记作|AB → |. (2)零向量:长度为0的向量,记作0. (3)单位向量:长度等于1个单位长度的向量. 3.两个向量间的关系 (1)平行向量:方向相同或相反的非零向量,也叫做共线向量.若a ,b 是平行向量,记作a ∥b . 规定:零向量与任意向量平行,即对任意向量a ,都有0∥a . (2)相等向量:长度相等且方向相同的向量,若a ,b 是相等向量,记作a =b . ■名师点拨 (1)平行向量也称为共线向量,两个概念没有区别. (2)共线向量所在直线可以平行,与平面几何中的共线不同. (3)平行向量可以共线,与平面几何中的直线平行不同. 判断(正确的打“√”,错误的打“×”) (1)两个向量,长度大的向量较大.( ) (2)如果两个向量共线,那么其方向相同.( ) (3)向量的模是一个正实数.( ) (4)向量就是有向线段.( ) (5)向量AB →与向量BA → 是相等向量.( ) (6)两个向量平行时,表示向量的有向线段所在的直线一定平行.( ) (7)零向量是最小的向量.( ) 答案:(1)× (2)× (3)× (4)× (5)× (6)× (7)× 已知向量a 如图所示,下列说法不正确的是( ) A .也可以用MN → 表示 B .方向是由M 指向N C .起点是M D .终点是M 答案:D 已知点O 固定,且|OA → |=2,则A 点构成的图形是( ) A .一个点 B .一条直线

人教A版高中数学《平面向量的基本定理及坐标表示》导学案

2.3《平面向量的基本定理及坐标表示》导学案 【学习目标】 1.了解平面向量基本定理; 2.理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问题的重要思想方法; 3.能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 【导入新课】 复习引入: 1. 实数与向量的积 实数λ与向量a 的积是一个向量,记作:λa .(1)|λa |=|λ||a |;(2)λ>0时,λa 与a 方向相同;λ<0时,λa 与a 方向相反;λ=0时,λa =0. 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λ b . 3. 向量共线定理 向量b 与非零向量a 共线的充要条件是:有且只有一个非零实数λ,使b =λa . 新授课阶段 一、平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4)基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量. 二、平面向量的坐标表示 如图,在直角坐标系内,我们分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为

基底.任作一个向量a ,由平面向量基本定理知,有且只有一对实数x 、y ,使得 yj xi a += (1) 1 我们把),(y x 叫做向量a 的(直角)坐标,记作 ),(y x a = (2) 2 其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标,○2○2式叫做向量的坐标表示.与.a 相等的向量的坐标也为..........),(y x . 特别地,)0,1(=i ,)1,0(=j ,)0,0(0=. 如图,在直角坐标平面内,以原点O 为起点作a OA =,则点A 的位置由a 唯一确定. 设yj xi OA +=,则向量OA 的坐标),(y x 就是点A 的坐标;反过来,点A 的坐标),(y x 也就是向量OA 的坐标.因此,在平面直角坐标系内,每一个平面向量都是可以用一对实数唯一表示. 三、平面向量的坐标运算 (1)若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=, b a -),(2121y y x x --=.两个向量和与差的坐标分别等于这两个向量相应坐标的和与差. 设基底为i 、j ,则b a +)()(2211j y i x j y i x +++=j y y i x x )()(2121+++=,即 b a +),(2121y y x x ++=,同理可得b a -),(2121y y x x --=. (2)若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=. 一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标. AB =OB -OA =( x 2,y 2) -(x 1,y 1)= (x 2- x 1,y 2- y 1). (3)若),(y x a =和实数λ,则),(y x a λλλ=. 实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标. 设基底为i 、j ,则a λ)(yj xi +=λyj xi λλ+=,即 ),(y x a λλλ=.

(完整版)高中数学平面向量专题训练

高中数学平面向量专题训练 一、选择题: 1、若向量方程23(2)0x x a --=r r r r ,则向量x r 等于 A 、65 a r B 、6a -r C 、6a r D 、65 a -r 2、两列火车从同一站台沿相反方向开去,走了相同的路程,设两列火车的位移向量分别为a r 和b r ,那么下列命题中错误的一个是 A 、a r 与b r 为平行向量 B 、a r 与b r 为模相等的向量 C 、a r 与b r 为共线向量 D 、a r 与b r 为相等的向量 3、AB BC AD +-=u u u r u u u r u u u r A 、AD u u u r B 、CD uuu r C 、DB u u u r D 、DC u u u r 4、下列各组的两个向量,平行的是 A 、(2,3)a =-r ,(4,6)b =r B 、(1,2)a =-r ,(7,14)b =r C 、(2,3)a =r ,(3,2)b =r D 、(3,2)a =-r ,(6,4)b =-r 5、若P 分AB u u u r 所成的比为4 3 ,则A 分BP u u u r 所成的比为 A 、7 3 - B 、3 7 - C 、73 D 、 3 7 6、已知(6,0)a =r ,(5,5)b =-r ,则a r 与b r 的夹角为 A 、045 B 、060 C 、0135 D 、0120 7、已知i r ,j r 都是单位向量,则下列结论正确的是 A 、1i j ?=r r B 、22 i j =r r C 、i r ∥j i j ?=r r r D 、0i j ?=r r 8、如图,在四边形ABCD 中,设AB a =u u u r r ,AD b =u u u r r , BC c =u u u r r ,则DC =u u u r A 、a b c -+r r r B 、()b a c -+r r r C 、a b c ++r r r D 、b a c -+r r r 9、点),0(m A )0(≠m ,按向量a r 平移后的对应点的坐标是)0,(m ,则向量a r 是 C B A D

平面向量概念教学设计

篇一:平面向量概念教案 平面向量概念教案 一.课题:平面向量概念 二、教学目标 1、使学生了解向量的物理实际背景,理解平面向量的一些基本概念,能正确进行平面向量的几何表示。 2、让学生经历类比方法学习向量及其几何表示的过程,体验对比理解向量基本概念的简易性,从而养成科学的学习方法。 3、通过本节的学习,让学生感受向量的概念方法源于现实世界,从而激发学生学习数学的热情,培养学生学习数学的兴趣 三.教学类型:新知课 四、教学重点、难点 1、重点:向量及其几何表示,相等向量、平行向量的概念。 2、难点:向量的概念及对平行向量的理解。 五、教学过程 (一)、问题引入 1、在物理中,位移与距离是同一个概念吗?为什么? 2、在物理中,我们学到位移是既有大小、又有方向的量,你还能举出一些这样的量吗? 3、在物理中,像这种既有大小、又有方向的量叫做矢量。 在数学中,我们把这种既有大小、又有方向的量叫做向量。而把那些只有大小,没有方向的量叫数量。 (二)讲授新课 1、向量的概念 练习1 对于下列各量: ①质量②速度③位移④力⑤加速度⑥路程⑦密度⑧功⑨体积⑩温度 其中,是向量的有:②③④⑤ 2、向量的几何表示 请表示一个竖直向下、大小为5n的力,和一个水平向左、大小为8n的力(1厘米表示1n)。思考一下物理学科中是如何表示力这一向量的? (1)有向线段及有向线段的三要素 (2)向量的模 (4)零向量,记作____; (5)单位向量 练习2 边长为6的等边△abc中,=__,与相等的还有哪些? 总结向量的表示方法: 1)、用有向线段表示。 2)、用字母表示。 3、相等向量与共线向量 (1)相等向量的定义 (2)共线向量的定义 六.教具:黑板 七.作业 八.教学后记 篇二:平面向量的实际背景及基本概念教学设计 平面向量的实际背景及基本概念教学设计

2.3.1-2.3.2平面向量基本定理、平面向量的正交分解及坐标表示导学案

2.3.1-2.3.2平面向量基本定理、平面向量的正交分解及坐标表示 一、【温故互查】 1. 向量加法与减法有哪几种几何运算法则?_______________________________________ 2.怎样理解向量的数乘运算λa (1)模:|λa |= ______;(2)方向:λ>0时λa 与a 方向_______;λ<0时λa 与a 方向_______;λ=0时λa =0 3. 向量共线定理 :__________________________________________________________ 二、【设问导读】 探究(一):平面向量的基本定理 探究1:给定平面内任意两个不共线的非零向量1e 、2e ,请你作出向量b =31e +22e 、c =1e -22e . 探究2:由探究1可知可以用平面内任意两个不共线的非零向量1e 、2e 来表示向量b ,c 那么平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示呢? 结 论:由上述过程可以发现,平面内任一向量______________________________________ 2、λ1,λ2是被a ,1e ,2e 的数量 3、基底不唯一,关键是不共线; 4、由定理可将任一向量a 在给出基底1e 、2e 的条件下进行分解; 5、基底给定时,分解形式唯一. 6、λ1 =0时 ;λ2=0时 ;λ1=0、λ2=0时 。 平面向量的基本定理的实质:向量的分解,即平面内任一向量都可以沿两个不共线的方向分解成两个向量和的形式,且分解是唯一的。这个定理体现了转化与化归的数学思想,用向量解决几何问题时,科选择适当的基底,将问题中涉及的向量向基底化归。 【练1】如图平行四边形ABCD 的两条对角线交于点M ,且AB =a ,AD =b ,用a ,b 表示MA ,MB ,MC 和MD 探究(二):平面向量的坐标表示 探究3: 平面中的任意两个非零向量之间存在夹角吗?若存在,向量的夹角与直线的夹角一样吗? 1、非零向量a 、b 的夹角的定义: _________________________________ 。 当 =0o 时,a 、b 当 =90o 时,a 、b 记做 当 =180o 时,a 、b 2、两非零向量的夹角的范围:在区间[0°,180°]内. 探究4:阅读课本:p95下半页内容,回答问题 (1)、对平面中的任意一个向量能否用两个互相垂直的向量来表示? 1、正交分解:把向量分解为两个互相垂直的向量。 2、在平面直角坐标系中,每一个点都可用一对实数 表示, 3、每一个向量可否也用一对实数来表示? (2)、向量的坐标表示的定义:分别选取与x 轴、y 轴方向相同的 向量i r ,j r 作为 ,对于任一向量a r ,a xi y j r r r ,(,x y R ),实数对(,)x y 叫 ,记作 其中x 叫 , y 叫 。 说 明:(1)对于a r ,有且仅有一对实数(,)x y 与之对应;(2)相等的向量的坐标 ; (3)i r ( , ),j r ( , ),0(0,0) r ; (4)直角坐标系中点A 、向量OA u u u r 、有序数(x,y )有什么关系?从原点引出的向量OA u u u r 的坐标(,)x y 就是 。 平面向量的坐标表示及其意义:在平面直角体系中,每一个向量可用一个有序实数对唯一表示,可以把几何问题代数化,把向量问题转化为数量问题 【练3】如图,用基底i ,j 分别表示向量a 、b 、c 、d ,并求出它们的坐标. 三、当堂检测 1、下面三种说法:①一个平面内只有一对不共线向量可作为表示该平面的基底;②一个平面内有无数多对不共线向量可作为该平面所有向量的基底;③零向量不可以作为基底中的向量,其中正确的说法是( ) A.①② B.②③ C.①③ D.①②③ 2.已知向量a =1e -22e ,b =21e +2e ,其中1e 、2e 不共线,则a +b 与c =61e -22e 的关系( ) A.不共线 B .共线 C.相等 D.无法确定 3.设1e 与2e 是两个不共线向量, a =31e +42e ,b =-21e +52e ,若实数λ、μ满足λa +μb =51e -2e ,求λ、μ的值. 4.已知梯形ABCD 中,||2||AB DC u u u r u u u r ,M ,N 分别是DC 、AB 的中点,若AB u u u r 1e r ,2AD e u u u r r ,用1e r ,2e r 表示DC u u u r 、BC uuu r 、MN u u u u r . 5.设G 是ABC 的重心.若CA a u u u r r ,CB b u u u r r ,试用a r ,b r 表示向量AG u u u r .; 平面向量的基本定理:如果1e 、2e 是同一平面内的两个__________,那么对于这一平面内的任意向量a ,__________ λ1、λ2,使________________. 注意:1 、1e 、2e 必须是 的向量,叫做 。 D M A B C a b 1e 2e A M D C N B

相关文档
相关文档 最新文档