文档库 最新最全的文档下载
当前位置:文档库 › 卷积神经网络总结

卷积神经网络总结

卷积神经网络总结
卷积神经网络总结

卷积神经网络总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1 卷积神经网络

卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献[18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。

1.1 网络结构

1.1.1 卷积层

在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组合卷积多个特征图的值[17] :

()l

l

j j x f u =

1j l

l l l j j ij j i M u x k b -∈=

*+∑

其中, l

j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层

输出特征图1l

j x -进行卷积求和与偏置后得到的, l

j x 是卷积层l 的第j 个通道的输

出。()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j

u 的输入特征图子集, l ij k 是卷积核矩阵, l

j b 是对卷积后特征图的偏置。对于一个输

出特征图l

j x ,每个输入特征图1l

j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。

1.1.2 下采样层

下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]:

()l

l

j j x f u =

1()l

l

l

l

j j j j u down x b β-=+

其中, l

j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1l

j x -进行

下采样加权、偏置后得到, β是下采样层的权重系数, l

j b 是下采样层的偏置项. 符

号()down 表示下采样函数, 它通过对输入特征图1l

j x -通过滑动窗口方法划分为多

个不重叠的n n ?图像块, 然后对每个图像块内的像素求和、求均值或最大值, 于是输出图像在两个维度上都缩小了n 倍。

1.1.3 全连接层

在全连接网络中, 将所有二维图像的特征图拼接为一维特征作为全连接网络的输入. 全连接层l 的输出可通过对输入加权求和并通过激活函数的响应得到

[17]:

()l

l

j j x f u =

1l l l l u w x b -=+

其中, l u 称为全连接层l 的净激活, 它由前一层输出特征图1l x -进行加权和偏置后得到的。l w 是全连接网络的权重系数, l b 是全连接层l 的偏置项。

1.2 反向传播算法

神经网络有两类基本运算模式: 前向传播和学习. 前向传播是指输入信号通过前一节中一个或多个网络层之间传递信号, 然后在输出层得到输出的过程. 反向传播算法是神经网络有监督学习中的一种常用方法, 其目标是根据训练样本和期望输出来估计网络参数. 对于卷积神经网络而言, 主要优化卷积核参数k 、下采样层网络权重ˉ、全连接层网络权重w 和各层的偏置参数b 等. 反向传播算法的本质在于允许我们对每个网络层计算有效误差, 并由此推导出一个网络参数的学习规则, 使得实际网络输出更加接近目标值[18]。

我们以平方误差损失函数的多分类问题为例介绍反向传播算法的思路. 考虑一个多分类问题的训练总误差, 定义为输出端的期望输出值和实际输出值的差的平方[17]:

21

1(,,,)2N n n n E w k b t y β==-∑ 其中, n t 是第n 个样本的类别标签真值, n y 是第n 个样本通过前向传播网络预

测输出的类别标签. 对于多分类问题, 输出类别标签常用一维向量表示, 即输入样本对应的类别标签维度为正数, 输出类别标签的其他维为0 或负数, 这取决于选择的激活函数类型, 当激活函数选为sigmoid, 输出标签为0, 当激活函数为tanh, 输出标签为-1。

反向传播算法主要基于梯度下降方法, 网络参数首先被初始化为随机值, 然后通过梯度下降法向训练误差减小的方向调整. 接下来, 我们以多个“卷积层-采样层”连接多个全连接层的卷积神经网络为例介绍反向传播算法。

首先介绍网络第l 层的灵敏度(Sensitivity)[17,18]:

l l

E u δ?=? 其中, l δ描述了总误差E 怎样随着净激活l u 而变化. 反向传播算法实际上通过所有网络层的灵敏度建立总误差对所有网络参数的偏导数, 从而得到使得训练误差减小的方向。

1.2.1 卷积层

为计算卷积层l 的灵敏度, 需要用下一层下采样层l + 1 的灵敏度表示卷积层l 的灵敏度, 然后计算总误差E 对卷积层参数(卷积核参数k 、偏置参数b) 的偏导数.由于下采样层的灵敏度尺寸小于卷积层的灵敏度尺寸, 因此需要将下采样层l + 1 的灵敏度上采样到卷积层l 的灵敏度大小, 然后将第l 层净激活的激活函数偏导与从第l + 1 层的上采样得到的灵敏度逐项相乘. 分别由式(1) 和(2), 通过链式求导可得第l 层中第j 个通道的灵敏度[17]:

11[()()]j l

l

l

l

j j j l j

E f u up u δβδ++?'==? 其中, ()up 表示一个上采样操作, 符号± 表示每个元素相乘. 若下采样因子为n, 则()up 将每个像素在水平和垂直方向上复制n 次, 于是就可以从l + 1层的灵敏度上采样成卷积层l 的灵敏度大小. 函数()up 可以用Kronecker 乘积

()1n n up x x ?=?来实现。

然后, 使用灵敏度对卷积层l 中的参数计算偏导. 对于总误差E 对偏移量l

j b 的

偏导, 可以对卷积层l 的灵敏度中所有节点进行求和来计算:

,,()j l

u v l u v

j E b δ?=?∑ 对于总误差关于卷积核参数的偏导, 由式(1),使用链式求导时需要用所有与该卷积核相乘的特征图元素来求偏导:

1,,,()()j j l l u v u v l u v

ij E p k δ-?=?∑ 其中, 1,()j l

u v p -是在计算l

j x 时, 与l ij k 逐元素相乘的1l

j x -元素.

1.2.2 下采样层

为计算下采样层l 的灵敏度, 需要用下一层卷积层l + 1 的灵敏度表示下采样层l 的灵敏度, 然后计算总误差E 对下采样参数权重系数β、偏置参数b 的偏导数.

为计算我们需要下采样层l 的灵敏度, 我们必须找到当前层的灵敏度与下一层的灵敏度的对应点,这样才能对灵敏度δ进行递推. 另外, 需要乘以输入特征图与输出特征图之间的连接权值, 这个权值实际上就是卷积核的参数. 分别由式(1) 和(2), 通过链式求导可得第l 层第j 个通道的灵敏度[17]:

11()2(,180(),)j j

l l

l l

j j f u conv rot k full δδ++'''=

其中, 对卷积核旋转180 度使用卷积函数计算互相关(在Matlab 中, 可用conv2 函数实现), 对卷积边界进行补零处理.

然后, 总误差对偏移量b 的偏导与前面卷积层的一样, 只要对灵敏度中所有元素的灵敏度求和即可:

,,()j l

u v l u v

j E b δ?=?∑ 对于下采样权重β, 我们先定义下采样算子1()j l

l j d down x -=, 然后可通过下

面的公式计算总误差E 对β的偏导:

,,()j j l

l u v l u v

j E d δβ?=?∑ 这里我们假定下采样层的下一层为卷积层, 如果下一层为全连接层, 也可以做类似的推导.

全连接层l 的灵敏度可通过下式计算:

11()()l l T l l w f u δδ++'=

输出层的神经元灵敏度可由下面的公式计算:

()()L n n L y t f u δ'=-

总误差对偏移项的偏导如下:

l

l l l l E E u b u b

δ???==??? 接下来可以对每个神经元运用灵敏度进行权值更新. 对一个给定的全连接层l, 权值更新方向可用该层的输入1l x - 和灵敏度l δ 的内积来表示:

1()l l T l E x w

δ-?=? 1.2.4 网络参数更新过程

卷积层参数可用下式更新:

神经网络最新发展综述

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

基于深度卷积神经网络的图像分类

SHANGHAI JIAO TONG UNIVERSITY 论文题目:基于卷积神经网络的自然图像分类技术研究 姓名: 高小宁 专业:控制科学与工程

基于卷积神经网络的自然图像分类技术研究 摘要:卷积神经网络已在图像分类领域取得了很好的效果,但其网络结构及参数的选择对图像分类的效果和效率有较大的影响。为改善卷积网络的图像分类性能,本文对卷积神经网络模型进行了详细的理论分析,并通过大量的对比实验,得出了影响卷积网络性能的因素。结合理论分析及对比实验,本文设计了一个卷积层数为8层的深度卷积网络,并结合Batch Normalization、dropout等方法,在CIFAR-10数据集上取得了%的分类精度,有效地提高了卷积神经网络的分类效果。 关键词:卷积神经网络,图像分类,Batch Normalization,Dropout Research on Natural Image Classification Based on Convolution Neural Network Abstract: Convolution neural network has achieved very good results in image classification, but its network structure and the choice of parameters have a greater impact on image classification efficiency and efficiency. In order to improve the image classification performance of the convolution network, a convolutional neural network model is analyzed in detail, and a large number of contrastive experiments are conducted to get the factors that influence the performance of the convolution network. Combining the theory analysis and contrast experiment, a convolution layer depth convolution network with 8 layers is designed. Combined with Batch Normalization and dropout, % classification accuracy is achieved on CIFAR-10 dataset. Which improves the classification effect of convolution neural network. Key Words: Convolution neural network(CNN), image classification, Batch Normalization, Dropout

基于卷积神经网络的文本分类研究综述

第34卷第3期2019年5月 内蒙古民族大学学报(自然科学版) Journal of Inner Mongolia University for Nationalities Vol.34No.3 May2019 基于卷积神经网络的文本分类研究综述 裴志利1,阿茹娜2,姜明洋2,卢奕南3 (1.内蒙古民族大学计算机科学与技术学院,内蒙古通辽028043;2.内蒙古民族大学数学学院,内蒙古通辽028000;3.吉林大学计算机科学与技术学院,吉林长春130012) [摘要]随着互联网及其相关技术的高速发展,网络数据呈现出井喷式的增长,其中主要以文本的形式大量 存在,数据在这种增长趋势下,文本分类已经成为越来越重要的研究课题.如今,采用深度学习技术对文本进 行表示受到研究者的极大关注.如采用卷积神经网络对文档进行表示和分类等自然语言处理.本文主要对基 于卷积神经网络的文本分类方法进行了研究,介绍了几个具有代表性的卷积神经网络模型结构.最后提出了 对基于该方法文本分类的展望. [关键词]卷积神经网络;文本分类;深度学习 [中图分类号]TP393[文献标识码]A[文章编号]1671-0815(2019)03-0206-05 Survey of Text Classification Research Based on Convolutional Neural Networks PEI Zhi-li1,Aruna2,JIANG Ming-yang2,LU Yi-nan3 (1.College of Computer Science and Technology,Inner Mongolia University for Nationalities,Tongliao028043,China; 2.College of Mathematics,Inner Mongolia University for Nationalities,Tongliao028000,China; 3.College of Computer Science and Technology,Jilin University,Changchun130012,China) Abstract:With the rapid development of the Internet and related technologies,network data has shown a spurt growth trend,which mainly exists in the form of text.Under this growth trend,text classification has become an increasingly important research topic.The use of deep learning technology to express the text has received great attention.For example, natural language processing such as convolutional neural network is used to represent and classify documents.The text classification method based on convolutional neural network is investigated.Several representative convolutional neural network model structures are introduced.Finally,the prospect of text classification based on this method is proposed. Key wrrds:Convolutional neural network;Text classification;Deep learning 0引言 随着网络媒体的出现,用户生成的内容以飞快的速度填充数据资源,这些数据的自动处理引起了研究者的巨大关注.文本分类是自然语言处理领域的重要任务,包括情感分析、对话分析、文献综述、机器翻译等[1].文本分类具有多种方法,传统的机器学习分类算法有支持向量机算法(Support Vector Machine,SVM)[2]、朴素贝叶斯算法(Naive Bayesian Classifier,NBC)[3]、决策树算法(Decision Tree,DT)[4]、K-最近邻算法(K-Nearest Neighbor,KNN)[5]等,采用传统算法文本分类时需要人工进行特征提取,耗费时间和精 基金项目:国家自然科学基金项目(61672301);内蒙古自治区“草原英才”工程产业创新人才团队(2017);内蒙古自治区科技创新引导奖励资金项目(2016);内蒙古民族大学特色交叉学科群建设项目(MDXK004);2019年度内蒙古自治区高等学校“青年科技英才支持计划”(NJYT-19-B18) 作者简介:裴志利,内蒙古民族大学计算机科学与技术学院教授,博士. DOI:10.14045/https://www.wendangku.net/doc/1b10362502.html,ki.15-1220.2019.03.005

卷积神经网络CNN原理、改进及应用

一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet 大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。这两种操作形成了CNN的卷积层。此外,卷积神经网络中的每一个卷积层都紧跟着一个用来求局部平均与二次提取的计算层,即池化层,这种特有的两次特征提取结构减小了特征分辨率。

(完整版)卷积神经网络CNN原理、改进及应用

卷积神经网络(CNN) 一、简介 卷积神经网络(Convolutional Neural Networks,简称CNN)是近年发展起来,并引起广泛重视的一种高效的识别方法。 1962年,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的局部互连网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络[1](Convolutional Neural Networks-简称CNN)7863。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。 Fukushima在1980年基于神经元间的局部连通性和图像的层次组织转换,为解决模式识别问题,提出的新识别机(Neocognitron)是卷积神经网络的第一个实现网络[2]。他指出,当在不同位置应用具有相同参数的神经元作为前一层的patches时,能够实现平移不变性1296。随着1986年BP算法以及T-C问题[3](即权值共享和池化)9508的提出,LeCun和其合作者遵循这一想法,使用误差梯度(the error gradient)设计和训练卷积神经网络,在一些模式识别任务中获得了最先进的性能[4][5]。在1998年,他们建立了一个多层人工神经网络,被称为LeNet-5[5],用于手写数字分类,这是第一个正式的卷积神经网

络模型3579。类似于一般的神经网络,LeNet-5有多层,利用BP算法来训练参数。它可以获得原始图像的有效表示,使得直接从原始像素(几乎不经过预处理)中识别视觉模式成为可能。然而,由于当时大型训练数据和计算能力的缺乏,使得LeNet-5在面对更复杂的问题时,如大规模图像和视频分类,不能表现出良好的性能。 因此,在接下来近十年的时间里,卷积神经网络的相关研究趋于停滞,原因有两个:一是研究人员意识到多层神经网络在进行BP训练时的计算量极其之大,当时的硬件计算能力完全不可能实现;二是包括SVM在内的浅层机器学习算法也渐渐开始暂露头脚。直到2006年,Hinton终于一鸣惊人,在《科学》上发表文章,使得CNN再度觉醒,并取得长足发展。随后,更多的科研工作者对该网络进行了改进。其中,值得注意的是Krizhevsky等人提出的一个经典的CNN架构,相对于图像分类任务之前的方法,在性能方面表现出了显著的改善2674。他们方法的整体架构,即AlexNet[9](也叫ImageNet),与LeNet-5相似,但具有更深的结构。它包括8个学习层(5个卷积与池化层和3个全连接层),前边的几层划分到2个GPU上,(和ImageNet 是同一个)并且它在卷积层使用ReLU作为非线性激活函数,在全连接层使用Dropout减少过拟合。该深度网络在ImageNet大赛上夺冠,进一步掀起了CNN学习热潮。 一般地,CNN包括两种基本的计算,其一为特征提取,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该

使用卷积神经网络的图像样式转换

《使用卷积神经网络的图像样式转换的研究》 院系信息工程学院 专业电子与通信工程 班级信研163 提交时间:2016年11月28日

使用卷积神经网络的图像样式转换的研究 湖北省武汉,430070 摘要:以不同的风格样式渲染图像的内容一直都是一个十分困难的图像处理任务。也可以说,以前主要限制因素是不知如何明确表示内容信息。在这里我们使用图像表示导出优化的能够识别对象的卷积神经网络,这使得高级图像信息显示。我们引入了一种可以分离和重组自然图像的图像内容和艺术风格的神经算法。这个算法允许我们生成高质量的新目标图像,它能将任意照片的内容与许多众所周知的艺术品的风格相结合。我们的结果提供了对卷积神经网络学习的深度图像表示的新理解,并且展示了他们的高水平图像合成和操纵的能力。 关键词:卷积神经网络;图像处理;神经算法 The Study of Image Style Transfer Using Convolutional Neural Networks LiWenxing School of Science,Wuhan University of Technology,Wuhan 430070,China Abstract: Rendering the content of an image in a different style has always been a difficult image processing task. It can also be said that the main limiting factor in the past is that I do not know how to clearly express the content information. Here we use an image representation to derive an optimized, object-aware convolutional neural network, which allows advanced image information to be displayed. We introduce a neural algorithm that can separate and reconstruct the image content and artistic style of natural images. This algorithm allows us to generate high-quality new target images that combine the content of any photo with the style of many well-known works of art. Our results provide a new understanding of the depth image representation of convolution neural network learning and demonstrate their ability to synthesize and manipulate high-level images. Keywords: Convolutional Neural Network;Image Processing;Neural algorithm

卷积神经网络CNN从入门到精通

卷积神经网络CNN从入门到精通 卷积神经网络算法的一个实现 前言 从理解卷积神经到实现它,前后花了一个月时间,现在也还有一些地方没有理解透彻,CNN还是有一定难度的,不是看哪个的博客和一两篇论文就明白了,主要还是靠自己去专研,阅读推荐列表在末尾的参考文献。目前实现的CNN在MINIT数据集上效果还不错,但是还有一些bug,因为最近比较忙,先把之前做的总结一下,以后再继续优化。 卷积神经网络CNN是Deep Learning的一个重要算法,在很多应用上表现出卓越的效果,[1]中对比多重算法在文档字符识别的效果,结论是CNN优于其他所有的算法。CNN在手写体识别取得最好的效果,[2]将CNN应用在基于人脸的性别识别,效果也非常不错。前段时间我用BP神经网络对手机拍照图片的数字进行识别,效果还算不错,接近98%,但在汉字识别上表现不佳,于是想试试卷积神经网络。 1、CNN的整体网络结构 卷积神经网络是在BP神经网络的改进,与BP类似,都采用了前向传播计算输出值,反向传播调整权重和偏置;CNN与标准的BP最大的不同是:CNN中相邻层之间的神经单元并不是全连接,而是部分连接,也就是某个神经单元的感知区域来自于上层的部分神经单元,而不是像BP那样与所有的神经单元相连接。CNN的有三个重要的思想架构: 局部区域感知 权重共享 空间或时间上的采样 局部区域感知能够发现数据的一些局部特征,比如图片上的一个角,一段弧,这些基本特征是构成动物视觉的基础[3];而BP中,所有的像素点是一堆混乱的点,相互之间的关系没有被挖掘。 CNN中每一层的由多个map组成,每个map由多个神经单元组成,同一个map 的所有神经单元共用一个卷积核(即权重),卷积核往往代表一个特征,比如某个卷积和代表一段弧,那么把这个卷积核在整个图片上滚一下,卷积值较大的区域就很有可能是一段弧。注意卷积核其实就是权重,我们并不需要单独去计算一个卷积,而是一个固定大小的权重矩阵去图像上匹配时,这个操作与卷积类似,因此我们称为卷积神经网络,实际上,BP也可以看做一种特殊的卷积神经网络,只是这个卷积核就是某层的所有权重,即感知区域是整个图像。权重共享策略减少了需要训练的参数,使得训练出来的模型的泛华能力更强。 采样的目的主要是混淆特征的具体位置,因为某个特征找出来后,它的具体位置已经不重要了,我们只需要这个特征与其他的相对位置,比如一个“8”,当我们得到了上面一个"o"时,我们不需要知道它在图像的具体位置,只需要知道它下面又是一个“o”我们就可以知道是一个'8'了,因为图片中"8"在图片中偏左或者偏右都不影响我们认识它,这种混淆具体位置的策略能对变形和扭曲的图片进行识别。 CNN的这三个特点是其对输入数据在空间(主要针对图像数据)上和时间(主要针对时间序列数据,参考TDNN)上的扭曲有很强的鲁棒性。CNN一般采用卷积层与

综述卷积神经网络:从基础技术到

1 引言 1.1 动机 过去几年来,计算机视觉研究主要集中在卷积神经网络(常简称为ConvNet 或CNN)上。这些工作已经在广泛的分类和回归任务上实现了新的当前最佳表现。相对而言,尽管这些方法的历史可以追溯到多年前,但对这些系统得到出色结果的方式的理论理解还很滞后。事实上,当前计算机视觉领域的很多成果都是将CNN 当作黑箱使用,这种做法是有效的,但其有效的原因却非常模糊不清,这严重满足不了科学研究的要求。尤其是这两个可以互补的问题:(1)在被学习的方面(比如卷积核),究竟被学习的是什么?(2)在架构设计方面(比如层的数量、核的数量、池化策略、非线性的选择),为什么某些选择优于另一些选择?这些问题的答案不仅有利于提升我们对 CNN 的科学理解,而且还能提升它们的实用性。 此外,目前实现CNN 的方法需要大量训练数据,而且设计决策对结果表现有很大的影响。更深度的理论理解应该能减轻对数据驱动的设计的依赖。尽管已有实证研究调查了所实现的网络的运行方式,但到目前为止,这些结果很大程度上还局限在内部处理过程的可视化上,目的是为了理解 CNN 中不同层中发生的情况。 1.2 目标 针对上述情况,本报告将概述研究者提出的最突出的使用多层卷积架构的方法。要重点指出的是,本报告将通过概述不同的方法来讨论典型卷积网络的各种组件,并将介绍它们的设计决策所基于的生物学发现和/或合理的理论基础。此外,本报告还将概述通过可视化和实证研究来理解 CNN 的不同尝试。本报告的最终目标是阐释 CNN 架构中涉及的每一个处理层的作用,汇集我们当前对CNN 的理解以及说明仍待解决的问题。

1.3 报告提纲 本报告的结构如下:本章给出了回顾我们对卷积网络的理解的动机。第2 章将描述各种多层网络并给出计算机视觉应用中使用的最成功的架构。第3 章将更具体地关注典型卷积网络的每种构造模块,并将从生物学和理论两个角度讨论不同组件的设计。最后,第4 章将会讨论CNN 设计的当前趋势以及理解CNN 的工作,并且还将重点说明仍然存在的一些关键短板。 2 多层网络 总的来说,本章将简要概述计算机视觉领域中所用的最突出的多层架构。需要指出,尽管本章涵盖了文献中最重要的贡献,但却不会对这些架构进行全面概述,因为其它地方已经存在这样的概述了(比如 [17, 56, 90])。相反,本章的目的是为本报告的剩余部分设定讨论基础,以便我们详细展示和讨论当前对用于视觉信息处理的卷积网络的理解。 2.1 多层架构 在近来基于深度学习的网络取得成功之前,最先进的用于识别的计算机视觉系统依赖于两个分离但又互补步骤。第一步是通过一组人工设计的操作(比如与基本集的卷积、局部或全局编码方法)将输入数据变换成合适的形式。对输入的变换通常需要找到输入数据的一种紧凑和/或抽象的表征,同时还要根据当前任务注入一些不变量。这种变换的目标是以一种更容易被分类器分离的方式改变数据。其次,被变换的数据通常用于训练某些类型的分类器(比如支持向量机)来识别输入信号的内容。通常而言,任何分类器的表现都会受到所使用的变换方法的严重影响。 多层学习架构为这一问题带来了不同的前景,这种架构提出不仅要学习分类器,而且要从数据中直接学习所需的变换操作。这种形式的学习通常被称为「表征学习」,当应用在深度多层架构中时即被称为「深度学习」。

一文读懂卷积神经网络

一文读懂卷积神经网络 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、 cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。 第一点,在学习Deep learning和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。 第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。 第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。 接下来话不多说,直接奔入主题开始CNN之旅。 卷积神经网络简介(Convolutional Neural Networks,简称CNN) 卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。 一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少了网络自由参数的个数。卷积神经网络中的每一个卷积层都紧跟着一个

卷积神经网络总结

卷积神经网络总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

1 卷积神经网络 卷积神经网络是深度学习的一种,已成为当前图像理解领域的研究热点它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。这个优点在网络的输入是多维图像时表现得更为明显, 图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程. 卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放以及其他形式的变形具有一定不变性. 在典型的CNN 中,开始几层通常是卷积层和下采样层的交替, 在靠近输出层的最后几层网络通常是全连接网络。卷积神经网络的训练过程主要是学习卷积层的卷积核参数和层间连接权重等网络参数, 预测过程主要是基于输入图像和网络参数计算类别标签。卷积神经网络的关键是:网络结构(含卷积层、下采样层、全连接层等) 和反向传播算法等。在本节中, 我们先介绍典型CNN 的网络结构和反向传播算法, 然后概述常用的其他CNN 网络结构和方法。神经网络参数的中文名称主要参考文献[18] 卷积神经网络的结构和反向传播算法主要参考文献[17] 。 1.1 网络结构 1.1.1 卷积层 在卷积层, 上一层的特征图(Feature map) 被一个可学习的卷积核进行卷积, 然后通过一个激活函数(Activation function), 就可以得到输出特征图. 每个输出特征图可以组合卷积多个特征图的值[17] : ()l l j j x f u = 1j l l l l j j ij j i M u x k b -∈= *+∑ 其中, l j u 称为卷积层l 的第j 个通道的净激活(Netactivation), 它通过对前一层 输出特征图1l j x -进行卷积求和与偏置后得到的, l j x 是卷积层l 的第j 个通道的输 出。()f 称为激活函数, 通常可使用sigmoid 和tanh 等函数。j M 表示用于计算l j u 的输入特征图子集, l ij k 是卷积核矩阵, l j b 是对卷积后特征图的偏置。对于一个输 出特征图l j x ,每个输入特征图1l j x -对应的卷积核l ij k 可能不同,“*”是卷积符号。 1.1.2 下采样层 下采样层将每个输入特征图通过下面的公式下采样输出特征图[17]: ()l l j j x f u = 1()l l l l j j j j u down x b β-=+ 其中, l j u 称为下采样层l 的第j 通道的净激活, 它由前一层输出特征图1l j x -进行 下采样加权、偏置后得到, β是下采样层的权重系数, l j b 是下采样层的偏置项. 符

一文读懂卷积神经网络CNN

一文读懂卷积神经网络CNN ★据说阿尔法狗战胜李世乭靠的是卷积神经网络算法,所以小编找到了一篇介绍该算法的文章,大家可以看一看。★ 自去年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处理领域的一个应用。第一点,在学习Deep learning 和CNN之前,总以为它们是很了不得的知识,总以为它们能解决很多问题,学习了之后,才知道它们不过与其他机器学习算法如svm等相似,仍然可以把它当做一个分类器,仍然可以像使用一个黑盒子那样使用它。第二点,Deep Learning强大的地方就是可以利用网络中间某一层的输出当做是数据的另一种表达,从而可以将其认为是经过网络学习到的特征。基于该特征,可以进行进一步的相似度比较等。第三点,Deep Learning算法能够有效的关键其实是大规模的数据,这一点原因在于每个DL都有众多的参数,少量数据无法将参数训练充分。接下来话不多说,直接奔入主题开始

CNN之旅。卷积神经网络简介(Convolutional Neural Networks,简称CNN)卷积神经网络是近年发展起来,并引起广泛重视的一种高效识别方法。20世纪60年代,Hubel 和Wiesel在研究猫脑皮层中用于局部敏感和方向选择的神经元时发现其独特的网络结构可以有效地降低反馈神经网 络的复杂性,继而提出了卷积神经网络(Convolutional Neural Networks-简称CNN)。现在,CNN已经成为众多科学领域的研究热点之一,特别是在模式分类领域,由于该网络避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。K.Fukushima在1980年提出的新识别机是卷积神经网络的第一个实现网络。随后,更多的科研工作者对该网络进行了改进。其中,具有代表性的研究成果是Alexander和Taylor提出的“改进认知机”,该方法综合了各种改进方法的优点并避免了耗时的误差反向传播。一般地,CNN的基本结构包括两层,其一为特征提取层,每个神经元的输入与前一层的局部接受域相连,并提取该局部的特征。一旦该局部特征被提取后,它与其它特征间的位置关系也随之确定下来;其二是特征映射层,网络的每个计算层由多个特征映射组成,每个特征映射是一个平面,平面上所有神经元的权值相等。特征映射结构采用影响函数核小的sigmoid 函数作为卷积网络的激活函数,使得特征映射具有位移不变性。此外,由于一个映射面上的神经元共享权值,因而减少

基于卷积神经网络的图像识别研究

第14期 2018年7月No.14July,2018 1 算法原理 卷积神经网络的卷积层最重要部分为卷积核[1-2]。卷积核不仅能够使各神经元间连接变少,还可以降低过拟合误 差[3]。 子采样过程就是池化过程。进行卷积过程是将卷积核与预测试图像进行卷积,子采样能够简化网络模型,降低网络模型复杂程度,从而缩减参数。 在图像识别时,首先需要对输入图像初始化,然后将初始化后图像进行卷积和采样,前向反馈到全连接层,通过变换、即可计算进入输出层面,最终通过特征增强效果和逻辑之间的线性回归判断是否符合图像识别期望效果,往复循环,每循环一次就迭代一次,进而对图像进行识别。流程如图1所示。 图1 卷积神经网络模型流程 2 卷积神经网络 卷积神经网络主要包括3个层次[4],它由输入层、隐藏 层、输出层共同建立卷积神经网络模型结构。2.1 卷积层 卷积层的作用是提取特征[2]。卷积层的神经元之间进行 局部连接,为不完全连接[5]。 卷积层计算方法公式如下。()r array M a λ+ 其中λ为激活函数,array 是灰度图像矩阵, M 表示卷积核, 表示卷积, a 表示偏置值大小。G x 方向和G y 方向卷积核。 本文卷积神经网络模型中设定的卷积核分为水平方向和竖直方向。卷积层中卷积核通过卷积可降低图像边缘模糊程度,使其更为清晰,效果更好、更为显著。经过S 型函数激活处理之后,进行归一化后图像灰度值具有层次感,易于突出目标区域,便于进一步处理。2.2 全连接层 该层主要对信息进行整理与合并,全连接层的输入是卷积层和池化层的输出。在视觉特征中,距离最近点颜色等特征最为相似,像素同理。全连接如图2所示。 图2 全连接 3 实验结果与分析 本文采用数据集库是MSRA 数据集,该数据集共包含1 000张图片。实验环境为Matlab2015a 实验环境,Windows 7以上系统和无线局域网络。本文从MSRA 数据集中选取其中一张进行效果分析。卷积神经网络模型识别效果如图3所示。 作者简介:谢慧芳(1994— ),女,河南郑州人,本科生;研究方向:通信工程。 谢慧芳,刘艺航,王 梓,王迎港 (河南师范大学,河南 新乡 453007) 摘 要:为降低图像识别误识率,文章采用卷积神经网络结构对图像进行识别研究。首先,对输入图像进行初始化;然后,初 始化后的图像经卷积层与该层中卷积核进行卷积,对图像进行特征提取,提取的图像特征经过池化层进行特征压缩,得到图像最主要、最具代表性的点;最后,通过全连接层对特征进行综合,多次迭代,层层压缩,进而对图像进行识别,输出所识别图像。与原始算法相比,该网络构造可以提高图像识别准确性,大大降低误识率。实验结果表明,利用该网络模型识别图像误识率低至16.19%。关键词:卷积神经网络;卷积核;特征提取;特征压缩无线互联科技 Wireless Internet Technology 基于卷积神经网络的图像识别研究

卷积神经网络n代码解析

deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码AutoEncoder(堆栈SAE,卷积CAE)的作者是Rasmus Berg Palm)代码下载:rasmusbergpalm/DeepLearnToolbox 这里我们介绍deepLearnToolbox-master中的CNN部分。 DeepLearnToolbox-master中CNN内的函数: 调用关系为: 该模型使用了mnist的数字作为训练样本,作为cnn的一个使用样例, 每个样本特征为一个28*28=的向量。 网络结构为: 让我们来看看各个函数: 一、Test_example_CNN: (1) 三、 (2) 四、 (2) 五、 (2) 五、 (2) 六、 (3) 一、Test_example_CNN: Test_example_CNN: 1设置CNN的基本参数规格,如卷积、降采样层的数量,卷积核的大小、降采样的降幅 2cnnsetup函数初始化卷积核、偏置等

3cnntrain函数训练cnn,把训练数据分成batch,然后调用 cnnff完成训练的前向过程, cnnbp计算并传递神经网络的error,并计算梯度(权重的修改量) cnnapplygrads把计算出来的梯度加到原始模型上去 4cnntest函数,测试当前模型的准确率 该模型采用的数据为, 含有70000个手写数字样本其中60000作为训练样本,10000作为测试样本。 把数据转成相应的格式,并归一化。 设置网络结构及训练参数 初始化网络,对数据进行批训练,验证模型准确率 绘制均方误差曲线 二、 该函数你用于初始化CNN的参数。 设置各层的mapsize大小, 初始化卷积层的卷积核、bias 尾部单层感知机的参数设置 * bias统一设置为0 权重设置为:-1~1之间的随机数/sqrt(6/(输入神经元数量+输出神经元数量))

卷积神经网络 论文版

卷积神经网络 摘要:卷积神经网络是近年来广泛应用于模式识别、图像处理等领域的一种高效识别算法,它具有结构简单、训练参数少和适应性强等特点。本文从卷积神经网络的发展历史开始,详细阐述了卷积神经网络的网络结构、神经元模型和训练算法。在此基础上以卷积神经网络在人脸检测和形状识别方面的应用为例,简单介绍了卷积神经网络在工程上的应用,并给出了设计思路和网络结构。 关键字:模型;结构;训练算法;人脸检测;形状识别 Convolution Neural Network Abstract:Convolution neural network is an efficient recognition algorithm which is widely used in pattern recognition, image processing and other fields recent years.It has a simple structure, few training parameters and good adaptability and other advantages. In this paper, begin with the history of convolutional neural networks,describes the structure of convolutional neural network,neuron models and training algorithms in detail. On this basis,uses the applications of convolutional neural network in face detection and shape recognition as examples, introduces the applications of convolution neural network in engineering, and gives design ideas and network structure. Keywords:Model; Training Algorithm; Advantage; Face detection; Shape recognition 0 引言 卷积神经网络是人工神经网络的一种已成为当前语音分析和图像识别领域的研究热点,它的权值共享网络结构使之更类似于生物神经网络,降低了网络模型的复杂度,减少了权值的数量。该优点在网络的输入是多维图像时表现的更为明显,使图像可以直接作为网络的输入,避免了传统识别算法中复杂的特征提取和数据重建过程。卷积网络是为识别二维形状而特殊设计的一个多层感知器,这种网络结构对平移、比例缩放、倾斜或者共他形式的变形具有高度不变性。 1 卷积神经网络的发展历史 1962年Hubel和Wiesel通过对猫视觉皮层细胞的研究,提出了感受野(receptive field)的概念,1984年日本学者Fukushima基于感受野概念提出的神经认知机(neocognitron)可以看作是卷积神经网络的第一个实现网络,也是感受野概念在人工神经网络领域的首次应用。神经认知机将一个视觉模式分解成许多子模式(特征),然后进入分层递阶式相连的特征平面进行处理,它试图将视觉系统模型化,使其能够在即使物体有位移或轻微变形的时候,也能完成识别。神经认知机能够利用位移恒定能力从激励模式中学习,并且可识别这些模式的变化形,在其后的应用研究中,Fukushima将神经认知机主要用于手写数字的识别。随后,国内外的研究人员提出多种卷积神经网络形式,在邮政编码识别和人脸识别方面得到了大规模的应用。 通常神经认知机包含两类神经元,即承担特征抽取的S-元和抗变形的C-元。S-元中涉及两个重要参数,即感受野与阈值参数,前者确定输入连接的数目,后者则控制对特征子模式的反应程度。许多学者一直致力于提高神经认知机的性能的研究:在传统的神经认知机中,每个S-元的感光区中由C-元带来的视觉模糊量呈正态分布。如果感光区的边缘所产生的模糊效果要比中央来得大,S-元将会接受这种非正态模糊所导致的更大的变形容忍性。我们希望得到的是,训练模式与变形刺激模式在感受野的边缘与其中心所产生的效果之间的差异变得越来越大。为了有效地形成这种非正态模糊,Fukushima提出了带双C-元层的改进型神经

相关文档