文档库 最新最全的文档下载
当前位置:文档库 › 某工厂西门子6RA70直流调速步骤

某工厂西门子6RA70直流调速步骤

某工厂西门子6RA70直流调速步骤
某工厂西门子6RA70直流调速步骤

西门子6RA70直流调速步骤

(2012-04-16 16:10:45)

转载▼

标签:

分类:PLC相关资料共享

杂谈

拆箱6RA70参数设置与调试

6RA70装置的调试步骤大致分为以下几个步骤:

1、外部逻辑组态

2、6RA70参数设置

3、电枢回路的升压试验

4、励磁回路试验

5、电机空负荷单转

6、电机热负荷调试

下面就上述几个方面进行分析,并按照调试顺序逐一细解:

一、外部逻辑组态

在这一步工作之前,首先要确认:

外部进线端子没有短路;

所有柜内断路器上下进线没有短路,用万用表的200欧姆电

阻档测量,无相间短路也无对地短路,确认稳压电源24V无短路;

在未能确认现场接线正确与否的情况下,先将所有往现场送电的控制操作电源全部断开(电机风机及磁场、电枢线要先确认,可不断),确保柜内电源不送至柜外,尤其是急停,外部油、风温的信号。例如,600,U34,P15,M15都要断开。

在确保上述无误的情况下,将外部控制电源,操作电源,

励磁电源依照先后顺序送电至端子,在端子上测量电压等级,正确的情况下再进入下一步。先将6RA70控制电源合上(Q31),注意观察6RA70箱内部有无冒烟,打火及异常糊味,同时将6RA70的P参数找到P051,调整P051=21,按P键使6RA70的参数全部恢复至出厂设

置。这一步在任何场合或传新的参数时都必须执行,以防止个别参数被修改,下传的参数不能覆盖原有参数。

将Q32脉冲功放电源(DC24V)合上,将Q33(DC24V信号电源)合上,用万用表测量稳压电源的DC24V是否正确,注意:万用表笔测量的量程及表笔插孔位置,以及+、-表笔的顺序。在这一步中,要注意观察S7-200的电源指示灯是否已经点亮,而且是变绿色,当变为黄色时,将S7-200的控制盒(小盖板)打开,将开关拨至RUN状态,S7-200的运行指示灯就变为绿色了。

将Q35合上,柜内风机运行,用很薄的软纸试一下风机的运行方向,柜内风机应该是往柜内排风,因此将纸放置于散热风孔处应该是往里吸的。如果风向反了,将风机开关(Q35)的出线电源A、B相(U35、V35)调换位置,再次试验风向。

将Q36电机风机开关合上,同时将Q34合上,通过门板上的风机启停开关将电机风机启动,并注意门板指示灯点亮。第一次运行时接触器吸合可能有杂音,可以将Q36断开,用手或工具将接触器合几次,确保接点无杂物及尘土。同时根据电机风机功率的大小,将热继电器的调整值设为电机风机的额定电流值。

上述步骤,可以在S7-200程序完成后再进行。

将柜内开关Q31,Q32,Q35、Q36断开,只保留Q33(DC24V信号电源),Q34(PLC电源),将S7-200编程电缆接好,选择好接口及S7-200的CPU类型(注意国产的S7-200与国外的S7-200软件使用有所不同,国产的需要用Step 7 Microwin,并且在工具栏的选项里选择中文并重新启动软件方可使用),开始编译程序。

编译程序时注意以下几个方面的原则:

1、外部重故障及6RA70故障一定要监控,而且要立即封锁使能(Enable);

2、外部轻故障可以和用户商定过几分钟转为重故障,也可以不进线处理直接送至6RA70,经过DP网送至PLC,由操作工自己去判断停机与否;

3、有故障一定要先封锁使能,然后才能断开进线开关;

4、系统不允许带故障合进线开关;

5、当外控时,一定要将使能送至6RA70的38#端子,以便与DP网上的使能相与才能转电机;

6、进线开关的合闸,分闸必须是脉冲信号,绝对不允许长期给合闸线圈及分闸线圈供电,以防烧坏进线开关;

7、装置端子已合信号(109,110端子)在合闸(on)信号给出后应该置为1,如果无故障才允许发出使能信号;

编译程序时,应该在线观察,并一定要做快熔故障的模拟,可以将快熔的辅助点人为的抬高,使之闭合或断开,这一点绝对不允许错过。

8、6RA70装置必须先发37#端子的ON(合闸)信号,然后才能发出Enable(运行信号);以上这些步骤完成后,就进入第二部分,6RA70参数的设置。

二、6RA70参数的设置

前提调节:S7-200逻辑已确定完毕,6RA70箱已恢复工厂的设置,柜内风机,电机风机已准确运行。

根据:依照6RA70的控制字,定义:内控在第一位,外控在第二位(BICO参数,即BDS 参数),速度给定及ON,Enable也遵循上述原则,其中速度给定通过P430连接的开关量决定P431及P433的速度选择。

常规的参数设置见下表:

6RA70参数设置表(举例DC550V,10003A)

参数号含义设定值备注/释义

装置电枢电流减少100%

装置励磁电流减少100%

装置电枢电压330V 分压板将进线电压分为1/2

装置励磁电压380V 励磁进线电压(通过U22,W24进线)

P080 制动为一个停机抱闸 1

P075 功率器件的控制字0

P077 总的热衰减系数 1

P081 反电势弱磁方式 1 弱磁电机设为1,无弱磁电机设为0,升压EMF时设为无弱磁

P082 励磁方式 1 正常工作时设为1,电流试验时设为0

P083 速度反馈方式 2 EMF反馈设为3,码盘反馈设为2,从装置设为主装置的实际速度(4)

P100 电枢电流值60A 电机铭牌,根据最后电流试验确定

P101 电枢电压值330V EMF反馈设为电机额定电压的1/2,弱磁电机的P101可以设

与P118相等

P102 额定励磁电流39/5 对应电机铭牌39A,根据励磁分流器确定比例关系

P103 电机励磁最小电流 1 根据分流器比例来确定

P110 电枢电阻Ω根据电机提供数据或粗略计算,一般为

P111 电枢电感

P112 励磁电阻6Ω根据实际测量(万用表)

P114 电机热时间系数10S

P117 励磁特性的控制字 1

P118 反电势330*95% 根据电机额定电压*1/2*95%

P140 脉冲编码器类型 1 (改为EMF反馈或自由连接时P140=0)

P141 脉冲编码器脉冲数1024

P143 装置运行的最高转速250/600 RPM 装置铭牌,250为基速,600转为最高速

P626 实际速度反馈167

P150 α限幅(电枢) 30 升压及大电流以及开始转电机时设为以上

P151 β限幅(电枢) 155 度

P155 电流调节器Kp 0.4 根据电机调整

P156 电流调节器Tn 根据电机调整

P159 切换阀值0.01 大电机的阀值适当高于这个数,最大为40ms左右

P160 无环流逻辑死区时间 6 ms

P171 正转矩电流限幅值150 空载电机设为30%左右,轧钢时放开至150%-

200%

P172 负转矩电流限幅值-150 同上

P225 速度调节器KP 8 测试再定

P226 速度调节器Tn 200 Ms(测试时定)

P250 α限幅(励磁) 30 度(开始测试时一定要设为以上,小电流励磁闭环)

P255 励磁调节器KP 4 测试时定

P256 励磁调节器Tn 200 ms 测试时定

P275 电势调节器KP 3 测试时定

P276 电势调节器Tn 300 ms 测试时定

P300 正向速度设定限幅110%

P301 负向速度设定限幅-110%

P303 给定积分上升时间10 S 测试时定

P304 给定积分下降时间10 S 测试时定

P355 电机堵转时间10 根据不同电机,工矿是此参数

P595 超速保护源167

P380 超速阀值110%

P381 超速阀值-110%

P351 主回路欠压阀值-20% 进线电压<550×80%

P352 主回路过压阀值20% 进线电压>550×120%

P353 相电压故障阀值40%

P401 本地速度给定值0 内控调试完毕一定要设为0

本地/远程切换16(17)39#端子: 本地/远程切换,16或17根据S7-200程序,0为内控

远程速度给定401 远程控制

P433 本地速度给定3003 本地控制

,02 控制字1的源9 P654-P657有效

,02 控制字2的源9 P676-P691有效

,02 控制字1第7位源10 36#端子:故障复位,轻故障控制字1第7位源3107 来自DP网控制字, 故障复位

,02 控制字2第12位源10 36#端子:外部轻故障报警

P690 BICO数据组的选择16(17)39#端子:本地/远程切换控制字1第0位源 1 来自37#端子,ON/OFF

控制字1第0位源3100 来自DP网控制字1,位0

控制字1第3位源 1 来自38#端子,ENABLE

控制字1第3位源3103 来自DP网控制字1,位3

P750 模拟量输出端子14/15# 167 14/15#端子:电机转速表

P753 模拟量输出端子14/15#规格化10V 调试时待定

P752 速度反馈滤波时间250ms 速度反馈滤波(to plc)

P755 电流反馈107 以上版为107 ,以下版为109

P757 电流反馈滤波时间250ms 电流反馈滤波(to plc)

P771 开关量输出1的源107(106)46/47#端子:6RA70故障P772 开关量输出2的源120(121)48/54#端子: 电机Xn>0 N=0值阀值30%

N=0转速滞环1%

N=0延时时间1S

PZD区中第1个字32 第一个状态字

PZD区中第2个字33 第二个状态字

PZD区中第3个字26 转速反馈(经滤波)

PZD区中第4个字27 电流反馈(经滤波)

PZD区中第5个字20 端子状态

PZD区中第6个字142 电机转矩

P918 PROFIBUS-DP总线地址3-200

P927 通讯参数化使能7 CBP+PMU+PC

第三个字送K20是端子状态,其中Bit12(第13位)为0时,为重故障第二个字状态字1的第4位(bit3)是6RA70故障,1为故障

P502 转矩附加给定152 转速偏差补偿,普通轧机不用

P541 转速偏差补偿的系数精轧及末架机架常用,普通轧机不用

P543 转速偏差滞环2%-3% 同上

U580 7 根据实际情况设为1或4,不允许设为0

P305 上升圆弧ms 根据实际情况选择,准确停车的设备需要使用

P306 下降圆弧ms 根据实际情况选择,准确停车的设备需要使用

P190 预控制电流环给定滤波5-10ms 软化电机电流冲击时用

P191 电路环给定滤波10-20ms 软化电机电流冲击时用

P272 为1时使角自动推后,以防止EMF过高,一般是进线电压太低时用

几个参数设置的注意事项

1)P100,改箱后P100若设为60A,那么P171,P172限制的是装置电流,而不是电机电流。注意,P100的值是根据互感器而设的,在大电流试验时,若确定装置的100%为互感器的值,那么

,那么P171,P172即为电机的百分数,r019反映的即为电机电流。

注意设计时,6RA7025的电流反馈AC1、AC2、AC3、AC4为时100%装置电流;6R7018的电流反馈AC1、AC2、AC3、AC4为1V时100%装置电流。

因此改箱时R75,R76阻值要根据电机的过载倍数2倍以内时,互感器电流/*装置电流×(R75并后)应该为或1V。

若实际工作时需要将电机电流放大至200%以上,有两种方法:一种是将P100变为60A (6RA7025)或30A(6RA7018),然后根据装置电流算出电机保护电流P171,P172。

2)电流的Ki范围为~之间,Ti为~之间,速度Kp的范围为5~20之间,Tn为~之间。3)(P110);

4)电枢电感为~2mH之间或根据电机铭牌,注意电机越大,电感越大(P111);

5)P118弱磁点一般改为电机额定电压的95%;

6)所有进出线电压因为经过分压板DVD分压,所以都为原电压等级的50%,切记不要乱填写;

7)确定电机上升,下降斜率需要在弱磁点时观察能否速度跟随很好,否则应加大时间,另外,注意,空载启动电流不运行超过电机的额定电流,特殊电机(如飞剪压下)除外。

8)注意,P820,P821一般情况下不要屏蔽,除非确认无误。试验时屏蔽的必须在运行时根据情况排除,以防事故发生。

三、电枢回路的升压试验

升压试验的目的是检测可空硅是否完好,6RA70箱的触发是否齐全,这里包含两层概念。一种是6RA70箱本身脉冲电源板是否完好,另一种是外接触发放大板是否完好,出厂时已经做好。一般情况下,不需要检测,需要检测时要做如下工作:

准备几个(根据电机电压及过压保护来定)200瓦左右的灯泡串联,将其中中间的一个灯泡用示波器接好;

去掉后端电枢线,将励磁P082设为0,将灯泡(或电阻)接至电枢输出侧,设;

将柜内断路器(除加热器外)全部合上,启动电机风机及打开抱闸等,合进线开关;通过门板内控/外控开关给出使能,使设备一切正常;

将P102设为20%的电机励磁电流,P103设为0,将P082=1,,重复步骤,观测励磁电流是否与设定相等,也可以用万用表测量mV值算出电流。

上述,,步骤在不需升压试验的装置下可以越过步骤,然后直接转至大电流试验。

将=K402,P402=10%,将,重复,步骤,用万用表测量其中一个灯泡的电压,并看示波器波形(应该是20ms内6个波头),示波器置于10倍衰减位置,幅值为2V~5V,扫描时间为;逐渐推放至或更小,直至电压达到电机额定电压的115%为止;

正组P402=10%做完后再做P402=-10%,重复,步骤,那么反组就做完了。

注意事项:

1、升压过程中,角P150每次不能推太大,一般为左右;

2.升压过程中,角开头必须设在左右,因为是在电流环做电压,电流环是开环的,所以

一旦误操作将引起过压或事故;

3、千万不要输入错位;

4、这一步完成后,将P081及P150,P250,P402,以及恢复成原先值,不可丢失;

5、升压试验时,检验EMF反馈值以及门板电压表是否与给定极性相同。

四、电枢回路的大电流试验

电枢回路的大电流试验主要是完成可控硅大电流试验,同时也是防止从互感器反馈回来的电流反馈是否有缺波头,反馈反相等问题。做这个试验时,准备工作如下:

将电机侧的两根电枢线用一根95mm2的线短接,一般情况下

必须在电机侧接;

将柜内励磁线断开一根

将P082=0(不用励磁)

将=K402,P402=0

将P171,P172设置的数追随P402的值,并超过P402的

将以上,P100=60A(6RA7025),P100=30A(6RA7018)

然后合进线开关,给出内控使能,使装置空送一次,无故障及问

题后逐渐增加P402及P171,P172,用示波器监控X175的12#,13#端子。注意,12#端子接示波器的正端,13#端子接示波器的负端,看示波器的波形应该是

注意示波器置于幅值1V-2V,衰减10倍,扫描周期,这样在8个方格里应看到6个波头。同时观察r019电流反馈是否与给定相等,电枢电流表要用万用表测量mV值,以便计算真正的电枢电流。

一般情况下只要做P402=10%,20%,40%和-10%,-20%,-40%就可以了,由于是大电流试验,要求时间短,一般不长于2秒左右。

当发现示波器电流波形不同于上述图标时,应该调整外联板上的AC1,AC2,AC3,AC4。调整时先调整AC1,AC2或AC3,AC4。调整时一定要单只互感器本身线相互调换,不要AC1与AC3调,AC2与AC4调换。

通过大电流试验就能知道装置100%输出时的电流值,这样就可以知道P100将来设为多少,一般电流值在R75、R76配备合适的情况下,应该是100%电流对应于互感器的电流值。

做完试验后,将电机侧的电枢短路线拆除,将励磁线接好。将P402=0,=K134恢复,P171,P172恢复为10%,P082=1,,,准备下一步的电机空载试验。

在这个环节中,最重要的是看电机电流波形,计算电流最大值,并注意将磁场P082及一定要恢复。

五、励磁回路试验

在电机线全恢复的情况下,检查磁场P082,P601,P402,一切恢复后,将电源全部合上(加热器除外),将P102设为电机励磁电流,P250设为左右,合进线开关,给内控使能,使磁场发出。观察磁场是否达到电机的额定磁场(有可能P250限制住,可以适当放P250)。在磁场闭环完好的情况下,将P250角度一直推至,磁场试验就完毕。

六、电机空载试验及特性试验

第五步做完毕后,可以紧接着让电机转起来,第一次转电机时,一定要将P150限制在左右,(P100=电机额定电流),,或者(P100=60A或30A),

将P083=3(EMF反馈),P081=0(不弱磁)。

合闸并给出内控使能后,调整P401,使电机缓慢地转起来,观察码盘r024是否与给定极性相同。对于弱磁电机,由于电压升速与电机最高速度有差值,所以r024与r025不相等,但不弱磁电机应该相等。当看到r024的极性与给定极性相同时(正、反转都试一下),停机,将P083=2,P081=1(弱磁,假如是弱磁电机,否则为0),将码盘反馈投入后,低速运行,并进行弱磁优化。

弱磁优化一定是在P081=1的情况下进行,利用P051=27,在20s内合闸并给出使能方能进线优化,优化时不要随意分闸,而且电机会转动,注意提醒对方保护好现场,不要让人靠近。

七、电机热负荷调试

西门子直流调速器6RA70入门指导

6RA70入门指南 Hudson 2007-6-8 6RA70 SIMOREG DC MASTER 系列整流器为全数字紧凑型整流器,输入为三相电源,可向直 流驱动用的电枢和励磁供电,额定电枢电流从15A 至2200A。紧凑型整流器可以并联使用,提 供高至12000A 的电流,励磁电路可以提供最大85A 的电流(此电流取决于电枢额定电流)。 (1) 恢复缺省值设置以及优化调试/Resuming defaults and optimization P051=21;恢复缺省值,操作后P051=40 – 参数可改; P052=3;显示所有参数(恢复缺省值后默认就是3); P076.001=50;设置电枢回路额定直流电流百分比; P076.002=10;设置励磁回路额定直流电流百分比; P078.001=380;设置电枢回路供电电压; P078.002=380;设置励磁回路供电电压; P100=5.6;设置电枢额定电流(A); P101=420;设置电枢额定电压(V); P102=0.32;设置励磁额定电流(A); P104、P105、P106、P107、P108、P109、P114;默认值 (P100~P102由电机铭牌读出) P083=2 选择速度实际值由脉冲编码器提供; P140=1 选择编码器类型1 是相位差90度的二脉冲通道编码器; P141=1024 选择编码器脉冲数是1024; P142=1 选择编码器输出 15V信号电压; P143=3000 设置编码器最大运行速度3000转; P051=25 开始电枢和励磁的预控制以及电流调节器的优化运行 P051=26 开始速度调节器的优化运行 Note:修改P051参数前,首先“分闸”,修改完P051参数后整流器转换到运行状态o7.4几 秒,然后进入状态o7.0,此时“合闸”并“运行使能”,开始优化。值得注意的是:端子38 脉冲使能(本实验装置中的第二个开关,DIN2),必须为1电机才能启动。端子37起停信号 (本实验装置中的第一个开关,DIN1),必须有上升沿电机才能启动。即按照如下顺序: OFF?P051=25?ON?OFF。以后在电机运行时也是如此,需要端子38的高电平和端子37 的上升沿才能起动电机。 (2) 6RA70电动电位计的功能参考功能图:G126,G111 P433=240 将电动电位计的输出K240 连接主给定通道P433

晶闸管—直流电动机调速系统教学文稿

7.1 晶闸管—直流电动机调速系统 采用晶闸管可控整流电路给直流电动机供电,通过移相触发,改变直流电动机电枢电压,实现直流电动机的速度调节。这种晶闸管—直流电动机调速系统是电力驱动中的一种重要方式,更是可控整流电路的主要用途之一。可以图7-1所示三相半波晶闸管—直流电动机调速系统为例,说明其工作过程和系统特性。 直流电动机是一种反电势负载,晶闸管整流电路对反电势负载供电时,电流容易出现断续现象。如果调速系统开环运行,电流断续时机械特性将很软,无法负载;如果闭环控制,断流时会使控制系统参数失调,电机发生振荡。为此,常在直流电机电枢回路内串接平波电抗器Ld,以使电流Id尽可能连续。这样,晶闸管—直流电动机调速系统的运行分析及机械特性,必须按电流连续与否分别讨论。 8.1.1 电流连续时 如果平波电抗器Ld电感量足够大,晶闸管整流器输出电流连续,此时晶闸管—直流电动机系统可按直流等值电路来分析,如图7-2所示。图中,左半部代表电流连续时晶闸管整流器的等效电路,右半部为直流电动机的等效电路。由于电流连续,晶闸管整流器可等效为一个直流电源Ud与内阻的串联,Ud为输出整流电压平均值 (7-1) 式中U为电源相压有效值,为移相触发角。

电流连续情况下,晶闸管有换流重迭现象,产生出换流重迭压降,相当于整流电源内串有一个虚拟电阻,其中LB为换流电感。再考虑交流电源(整流变压器)的等效内电阻Ro,则整流电源内阻应为,如图所示。 电流连续时直流电动机可简单地等效为为反电势E与电枢及平波电抗器的电阻总和Ra 串联,而平波电抗器电感Ld在直流等效电路中是得不到反映的。 这样,根据图7-2等效电路,可以列写出电压平衡方程式为 (7-2) 式中,Ce为直流电机电势常数,φ为直流电机每极磁通。求出电机转速为 (7-3) 可以看出,在电枢电流连续的情况下,当整流器移相触发角固定时,电动机转速随 负载电流Id的增加而下降,下降斜率为。当角改变时,随着空载转速点no的变化,机械特性为一组斜率相同的平行线。 但是在一定的平波电抗器电感Ld下,当电流减小到一定程度时,Ld中储能将不足以维持电流连续,电流将出现断续现象,此时直流电动机机械特性会发生很大变化,不再是直线,图7-3中以虚线表示。这部分的机械特性要采用电流断续时的运行分析来确定。 二、电流断续时

直流调速器的工作原理

直流调速器的工作原理 The manuscript was revised on the evening of 2021

直流调速器的工作原理 直流调速器就是调节直流电动机速度的设备,上端和交流电源连接,下端和直流电动机连接,直流调速器将交流电转化成两路输出直流电源,一路输入给 直流电机砺磁(定子),一路输入给直流电机电枢(转子),直流调速器通过控制电枢直流电压来调节直流电动机转速。同时直流电动机给调速器一个反馈电流,调速器根据反馈电流来判断直流电机的转速情况,必要时修正电枢电压输出,以此来再次调节电机的转速。 直流电机的调速方案一般有下列3种方式: 1、改变电枢电压;(最长用的一种方案) 2、改变激磁绕组电压; 3、改变电枢回路电阻。 其实就是可控硅调压电路,电机拖动课本上非常清楚了 直流调速分为三种:转子串电阻调速,调压调速,弱磁调速。 转子串电阻一般用于低精度调速场合,串入电阻后由于机械特性曲线变软,一般在倒拉反转型负载中使用 调压调速,机械特性曲线很硬,能够在保证了输出转矩不变的情况下,调整转速,很容易实现高精度调速 弱磁调速,由于弱磁后,电机转速升高,因此一般情况下配合调压调速,与之共同应用。缺点调速范围小且只能增速不能减速,控制不当易发生飞车问题。 直流调速器 直流调速器是一种电机调速装置,包括电机直流调速器,脉宽直流调速器,可控硅直流调速器等.一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,用光电耦合器实现电流、电压的隔离变换,电路的比例常数、积分常数和微分常数用PID适配器调整。该调速器体积小、重量轻,可单独使用也可直接安装在直流电机上构成一体化直流调速电机,可具有调速器所应有的一切功能。 直流调速器使用条件 ? 1.海拔高度不超过00米。(超过0米,额定输出值有所降低) 2.周围环境温度不高于℃不低于-10℃。

晶闸管可控整流技术直流电机调速系统

目录 1.引言 (3) 2.原始资料和数据 (3) 3.电路组成和分析 (4) 3.1工作原理 (4) 3.2对触发脉冲的要求 (5) 3.3晶闸管的选型 (6) 3.4参数计算 (7) 3.5二次相电压U2 (7) 3.6一次与二次额定电流及容量计算 (8) 4.触发电路的设计 (9) 5保护电路的设计 (10) 5.1电力电子器件的保护 (10) 5.2过电压的产生及过电压保护 (11) 5.3过电流保护 (11) 6.缓冲电路的设计 (12) 7.总结 (14) 参考文献 (15) 晶闸管可控整流技术直流电机调速系统设计 摘要:可控整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的可控整流主电路,其输出端的负载,可以是电阻性负载、大电感性负载以及反电动势负载。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发 电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交 流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了保护电路和缓冲电路,通过参数计算对晶闸管进行了选型,也对直流电动机进行了简单的介绍。 关键词:可控整流晶闸管触发电路缓冲电路保护电路 1.引言 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环节 2.原始数据: 1、输入交流电源:

某工厂西门子6RA70直流调速步骤

西门子6RA70直流调速步骤 (2012-04-16 16:10:45) 转载▼ 标签: 分类:PLC相关资料共享 杂谈 拆箱6RA70参数设置与调试 6RA70装置的调试步骤大致分为以下几个步骤: 1、外部逻辑组态 2、6RA70参数设置 3、电枢回路的升压试验 4、励磁回路试验 5、电机空负荷单转 6、电机热负荷调试 下面就上述几个方面进行分析,并按照调试顺序逐一细解: 一、外部逻辑组态 在这一步工作之前,首先要确认: 外部进线端子没有短路; 所有柜内断路器上下进线没有短路,用万用表的200欧姆电 阻档测量,无相间短路也无对地短路,确认稳压电源24V无短路; 在未能确认现场接线正确与否的情况下,先将所有往现场送电的控制操作电源全部断开(电机风机及磁场、电枢线要先确认,可不断),确保柜内电源不送至柜外,尤其是急停,外部油、风温的信号。例如,600,U34,P15,M15都要断开。 在确保上述无误的情况下,将外部控制电源,操作电源, 励磁电源依照先后顺序送电至端子,在端子上测量电压等级,正确的情况下再进入下一步。先将6RA70控制电源合上(Q31),注意观察6RA70箱内部有无冒烟,打火及异常糊味,同时将6RA70的P参数找到P051,调整P051=21,按P键使6RA70的参数全部恢复至出厂设

置。这一步在任何场合或传新的参数时都必须执行,以防止个别参数被修改,下传的参数不能覆盖原有参数。 将Q32脉冲功放电源(DC24V)合上,将Q33(DC24V信号电源)合上,用万用表测量稳压电源的DC24V是否正确,注意:万用表笔测量的量程及表笔插孔位置,以及+、-表笔的顺序。在这一步中,要注意观察S7-200的电源指示灯是否已经点亮,而且是变绿色,当变为黄色时,将S7-200的控制盒(小盖板)打开,将开关拨至RUN状态,S7-200的运行指示灯就变为绿色了。 将Q35合上,柜内风机运行,用很薄的软纸试一下风机的运行方向,柜内风机应该是往柜内排风,因此将纸放置于散热风孔处应该是往里吸的。如果风向反了,将风机开关(Q35)的出线电源A、B相(U35、V35)调换位置,再次试验风向。 将Q36电机风机开关合上,同时将Q34合上,通过门板上的风机启停开关将电机风机启动,并注意门板指示灯点亮。第一次运行时接触器吸合可能有杂音,可以将Q36断开,用手或工具将接触器合几次,确保接点无杂物及尘土。同时根据电机风机功率的大小,将热继电器的调整值设为电机风机的额定电流值。 上述步骤,可以在S7-200程序完成后再进行。 将柜内开关Q31,Q32,Q35、Q36断开,只保留Q33(DC24V信号电源),Q34(PLC电源),将S7-200编程电缆接好,选择好接口及S7-200的CPU类型(注意国产的S7-200与国外的S7-200软件使用有所不同,国产的需要用Step 7 Microwin,并且在工具栏的选项里选择中文并重新启动软件方可使用),开始编译程序。 编译程序时注意以下几个方面的原则: 1、外部重故障及6RA70故障一定要监控,而且要立即封锁使能(Enable); 2、外部轻故障可以和用户商定过几分钟转为重故障,也可以不进线处理直接送至6RA70,经过DP网送至PLC,由操作工自己去判断停机与否; 3、有故障一定要先封锁使能,然后才能断开进线开关; 4、系统不允许带故障合进线开关; 5、当外控时,一定要将使能送至6RA70的38#端子,以便与DP网上的使能相与才能转电机;

20A可控硅直流电机调速器讲解

※R系列直流调速器使用手册※ STAR22020 STAR11020 济南三腾电子科技有限公司

在使用本产品前请您详细阅读本使用说明书。 由于不遵守该使用及安装说明书中规定的注意事项,所引起的任何故障和损失均不在厂家的保修范围内,厂家将不承担任何相关责任。请妥善保管好文件,如有相关疑问,请与厂家联系。 安全注意事项 ·请专业技术人员进行安装、连接、调试该设备。 ·在带电情况下不能安装、移除或更换设备线路。 ·请务必在本产品的电源输入端与电源(电瓶)之间加装必要的保护装置,以免造成危险事故或致命伤害;需要加装:过流保护器、保险、紧急开关。 ·请做好本产品与大地、设备之间的隔离及绝缘保护。 ·如确实需要带电调试本产品,请选用绝缘良好的非金属专用螺丝刀或专用调试工具。 ·本产品需要安装在通风条件良好的环境中。 ·本产品不能直接应用在高湿、粉尘、腐蚀性气体、强烈震动的非正常环境下。 该标志表示一种重要提示或是警告。

目录 概述 --------------------------------------------------------------3页产品特点-------------------------------------------------------------3页电气参数-------------------------------------------------------------3页外型尺寸-------------------------------------------------------------4页接线要求-------------------------------------------------------------5页接线端子功能示意----------------------------------------------------6页电位器调整说明-------------------------------------------------------6页软启动ACCEL----------------------------------------------------------6页软停止DECEL----------------------------------------------------------6页电流限制TORQUE-------------------------------------------------------7页力矩补偿IR COM-------------------------------------------------------7页力矩补偿IR COMP的设置与调整方法--------------------------------------7页使能开关(INHIBIT)的连接---------------------------------------------7页速度模式和涨力模式选择------------------------------------------------8页控制信号输入方式的选择------------------------------------------------9页快速制动(能耗制动)的连接方式----------------------------------------10页正转/反转的换向控制方式-----------------------------------------------10页指示灯状态说明--------------------------------------------------------11页调速器与反馈板的接线方式----------------------------------------------11页常见故障解答----------------------------------------------------------12页

西门子直流控制器6RA70简介

西门子直流控制器6RA70简介 目前,随着交流调速技术的发展,交流传动得到了迅猛的发展,但直流传动调速在诸多场合仍有着大量的应用。随着计算机技术的发展,过去的模拟控制系统正在被数字控制系统所代替。在带有微机的通用全数字直流调速装置中,在不改变硬件或改动很少的情况下,依靠软件支持,就可以方便地实现各种调节和控制功能,因而,通用全数字直流调速装置的可靠性和应用的灵活性明显优于模拟控制系统。目前,以德国SIEMENS 公司的6RA70系列通用全数字直流调速装置在中国的应用最为广泛。 1.1结构及工作方式 SIMOREG 6RA70系列整流装置为三相交流电源直接供电的全数字控制装置,其结构紧凑,用于可调速直流电机电枢和励磁供电,装置额定电枢电流范围为15至2000A,额定励磁3到85A,并可通过并联SIMOREG整流装置进行扩展,并联后输出额定电枢电流可达到12000A。6RA70直流控制器已经广泛应用与各行业,控制器器的核心器件上已经在国内外得到可靠实例的证实,可靠性、安全方面较有保障。 根据不同的应用场合,可选择单象限或四象限工作的装置,装置本身带有参数设定单元,不需要其它的任何阻力。设备即可完成参数的设定。所有的控制、调节、监视及附加功能都由微处理器来实现。可选择给定值和反馈值为数字量或模拟量。 SIMOREG 6RA70系列整流装置特点为体积小,结构紧凑。装置的门内装有一个电子箱,箱内装入调节板,电子箱内可装用于技术扩展和串行接口的附加板。各个单元很容易拆装使装置维修服务变得简单、易行。外部信号连接的开关量输入/输出,模拟量输入、输出,脉冲发生器等,通过插接端子排实现。装置软件存放闪(Flash)-EPPOM,使用基本装置的串行接口通过写入可以方便地更换。 1.2功率部分:电枢和励磁回路 电枢回路为三相桥式电路: (1)单象限工作装置的功率部分电路为三相全控桥B6C。 (2)四象限工作装置的功率部分为两个三相全控桥(B6)A(B6)C。 励磁回路采用单相半控桥B2HZ,额定电流15-800A的装置(交流输入电压400V时,电流至 1200A),电枢和励磁回路的功率部分为电绝缘晶闸管模块,所以其散热器不带电。更大电流或输入电压高的装置,电枢回路的功率部分为平板式晶闸管。这时散热器是带电的。功率部分的所有接线端子都在前面。 1.3通讯口 下列串行接口可供使用: (1)U X300插头是一个串行接口,此接口按RS232或RS485标准执行USS协议,可用于连接选件操作面板0P1S或通过PC调试SMOVIS。 (2)主电子极端子上的串行接口,RS485双芯线或4芯线用于USS通信协议或装置对装置连接。 (3)在端于扩充板选件端子上的串行接口,RS485双芯线或4芯线,用于USS通信协议或装置对装置连接。 (4)通过附加卡(选件)的PROFIBUS-DP。 (5)经附加卡(选件)SIMOLINK与光纤电缆连接。

晶闸管开环直流调速系统的仿真

晶闸管开环直流调速系统的仿真 一、工作原理 晶闸管开环直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发电机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路课直接由给定电压Ug座位触发器的移相控制电压Uct,改变Ug的大小即可改变控制角α,从而获得可调的直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管开环直流调速实验控制原理图 二.设计步骤 1主电路的建模和参数设置 开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机灯部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以讲触发器轨道主电路进行建模。 ①三相对称交流电压源的建模与参数设置。首先从电源模块中选 取一个交流电压源模块,即,再用复制的方法得到三相电源的另外两个电压源模块,并用模块标题名修改方法将模块标签分别改为“A相”、“B相”,“C 相”,然后从连接器模块中选取,按图1主电路图进行连接。 为了得到三相对称交流电压源,其参数设置方法及参数设置如下。 双击A相交流电压源图标,打开电压源参数设置对话框,在A相交流电源参数设置中,幅值取220V,初相位设置成0°,频率为50Hz,其它为默认值,如图2所示,B、C相交流电源设置方法与A相基本相同,除了初相位设置成互差120°外,其它参数与A相相同。由此可以得到三相对称交流电源。

②晶闸管整流桥的建模和参数设置。首先从电力电子模块组中选取 中的,并将模块标签改成“晶闸管整流桥”,然后双击模块图标,打开整流桥参数设置对话框,参数设置如图3所示。当采用三相整流桥时,桥臂数为3,A、B、C三相交流电源接到整流桥的输入端,电力电子选择晶闸管。参数设置原则如下,如果是针对某个具体的交流装置进行参数设置,对话框中的Rs、Cs、R ON、Vf应取该装置中晶闸管元件的实际值,若果是一般情况,不针对某个具体的变流装置,这些参数可先取默认值进行仿真。若仿真结果理想,就认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。这一参数设置原则对其他环节的参数设置也是实用的。 图2 A相电源参数设置图3 整流桥参数设置 ③平波电抗器的建模和参数设置。首先从元件模块组中选取 ,并将标签改为“平波电抗器”,然后打开平波电抗器参数设置对话框,参数设置如图4所示,平波电抗器的电感值是通过仿真实验比较后得到的优化参数。 ④直流电动机的建模和参数设置。首先从电动系统模块中选取 ,并将模块标签改为“直流电动机”。直流电动机的励磁绕组“F+ —F-”接直流恒定励磁电源,励磁电源可从电源模块组中选取直流电压源 模块,即,并将电压参数设置为220V,电枢绕组“A+ —A-”经平波电抗器接晶闸管整流桥的输出,电动机经TL端口接恒转矩负载,直流电动机的输出参数有转速n、电枢电流Ia、励磁电流If、电磁转矩Te,通过“示波器”模块观察仿真输出

直流调速系统设计

直流调速系统设计 电气工程学院)摘要: 转速、电流双闭环控制直流调速系统是性能很好、应用最广的直流调速系统。具有调速范围广、精度高、动态性能好和易于控制等优点,所以在电气传动系统中得到了广泛的应用。常用的电机调速系统有转速闭环控制系统和电流闭环控制系统,二者都可以在一定程度上克服开环系统造成的电动机静差率,但是不够理想。实际设计中常采用转速、电流双闭环控制系统,一般使电流环(ACR)作为控制系统的内环,转速环(ASR)作为控制系统的外环,以此来提高系统的动态和静态性能。本文是按照工程设计的方法来设计转速和电流调节器的。使电动机满足所要求的静态和动态性能指标。电流环应以跟随性能为主,即应选用典型Ⅰ型系统,而转速环以抗扰性能为主,即应选用典型Ⅱ型系统为主。关键词:直流双闭环调速系统电流调节器转速调节器1 设计任务及要求1、1设计任务设计V-M双闭环直流可逆调速系统1、1、1技术数据:?直流电动机:额定电枢电压=400V,额定功率1、 9kW,额定电枢电流=6、9A,额定转速=855r/min,电动机电动势系数Ce=0、1925Vmin/r,允许过载倍数λ=1、5;?晶闸管装置放大系数:Ks=40;整流装置平均滞后时间常数=0、00167s,? 电枢回路总电阻:R=

11、67Ω;?电枢回路电感110mH,电力拖动系统机电时间常数Tm=0、075s;?电枢电流反馈系数:β=0、121V/A (≈10V/1、5),电流滤波时间常数=0、002s;?转速反馈系数α=0、01 V、min/r(≈10V/);转速滤波时间常数=0、01s;1、2设计要求:(1) 根据试凑法设计电流调节器和转速调节器参数进行仿真,电流超调量≤5%;实现转速无静差,空载起动到额定转速时的转速超调量≤5%;(2) 试利用Matlab仿真软件中的Simulink或Simulink中的Power system模块进行仿真,在Matlab仿真软件中构建仿真模型;(3) 用Plot函数绘制理想空载启动到设定转速500r/min下电机启动过程,转速达到设定值后经过20s给定反向信号=-10V时正反转启动过程中转速、电枢电流波形。(4) 对仿真波形及结果进行分析。2 V-M双闭环调速系统的设计改变电枢两端的电压能使电动机改变转向。尽管电枢反接需要较大容量的晶闸管装置,但是它反向过程快,由于晶闸管的单向导电性,需要可逆运行时经常采用两组晶闸管可控整流装置反并联的可逆线路,电动机正转时,由正组晶闸管装置VF供电;反转时,由反组晶闸管装置VR供电。如图1所示两组晶闸管分别由两套触发装置控制,可以做到互不干扰,都能灵活地控制电动机的可逆运行,所以本设计采用两组晶闸管反并联的方式。并且采用三相

西门子直流调速装置调试方法

西门子直流调速装置调试方法 ?控制系统组成 主电路由交流阻熔吸收、传动装置、平波电抗器(利旧)、直流快开组成。 交流进线侧装有阻熔吸收电路,用于吸收变压器合闸对传动装置的冲击。 直流侧安装直流快开DS14,用于完成直流侧的保护。 其数字控制系统为SIEMENS公司的6RA70系列数字控制系统,功率控制系统采用晶闸管元件组成三相全控桥反并联整流系统。采用北京景新制造的西门子控制的混装模块。 装置以成套柜的形式供货,每套装置中安装: λ S7-200PLC:用于完成开机逻辑。 λ用于Profibus-DP通讯的CBP2通讯板;下传数据:控制字和速度给定值;上传数据:状态字、故障字和各种运行数据。 λ三相励磁主电路包括进线断路器、接触器、熔断器、励磁变压器、直流全数字装置。 λ测量和显示仪表包括:电枢电流、电枢电压、励磁电流、励磁电压;控制电路中包括:内、外控功能(内控完成调试与检修,外控完成基础自动化控制),配置温度巡检仪用于监测电机的测温元件,配置给电机风机电源和控制,配置给电机防凝露加热器的电源和控制。 λ传动装置带有标准的脉冲编码器接口。 λ传动装置带有急停接口。急停功能分为本地急停和系统急停。本地急停用于调试和巡检;系统急停一般来自现场,由基础自动化供应商确定。急停信号通过硬线连接。 λ传动装置带有基本操作单元和调试工具的接口,它可以完成运行要求的所有参数的设定、调整及实测值的显示。参数设定也可以由计算机通过数据通讯来完成。 装置的高效能处理器承担电枢回路的调节功能、励磁回路的调节功能、参数优化、监控与诊断、保护及通讯功能。装置具有优良的动、静态性能,调试简单,维护容易。每台直流装置均开放S00代码,用于完成速度同步和负荷平衡。 ?西门子全数字直流装置调试步骤 1.一般控制参数的设定 按照电路图,将模块外部急停和抱闸等外部控制先满足条件,给模块上控制电,如无问题就恢复工厂值,按照西门子直流调速装置说明书的启动步骤进行系统参数设定(此时电机应为空载): λ恢复工厂值 设置脉冲编码器λ 选择控制方式λ 输入输出设定λ 给定选择λ λ保护参数设置 2.优化运行 验证码盘的正确性 进行优化设置:P83=2 将速度反馈改为编码器,改完后让电机运行一下确保没有其他故障。 进行电流环自优化的验证

晶闸管直流调速系统参数和环节特性的测定

晶闸管直流调速系统参数和环节特性的测定一、实验目的 (1)熟悉晶闸管直流调速系统的组成及其基本结构。 (2)掌握晶闸管直流调速系统参数及反馈环节测定方法。 二、实验原理 晶闸管直流调速系统由整流变压器、晶闸管整流调速装置、平波电抗器、电动机-发动机组等组成。 在本实验中,整流装置的主电路为三相桥式电路,控制电路可直接由给定电压U g作为触发器的移相控制电压U ct,改变U g的大小即可改变控制角α,从而获得可调直流电压,以满足实验要求。实验系统的组成原理如图1所示。 图1 晶闸管直流调速试验系统原理图

三、实验内容 (1) 测定晶闸管直流调速系统主电路总电阻值R 。 (2) 测定晶闸管直流调速系统主电路电感值L 。 (3) 测定直流电动机-直流发电机-测速发电机组的飞轮惯量GD 2。 (4) 测定晶闸管直流调速系统主电路电磁时间常数T d 。 (5) 测定直流电动机电势常数C e 和转矩常数C M 。 (6) 测定晶闸管直流调速系统机电时间常数T M 。 (7) 测定晶闸管触发及整流装置特性()ct d U f U =。 (8) 测定测速发电机特性()n f U TG =。 四、实验仿真 晶体管直流调速实验系统原理图如图1所示。该系统由给定信号、同步脉冲触发器、晶闸管整流桥、平波电抗器、直流电动机等部分组成。图2是采用面向电气原理图方法构成的晶闸管直流调速系统的仿真模型。下面介绍各部分的建模与参数设置过程。 4.1 系统的建模和模型参数设置 系统的建模包括主电路的建模与控制电路的建模两部分。 (1)主电路的建模与参数设置 由图2可见,开环直流调速系统的主电路由三相对称交流电压源、晶闸管整流桥、平波电抗器、直流电动机等部分组成。由于同步脉冲触发器与晶闸管整流桥是不可分割的两个环节,通常作为一个组合体来讨论,所以将触发器归到主电路进行建模。 ①三相对称交流电压源的建模和参数设置。首先从电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并用模块标题名称修改方法将模块标签分别改为“A 相”、“B 相”、“C 相”,然后从元件模块

西门子直流调速装置的设计特点

西门子直流调速装置的设计特点 1 西门子应用较广的直流调速装置是6RA70系列与6RA24系列。 2 流调装置6RA70与6RA24的区别 (1)6RA24单机额定电流最大1200安培,6RA70单机额定电流最大2000安培。 (2)6RA24单机励磁电流最大30安培,6RA70单机励磁电流最大40安培, (3)6RA24基本装置具有8个开关量输入口,8个开关量输出口,4个模拟量入口,4个 模拟量输出口。 6RA70基本装置具有4个开关量输入口,4个开关量输出口,2个模拟量输入口,2 个模拟量输出口。但6RA70装置可选择CUD2、EB1、EB2端子扩展板。 (4)一般来讲,6RA70基本装置即不加CUD2,S00等件)比6RA24基本装置价低。 (5)6RA70装置的通讯板、工业板及端子扩展板与6SE70系列可以通用。 (6)6RA70基本装置可选用OP1S舒适型操作面板,可存贮多套参数。 3 西门子6RA70系列与6RA24系列直流调速装置是全数字直流调速产品

4 应用-6RA70 SIMOREG DC MASTER系列整流器为全数字紧凑型整流器,输入为三相电源,可为变速直流驱动提供电枢和励磁供电,额定电枢电流从15A至2000A。紧凑型整流器可以并联连接,提供高至10000A的电流,励磁电路可以提供最大40A的电流(此电流取决于电枢额定电流)。 5 设计 我们选用6RA7081型装置整流器以其紧凑和节省空间的结构为特色,由于独立的部件容易拿在手中,其紧凑式设计使它们特别容易保养与维护,电子板箱包含基本电子电路和任何附加板。 所有SIMOREG DC MASTER装置均配备一个安装在整流器门上的简易操作面板PMU,面板由一个5位,7段显示,作为状态显示LED 和三个参数化键组成。PMU也具有根据RS232或RS485标准同USS 接口的连接器X300。 操作面板提供了为了启动整流器所需进行的调整和设定及测量值显示的所有手段。 OP1S整流器选件操作面板既可以安装在整流器上,又可外部安装,例如在柜门上。因此,它可以通过一根5米长电缆连接。如果有一个独立的5V电源可以使用,则电缆可长至200米。OP1S通过X300连接到SIMOREG。PO1S可以作为一个经济的测量仪器安装在控制柜,用来显示一定数量的物理测量值。 OP1S提供一个4×16字符的LCD以简单文字显示参数名称,可以选择德语,英语,法语,西班牙语和意大利语作为显示语种。为了容易

西门子6RA70直流调速器维修常见故障

作为一种电机调速装置,西门子直流调速器一般为模块式直流电机调速器,集电源、控制、驱动电路于一体,采用立体结构布局,控制电路采用微功耗元件,具有体积小、重量轻等特点,可单独使用也可直接安装在直流电机上构成一体化直流调速电机。 尤其是西门子6RA70直流调速器,更是备受人们的欢迎。但是,有好也有坏,当设备出现故障时,就需要引起我们的注意了,接下来,就给大家具体地介绍一下故障信息。 显示的故障信息: 1、在PMUH : F(故障)加三个数字。红色LED(故障)亮。 2、在OP1SH : 工作显示在下一行。红色LED(故障)亮。 3、他总是显示一个现实的故障信息,而其他同时存在的故障被覆盖。 4、多个故障信息仅在一定的工作状态下被激活。 当出现一个故障信息,系统做出如下响应: 1、电枢回路电流减小,触发脉冲被封锁肯SIMOREG进入工作状态011.0(故障) 2、在操作面板(PMU,OP1S)上显示故障信息

3、B0106(=状态字1,位3)置位且抹去B0107(也见特殊故障报警位,如低电压,过热,外部故障等) 4、修改下列参数:故障诊断存贮器(显示值是十进制,为了位串行的计算,数值必须从十进制转换成二进制计数法,例如能够确定在F018情况下的相关端子);故障时间;故障存贮器;故障值;故障数量。 5、对每个故障在参数r951中显示其正文。这些正文也能显示在OP1S上。如果在电子板电源断开前故障没有应答,则故障信息F040在电源恢复后又再显示。 以上就是关于直流调速器的一些故障信息介绍,大家应该会有一个粗浅的了解,有兴趣的可以自己深入探索,或者寻找相关的公司进行咨询。 杭州联凯机电工程有限公司成立于2011年,是一家专业从事工业自动化设备销售、维护及电气系统维修改造的高科技公司。主要经营西门子(SIEMENS)ABB、施耐德(Schneider)等品牌的变频器、直流调速器、软启动器、PLC、触摸屏、数控系统、单片机、电路板等各种进口工业仪器设备,服务中心配备了百万备品备件以及完备的诊断检测仪器和软件诊断技术,拥有一支技术精湛、经验丰富的技术团队。

晶闸管可控整流技术直流电机调速系统设计说明

目录 1 绪论 (1) 1.1 课题背景 (1) 1.2 直流电动机调压调速可控整流电源设计简介 (1) 1.3 课题设计要求 (1) 1.4 课题主要容 (2) 2 主电路设计 (3) 2.1 总体设计思路 (3) 2.2 系统结构框图 (3) 2.3 系统工作原理 (4) 2.4 对触发脉冲的要求 (4) 3 主电路元件选择 (5) 3.1 晶闸管的选型 (6) 4 整流变压器额定参数计算 (7) 4.1 二次相电压U2 (7) 4.2 一次与二次额定电流及容量计算 (9) 5 触发电路的设计 (10) 6 保护电路的设计 (13) 6.1 过电压的产生及过电压保护 (13) 6.2 过电流保护 (14) 7 缓冲电路的设计 (15) 8 总结 (18)

1 绪论 1.1 课题背景 当今,自动化控制系统已在各行各业得到广泛的应用和发展,而自动调速控制系统的应用在现代化生产中起着尤为重要的作用,直流调速系统是 自动控制系统的主要形式。 由可控硅整流装置供给可调电压的直流调速系统(简称KZ—D系统)和旋转变流机组及其它静止变流装置相比,不仅在经济性和可靠性上有很大 提高,而且在技术性能上也显示出较大的优越性。 可控硅虽然有许多优点,但是它承受过电压和过电流的能力较差,很短时间的过电压和过电流就会把器件损坏。为了使器件能够可靠地长期运 行,必须针对过电压和过电流发生的原因采用恰当的保护措施。为此,在 变压器二次侧并联电阻和电容构成交流侧过电压保护;在直流负载侧并联 电阻和电容构成直流侧过电压保护;在可控硅两端并联电阻和电容构成可 控硅关断过电压保护;并把快速熔断器直接与可控硅串联,对可控硅起过 流保护作用。 随着电力电子器件的大力发展,该方面的用途越来越广泛。由于电力电子装置的电能变换效率高,完成相同的工作任务可以比传统方法节约电 能10%~40%,因此它是一项节能技术,整流技术就是其中很重要的一个环 节。 1.2 直流电动机调压调速可控整流电源设计简介 该系统以可控硅三相桥式全控整流电路构成系统的主电路,采用同步信号为锯齿波的触发电路,本触发电路分成三个基本环节:同步电压形成、 移相控制、脉冲形成和输出。此外,还有双窄脉冲形成环节。同时考虑了 保护电路和缓冲电路,通过参数计算对晶闸管进行了选型。 1.3 课题设计要求 1、输入交流电源: 2、三相140V f=50Hz 3、直流输出电压:50~150V 5、直流输出电流额定值50A 6、直流输出电流连续的最小值为5A 7.给出整体设计框图,画出系统的完整的原理图(用protel99软件绘

可控硅直流调速系统

可控硅直流调速系统 (电气综合课程设计) 目录 前言-----------------------------------------------------3第1章课程的设计和要求 1.1主要性能指标-----------------------------------------4 1.2设计要求----------------------------------------------------4 1.3给定条件----------------------------------------------------4 第2章系统的原理与方案选择 2.1直流电动机调速的原理依据------------------------------4 2.2直流调速系统方案的选择---------------------------------5 2.3控制系统的选择--------------------------------------------6 第3章调速系统的设计 3.1系统的组成-------------------------------------------------6 3.2系统的动态数学模型--------------------------------------8 第4章双闭环直流调速系统的设计(工程设计法) 4.1主要装置的选用和参数的计算----------------------------8 4.2电流调节器的设计-----------------------------------------10 4.3转速调节器的设计-----------------------------------------12 4.5整机电路图-------------------------------------------------15

直流调速器简单参数设置

直流调速器简单参数设 置 Modified by JACK on the afternoon of December 26, 2020

装置调试大纲 6RA70 直流装置简要调试步骤 一. 送电前检查装置和电机 1、辅助电源系统送电检查 2、接地线和辅助电源零线检查 3、电机绝缘检查和编码器安装检查 4、电机电枢绕组和励磁绕组对地绝缘和电阻检查 5、检查装置风机和柜顶风机电源和转向 6、检查电机风机电源和转向 7、装置电源和控制电源检查 8、编码器电源和信号线检查 二. 基本参数设定(计算机或PMU 单元完成) 1、系统回复出厂设置: 合上装置控制电源和操作控制电源,用PMU 执行功能P051= 21 2、负载周期参数设定: P067=1-5 选择负载过负荷周期,见手册,通常默认也可 3、进线电压设定 = 630V 主回路进线交流电压,作为判断电压故障的基准值 = 380V,励磁进线电压 作为欠压或过压的判断门槛电压,相关参数见P351,P352,P361-P364.(根据实际情况)。 4、电机基本参数参数设定: P100(F)= 额定电动机电枢电流(A) P101(F)=额定电动机电枢电压(V) P102(F)= 额定电动机励磁电流(A) P103(F)=最小电机励磁电流(A),必须小于P102 的50%.在弱磁调速场合,一 般设定到防止失磁的数值(根据实际情况) 5、实际速度检测参数设定 P083(F)=实际速度反馈选择当 P083=2 (脉冲编码器) 时,100%速度为P143 参数值 P083=3 (EMF反馈) 时,100%速度为P115 参数值所对应的速度 P140=0 或1,脉冲编码器类型选择。电枢反馈P083=3 时,令其为零;编 码器反馈时P083=2,令其为“1”。 P141=1024 ,脉冲编码器每转脉冲数 P142=1,编码器15V 电源供电 P143(F)= 编码器反馈时最高的运行速度(转/分钟) P148(F)=1,使能编码器监视有效(F048 故障有效) 6 、励磁功能参数设定 P081=0 恒磁运行方式 (弱磁优化前设置值) P081=1 弱磁运行方式(进行弱磁优化时设置,优化后设置为1)

西门子6RA70直流调速步骤

拆箱6RA70参数设置与调试 6RA70装置的调试步骤大致分为以下几个步骤: 1、外部逻辑组态 2、6RA70参数设置 3、电枢回路的升压试验 4、励磁回路试验 5、电机空负荷单转 6、电机热负荷调试 下面就上述几个方面进行分析,并按照调试顺序逐一细解: 一、外部逻辑组态 在这一步工作之前,首先要确认: 1.1 外部进线端子没有短路; 1.2 所有柜内断路器上下进线没有短路,用万用表的200欧姆电阻档测量,无相间短路也无对地短路,确认稳压电源24V无短路; 1.3 在未能确认现场接线正确与否的情况下,先将所有往现场送电的控制操作电源全部断开(电机风机及磁场、电枢线要先确认,可不断),确保柜内电源不送至柜外,尤其是急停,外部油、风温的信号。例如,600,U34,P15,M15都要断开。 1.4 在确保上述无误的情况下,将外部控制电源,操作电源,励磁电源依照先后顺序送电至端子,在端子上测量电压等级,正确的情况下再进入下一步。 1.5 先将6RA70控制电源合上(Q31),注意观察6RA70箱内部

有无冒烟,打火及异常糊味,同时将6RA70的P参数找到P051,调整P051=21,按P键使6RA70的参数全部恢复至出厂设置。这一步在任何场合或传新的参数时都必须执行,以防止个别参数被修改,下传的参数不能覆盖原有参数。 1.6 将Q32脉冲功放电源(DC24V)合上,将Q33(DC24V信号电源)合上,用万用表测量稳压电源的DC24V是否正确,注意:万用表笔测量的量程及表笔插孔位置,以及+、-表笔的顺序。在这一步中,要注意观察S7-200的电源指示灯是否已经点亮,而且是变绿色,当变为黄色时,将S7-200的控制盒(小盖板)打开,将开关拨至RUN状态,S7-200的运行指示灯就变为绿色了。 1.7 将Q35合上,柜内风机运行,用很薄的软纸试一下风机的运行方向,柜内风机应该是往柜内排风,因此将纸放置于散热风孔处应该是往里吸的。如果风向反了,将风机开关(Q35)的出线电源A、B相(U35、V35)调换位置,再次试验风向。 1.8 将Q36电机风机开关合上,同时将Q34合上,通过门板上的风机启停开关将电机风机启动,并注意门板指示灯点亮。第一次运行时接触器吸合可能有杂音,可以将Q36断开,用手或工具将接触器合几次,确保接点无杂物及尘土。同时根据电机风机功率的大小,将热继电器的调整值设为电机风机的额定电流值。 上述步骤1.7,1.8可以在S7-200程序完成后再进行。 1.9 将柜内开关Q31,Q32,Q35、Q36断开,只保留Q33(DC24V 信号电源),Q34(PLC电源),将S7-200编程电缆接好,选择好接

相关文档
相关文档 最新文档