文档库 最新最全的文档下载
当前位置:文档库 › 代谢相关疾病基因功能研究介绍

代谢相关疾病基因功能研究介绍

代谢相关疾病基因功能研究介绍
代谢相关疾病基因功能研究介绍

代谢相关疾病基因功能研究介绍

代谢是生物体内所发生的用于维持生命的一系列有序的化学反应的总称。常见的代谢性疾病有糖尿病、肥胖症、骨质疏松、痛风、脂质代谢紊乱以及甲状腺、垂体、肾上腺、性腺、甲状旁腺等疾病。

一、疾病模型

(一)糖尿病模型。糖尿病是一组以高血糖为特征的代谢性疾病。高血糖则是由于胰岛素

分泌缺陷或其生物作用受损,或两者兼有引起。在对糖尿病的研究中,常见的模型

包括:

1.一型糖尿病模型

A药剂诱导型:①STZ (streptozocin), 链脲菌;②Alloxan,四氧嘧啶

B自发型:①NOD (non-obese diabetes)小鼠;②AKITA小鼠

2.二型糖尿病模型

A肥胖二型糖尿病模型

①db/db小鼠

②ob/ob 小鼠

③Zucker fatty大鼠

④ZDF (Zucker diabetic fatty) 大鼠

⑤果糖(fructose)长期饮食的二型糖尿病动物模型

⑥果糖短期饮食+低剂量STZ一次投药

B瘦型二型糖尿病模型

GK(Goto-Kakizaki )大鼠

(二)肥胖症模型。肥胖症是一组常见的,古老的代谢症群。当人体进食热量多于消耗热

量时,多余热量以脂肪形式储存于体内,其量超过正常生理需要量,且达一定值时

遂演变为肥胖症。在对肥胖的研究中,常见的模型有:

1.谷氨酸钠(MSG)诱导的肥胖动物模型

新生小鼠或大鼠皮下注射MSG可诱导其产生肥胖。脂肪堆积是MSG肥胖动物的主要表现,其体脂在2周龄时即显著增加,一直增加到4月龄时。在30~90d时即已形成脂肪肝。

2.金硫葡萄糖(GTG)致肥胖模型

给成年小鼠腹腔注射GTG可诱导其产生肥胖, GTG所诱导的肥胖,被人们普遍认为系下

丘脑“饱中枢”受损所致,因用GTG后,可观察到小鼠的VMH的苍白球部的细胞、神经纤维网和血管遭受破坏。用电烧灼以破坏该部位同样可引起多食和肥胖。

3.食物诱导的肥胖动物模型

高脂食物、高糖食物均可引起肥胖,另外可口的食物如糖果、可可、乳酪、意大利腊肠及加糖的浓牛奶等均可诱导肥胖;除此之外,过度摄入食物亦可导致肥胖。

(三)高血脂模型

1、LDLR-/-小鼠模型:低密度脂蛋白受体缺陷型小鼠模型小鼠有以下特点:

(1) 胰岛素抵抗容易被诱导,有利于药物或保健食品对胰岛素抵抗作用的筛选

和效果观察;

(2) 在高脂模型饲料喂养后很快发生血浆胰岛素水平升高、血糖升高(糖尿病),

因此,LDLR-/-小鼠是胰岛素抵抗向II型糖尿病发展的理想模型;

(3) LDLR-/-小鼠的血脂和胆固醇分别非常接近人类(见“不同动物之间以及与

人类血脂和脂蛋白代谢与转运的比较”),在该小鼠中研究胰岛素抵抗与血脂改变的

关系,比在大鼠和普通小鼠中研究有独特的优势。

(4) 高脂模型饲料喂养后LDLR-/-小鼠容易发生肥胖、非酒精性脂肪肝和动脉

粥样硬化,在该小鼠中研究胰岛素抵抗有利于分析胰岛素抵抗与这些疾病的关系。

该模型小鼠在喂养高脂模型饲料后的几周内发生胰岛素抵抗、高胰岛素血症,并且

很快发生高血糖。根据研究报道,胰岛素抵抗发生后持久维持。但相继发生脂肪肝

和动脉粥样硬化,因此,应当根据你的研究具体情况确定最合适的造模时间。

2、ApoE-/-小鼠/大鼠模型:高脂高胆固醇模型饲料进行的ApoE敲除小鼠动脉粥样

硬化造模中,脂肪和胆固醇都在对动脉粥样硬化形成和发展中起作用。其中,脂肪

引起代谢综合症表现(胰岛素抵抗、肥胖,等等),从而推动动脉粥样硬化的形成,

而胆固醇本身也在起作用,胆固醇的作用取决于模型饲料中胆固醇的含量。

3、两者区别:APOE-/-为自发的动脉粥样硬化模型,与人的动脉粥样硬化进程更为

相似。而LDLR-/-在正常饮食情况,不会出现动脉粥样硬化斑块,需要高胆固醇饲

料诱导。

(四)除此之外,由于肝脏是身体内以代谢功能为主的器官,并在身体里面有着去毒素,

储存糖原(肝糖)等功能。基于肝脏常见的模型还包括:

1.肝损伤动物模型

①化学性肝损伤模型。

②免疫性肝损伤模型。

③酒精性肝损伤模型。

2.病毒性肝炎模型

①甲型肝炎病毒(HAV)动物模型采用的实验动物有黑猩猩、绒毛猴豚鼠、豚鼠。

②乙型肝炎病毒(HBV)动物模型采用的实验动物有美洲旱獭、黄鼠属啮齿动物等。

③丙型肝炎病毒(HCV)所采用的动物有黑猩猩、树鼠句、转基因小鼠。

④丁型肝炎病毒(HDV)所采用的动物有黑猩猩、美洲旱獭、树鼠句。

⑤戊型肝炎病毒(HEV)所采用的动物有非人灵长类动物和猪。

3.肝纤维化动物模型

①中毒性肝纤维化动物模型。

②异种动物血清诱导肝纤维化动物模型。

③乙醇诱导肝纤维化动物模型。

④二甲基亚硝氨诱导肝纤维化大鼠模型。

4.肝移植动物模型

大鼠肝脏移植有原位肝脏移植和异位肝脏移植。大鼠原位肝脏移植所采用的方法有改良Sun法, 单套管法, 双套管法, 三套管法和吻合肝动脉的大鼠原位肝脏移植。小鼠肝脏移植主要是小鼠原位肝脏移植。

二、研究的主要脏器和细胞

肝脏是代谢研究中最重要的脏器。因此,代谢研究的主要对象包括肝脏、原代肝细胞、来源于肝脏的细胞系(HepG2、Huh7等)等。除此之外,跟代谢密切相关的脏器或者组织还包括胰腺、肌肉、脂肪、小肠等;有时候巨噬细胞、内皮细胞等也属于代谢的研究范围。。

三、病毒选择

目前主流的三大病毒载体:慢病毒、腺病毒、AA V(腺相关病毒)。

慢病毒腺病毒腺相关病毒

特点与应用感染表达范围广泛,适

合细胞系建立稳转系,

比如HepG2、Huh7、

3T3-L1等感染能力强,特别适合

于原代细胞基因转导,

如肝原代细胞等,效果

极其出色某些特殊情

况下可用来感染肝脏

安全性及高;免疫原性

低,长效表达(稳定表

达3-6个月);病毒颗

粒小,感染均一性高;

尾静脉注射特别适合

肝脏基因转导;脂肪和

肌肉可以选择局部注

射,或者结合组织特异

性启动子选择尾静脉

注射

应用局限对肝脏、肌肉、脂肪组

织的感染能力有限,一

般不推荐使用队医在体感染来说,免

疫原性高,可能引发强

烈的免疫反应;

病毒颗粒直径大,容易

被清除,表达周期短,

大约2周时间;较少被

应用于除肝脏之外的

其他组织的基因转导

表达到高峰所需的时

间长、载体容量小。对

于某些非常大的基因

(如CDS大于5kb)

通常只能求助于腺病

毒载体

表 1 三种病毒的应用比较。如果是在体研究代谢,腺相关病毒(AAV)有着得天独厚的优势:AAV颗粒直径小,滴度高,在胰腺、肠道、肌肉等组织中扩散均匀,极低的免疫原性,安全性好,可稳定表达6个月以上,AAV-8感染胰腺效果较好,AAV-1/2/5感染肠道效果较好,AAV-1/9可用于对肌肉的感染,以上都体现了AAV在糖尿病研究中的优势,其作为最有前途的基因治疗利器,也是高分文章必备!!而腺病毒在动物上表达效率低,有着高免疫原性,容易诱发免疫反应。慢病毒滴度低,效率低,在体水平表达较差。

四、注射方式

1.肌肉注射(图1):一般选取鼠前后肢部位注射,注射时针头要垂直快速刺入肌肉,如无回

血现象即可注射。

图1. 小鼠腓肠肌原位注射。左图是小动物活体成像,右图是冰冻切片荧光图。

2.尾静脉注射(图2):即从动物尾部的静脉注射病毒,依靠血液循环到达目的组织器官,操作简方便,是目前使用最广的注射方式。

图2. 小鼠尾静脉注射示意图和效果实例。

3.胰腺导管注射(图3):可以实现对小鼠胰腺的局部感染,过程中需要对小鼠进行固定,手术,步骤繁多,操作起来略显麻烦。

图3. 胰腺导管注射图,采用AAV-8,胰腺导管注射150 μl。

4.肠系膜静脉注射:门静脉注射需要开腹寻找门静脉,腹腔会蒸发过多的水分,给实验动物造成额外的损伤,而肠系膜静脉注射手术切口小,静脉易寻找,手术时间短。

5、腹腔注射:对于胰腺的感染,某些AAV的特殊血清型非常适合腹腔注射。

6.腹内脂肪—腹腔注射(图4):用小鼠做实验时,以左手抓住动物,使腹部向上,右手将注射针头于左(或右)下腹部刺入皮下,使针头向前推0.5~1.0cm,再以45度角穿过腹肌,固定针头,缓缓注入药液,为避免伤及内脏,可使动物处于头低位,使内脏移向上腹。

图4. 腹腔注射图,采用AAV-9,大鼠腹腔注射300 μl,小鼠腹腔注射150~200 μl。

3.皮下脂肪-原位注射(图5):注射时,局部剪毛,可在注射局部用消毒棉球将被毛向四周

分开,用70%酒精棉球消毒后,以左手的拇指、食指和中指将皮肤轻轻捏起,形成一个皱褶,右手将注射器针头刺入皱褶处皮下,深约1.5~2 cm,药液注完后,用酒精棉球按住进针部皮肤,拔出针头,轻轻按压进针部皮肤即成。

图5. 皮下脂肪-原位注射和脂肪组织感染图,采用AAV-9,大鼠和小鼠原位注射10-15 μl /点,约3-5个点。

需要强调的是,对于肝脏AV8是公认的高效特异性靶向肝脏表达的病毒载体血清型。AAV9比AAV8特异性稍差一些,但是感染效果较AAV8强(图2)。AAV9还可以在肌肉、中枢神经、肺等组织中表达。基于此,汉恒生物提供肝脏特异性AAV,通过AAV9,优选肝脏特异性启动子和其他分子元件,实现肝脏的高效基因转导:

①高感染表达率:汉恒强启动子载体AAV9,通过静脉注射,高效感染肝脏,特异性上略差。

②高肝脏特异性AAV:汉恒对一些肝脏启动子不同片段进行不同长短体的严筛,确定TBG特异性启动子,高特异地表达于肝脏(图6)。肝脏中起始TBG正常转录的元件较多,因此在肝脏中相对表达量较其他部位高出很多。

图6. 肝脏特异性AAV(AAV9-pTBG-Luc)体内感染效果图,尾静脉注射100 μl,感染3周,小动物活体成像。数据来源:汉恒实验室自验证。

药物代谢酶基因多态性简介

药物代谢酶基因多态性简介 代谢酶基因多态性是指由于编码代谢酶的DNA序列的单核苷酸多态性等可遗传变异,导致的不同种群之间代谢酶的底物特异性无变化,但是代谢酶的活性存在显著的差别的现象。由此可能造成个体间PK和药物反应的差异,进而造成不必要的治疗失败和毒副作用。单核苷酸多态性(SNPs)存在于Ⅰ相代谢酶、Ⅱ代谢酶和转运体等多个方面,其中临床影响较大的为CYP450酶的基因多态性,因此了解不同人群代谢酶活性的差异有助于理解种群间PK差异和实现个性化治疗。SNPs存在于许多亚型的代谢酶中,Sarah等人的研究结果显示如下图,其中高加索人种中CYP2D6多态性的频率最高,其次为CYP2A6和2B6。但是并非所有的CYPs均参与药物代谢,既存在较高频率的多态性,又与药物代谢相关的为CYP1A2, 2D6, 2C9和2C19,其中CYP2D6与多数药物的代谢相关,下文将以CYP2D6为代表阐述其进化特征、功能多样性和临床影响等相关内容。 CYP2D6是由497个氨基酸组成的多肽,其对生物碱类物质具有较高的亲和力,该酶不可被环境因素调控且不能被诱导。最早CYP2D6的多态性是由

于个体间PK差异引起人们注意的,而后随着生物技术手段的提升才逐渐揭开其遗传基础。CYP2D6位于染色体22q13.1上,其邻近包含两个假基因CYP2D7和CYP2D8。至今发现了几十种CYP2D6的等位基因,大多数编码有缺陷的基因产物,最常见的突变型等位基因分布于不同种群中,如CYP2D6*2, CYP2D6*4, CYP2D6*5, CYP2D6*10和CYP2D6*17等,详细见下图,其可分为彻底失活、活性降低、正常、活性增加和活性本质上的改变五大类,在不同种群中分布特点有明显的差异。亚洲人群最常见的CYP2D6*10,其发生了P34S的有害突变导致了P450折叠功能的丧失而造成不稳定性,且降低了底物的亲和力。非洲人群中常见突变体为CYP2D6*17发生的错义突变导致其活性位点结构发生改变,由此造成底物特异性发生改变,且其活性低于野生型。 如下图演示了CYP2D的演变规律,啮齿动物与人的活性CYP2D基因的数量存在巨大的差异,小鼠有9个不同的活性基因,而人只有1个,且7%的高加索人群缺失该活性基因。由于CYP2D6对于生物碱类的生物毒素具有高亲和力,进化角度可以认为小鼠需要保留较多的活性基因来维持解毒能力,而人类的饮食结构更为严谨进而逐渐不需要更多的活性基因。 不同人群中的CYP2D6的代谢活性可分为超快代谢(ultrarapid metabolizers, UMs)、快代谢(extensive metabolizers, EMs)、中等代谢(intermediate metabolizers, IMs)和慢代谢(poormetabolizers, PMs)四种类型。一般而言,白人种PMs的频率较高约为10%左右,而亚洲人群中

药物代谢酶和药物作用靶点基因检测项目

药物代谢酶和药物作用靶点基因检测项目 药物体代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具,部分上市的新药仅限于特定基因型的适应症患者。美国FDA已批准在140余种药物的药品标签中增加药物基因组信息,涉及的药物基因组生物标记物42个。此外,部分行业指南也将部分非FDA批准的生物标记物及其特性(如MGMT基因甲基化)的检测列入疾病的治疗指南。药物反应相关基因及其表达产物的分子检测是实施个体化药物治疗的前提。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体吸收、分布、代谢和排泄规律,侧重于阐明药物的体过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变

化,侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。目前美国FDA和我国食品药品监督管理局(CFDA)都已批准了一系列的个体化用药基因诊断试剂盒。这些试剂盒基本都是对人DNA样本进行基因检测。而在基因表达的检测方面,由于RNA的稳定性差,样本处置不当可导致目标RNA降解,使得检测结果不准确,影响临床判断。因此,RNA检测试剂的研发相对滞后。1. 药物代谢酶与转运体基因多态性检测 1.1 ALDH2*2多态性检测线粒体乙醛脱氢酶2(ALDH2)同时具有乙醛脱氢酶和酯酶活性,参与乙醇、硝酸甘油等药物的代谢。ALDH2代谢活化硝酸甘油成其活性代谢产物一氧化氮。ALDH2*2(Glu504Lys,rs671)多态导致所编码蛋白质504位谷氨酸被赖氨酸所取代,携带突变等位基因(ALDH2*2)的个体ALDH2酶活性下降,杂合子个体酶活性仅为野生型个体的10%,突变纯合子个体酶活性缺失。因此,携带ALDH2*2等位基因的个体酒精代谢能力下降,少量饮酒即出现脸红、心跳加速等不适;代谢硝酸甘油的能力下降,硝酸甘油抗心肌缺血的效应减弱。亚洲人群中ALDH2*2等位基因的携带率为30~50%。携带ALDH2*2等

基因检测话术

基因检测话术 【1】什么是基因检测? 答:基因检测的全称是“疾病易感性基因检测服务”。所谓疾病易感性是指由遗传决定的易于患某种或某类疾病的倾向性。具有疾病易感性的人一定具有特定的遗传特征,简单地说就是带有某种疾病的易感基因型。通过与正常人基因进行杂交配对检测即可得出结论,遗传基因检测是在大量数据的基础上进行的。6国科学家,14年,30亿美金【2】基因检测的必要性基因的预防性检测就是基因检测。国家卫生部2005年7月11日向全国发出的《中国健康人口基因检测科学社会工程》中指出―基因检测是预防疾病最科学、最有效的手段。‖说明了通过基因检测预防我国人民的常见病、多发病以及重大疾病和重大疾病的患病风险有着非常重要的紧迫性。比方查出我们携带了放射线的敏感基因那么我们就要注意了,尽量避免相关射线等环境因素对身体造成的伤害特别在得了癌症时禁止使用放疗等治疗手段癌症80%是因为长期接触致癌物所致,所以要想远离癌症,要做到以下几点:别抽烟,别喝酒、别吃烧烤、炒菜别放油,吃清蒸或水煮。别吃咸菜、腌菜、泡菜、腊肉。别吃奶制品、干果类、隔夜饭别吃,剩下了都要倒掉、买车要买二手车,三手车更好、买房子别装修,住毛坯房、不要接触油漆和农药、化学制品等、手机常年关机,电脑扔掉,要是能做到以上这些,就能远离癌症了。好像是笑话,这就说明明知道有些东西是有害的,但我们做不到远离,要是真的能做到了,有些人会说干脆死了算了。所以要想真正的做到健康预防,要做到简单有效。所以通过基因检测,能告诉我们体内那些基因是正常的,哪些是有变异的。如果检测结果绝大多数是正常的,只要别太过量,这一生基本就不会发生什么重大疾病。如果检测结果显示你有些基因对某些物质的分解能力很弱,别人可能没事,可你也许只接触一点就有可能打开癌症的大门,启动控制癌细胞的开关,诱发你的致癌基因。例如基因检测显示我们对亚硝胺很敏感,那么让我们不吃或少吃如腌菜、咸菜、泡菜或腊肉的东西,我们是不是就可以做到啊。这就是最大程度的保留了我们生活的快乐和享受的同时,又让我们清晰的了解到谁是我们身体的职业杀手,所以就可以有针对性的远离这些对我们不利的有害物质。 【3】我公司的资质? 南方医科大学前身为中国人民解放军第一军医大学,创建于1951年,本学科所开展的生物芯片研究,既具有重要的理论意义,对生命科学、临床医学、新药筛选、中药现代化等多学科领域具有辐射和带动作用;同时也具有广泛的应用前景,为临床基因诊断、病原体快速检测、遗传性病症的早期检测与优生优育,农业病虫害检测、食品检疫、环境监测等领域的研究提供了强有力支持,并起到重要的推动作用。我公司是南方医科大学基因检测东三省唯一总代理。 【4】与其他检测公司相比的优越性?为什么与我合作,与我合作的优势? 我公司是南方医科大学基因检测东三省唯一总代理,同时是广东家安东北分公司,店家享受厂家价格。从价位到服务,从身体养生到口服指导,都可享受最低价位,最权威服务。 【5】怎样让你信服? 山西省使用已痊愈的甲流病人的血液和已注射疫苗的人的血液治愈了后来发生的所有甲流患者,现在的卡介苗, .帮助病人确定发病阶段、基因启动表达的量、疾病的严重程度以及确定和指导医生对其疾病进行个性化用药并可对患者提供合理化的治疗和合理化的用药方式。 2.筛选和制备出有效抗体应对各种急性、暴发性病毒流行性疾病的应急抗体制备和注入性治疗以达安全、有效的救治性治疗之目的。我们去医院看病看的是蛋白质之后的阶段也就是发病阶段一经诊断出就是已经有了,晚了他个人、家庭和他所热爱的事业都惨了。因为目前国大部分医院还不能做全面的DNA检测所以医院的医生还不能避免―以人试药‖

基因诊断在单基因遗传病中的应用

基因诊断在单基因遗传病中的应用 【摘要】基因诊断是利用分子遗传学技术在DNA或RNA水平上对某一基因进行突变分析,从而对特定疾病进行诊断。基因诊断因其直接诊断性、高特异性、灵敏性、早期诊断性弥补了表型诊断的不足而被广泛应用。本文主要从基因诊断方法如核酸分子杂交、聚合酶链反应及相关技术、DNA序列测定、DNA芯片、连锁分析等在单基因遗传病中的应用进行综述。 【关键词】基因诊断;单基因遗传病;分子诊断;血友病 1基因诊断 基因诊断(gene diagnosis)又称DNA诊断或分子诊断,通过从体内提取样本用基因检测方法直接检测基因结构及其表达水平的改变,检测病原体基因型,进而判断是否有基因异常或携带病原微生物,或利用分子生物学技术从DNA水平检测人类遗传性疾病的基因缺陷。应用基因诊断技术可以针对已确诊或拟诊遗传性疾病的患者及其家系成员,根据遗传学的基本原理,通过分子生物学的实验手段检查被检个体相关基因的异常,确定隐形携带者状态及在症状出现前的疾病易感性等,从而达到临床确诊的目的。因此,基因诊断迅速在临床诊断领域特别在遗传病研究领域得到了较为广泛的应用。目前的基因诊断方法主要有核酸分子杂交、聚合酶链反应及相关技术、DNA序列测定、DNA芯片、连锁分析等。 2单基因遗传病 单基因遗传病是指由单个基因异常导致且以孟德尔方式遗传的疾病,是我国常见出生缺陷的重要原因之一,较为常见且研究较多的有血友病、苯丙酮尿症(PKU)、肝豆状核变性、地中海贫血等等。除部分单基因遗传病可通过手术加以矫正外,绝大部分遗传病是致死、致残、致畸性疾病,且目前均无法治疗,进行遗传性疾病的产前诊断,是避免致死、致残、致畸性疾病胎儿出生的重要手段。 3基因诊断的应用 3.1在B型血友病中的应用 血友病B(hemophilia B)是因凝血因子Ⅸ(FlX)基因缺陷引起的x-连锁隐性遗传出血性疾病,在男性中的发病率约为1/30000,散发率可达患者总数的30%-50%[1]由于目前还不能根治,对于携带者和高危胎儿进行基因诊断非常必要。血友病B基因缺陷类型十分繁多,基因缺陷包括缺失、插入和点突变,其中80%左右为单个碱基突变[2]。目前已发现的突变位点中,除了导致氨基酸序列改变的突变外,还发现不少的CpG区、剪切位点的突变[3]。常用于血友病B连锁分析的方法有限制性片段多态性(restriction fragment length polymorphisms,RFLP)

药物代谢酶和药物作用靶点基因检测技术指南(试行)

药物代谢酶和药物作用靶点基因检测技术指南(试行)

前言 药物体内代谢、转运及药物作用靶点基因的遗传变异及其表达水平的变化可通过影响药物的体内浓度和敏感性,导致药物反应性个体差异。近年来随着人类基因组学的发展,药物基因组学领域得到了迅猛发展,越来越多的药物基因组生物标记物及其检测方法相继涌现。药物基因组学已成为指导临床个体化用药、评估严重药物不良反应发生风险、指导新药研发和评价新药的重要工具,部分上市的新药仅限于特定基因型的适应症患者。美国FDA已批准在140余种药物的药品标签中增加药物基因组信息,涉及的药物基因组生物标记物42个。此外,部分行业指南也将部分非FDA批准的生物标记物及其特性(如MGMT基因甲基化)的检测列入疾病的治疗指南。药物反应相关基因及其表达产物的分子检测是实施个体化药物治疗的前提。 药理学与遗传学结合的关键环节包括药物代谢动力学(pharmacokinetics,PK)和药物效应动力学(pharmacodynamics,PD)两方面。药物代谢动力学主要是定量研究药物在生物体内吸收、分布、代谢和排泄规律,侧重于阐明药物的体内过程;药物效应动力学主要研究药物对机体的作用、作用规律及作用机制,其内容包括药物与作用靶位之间相互作用所引起的生化、生理学和形态学变化,侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。目前美国FDA和我国食品药品监督管理局(CFDA)都已批准了一系列的个体化用药基因诊断试剂盒。这些试剂盒基本都是对人DNA样本进行基因检测。而在基因表达的检测方面,由于RNA的稳定性差,样本处置不当可导致目标RNA降解,使得检测结果不准确,影响临床判断。因此,RNA检测试剂的研发相对滞后。 本指南旨在为个体化用药基因检测提供一致性的方法。本指南中所指的药物基因组生物标志物不包括影响抗感染药物反应性的微生物基因组变异。此外,肿瘤靶向治疗药物个体化医学检测指南见《肿瘤个体化治疗的检测技术指南》。 本指南起草单位:中南大学湘雅医院临床药理研究所、中南大学临床药理研究所、中南大学湘雅医学检验所,并经国家卫生计生委个体化医学检测技术专家委员会、中国药理学会药物基因组学专业委员会、中国药理学会临床药理学专业委员会和中华医学会检验分会组织修订。 本指南起草人:周宏灏、陈小平、张伟、刘昭前、尹继业、李智、李曦、唐洁、俞

基因诊断在遗传病检测中应用

基因诊断在遗传病监测中的应用 目前发现人类遗传性疾病有3 000多种,如果仅依靠以往的染色体分析技术或对基因产物与代谢物的测定,我们只能对其中为数极少的一部分疾病在发病前或产前进行诊断。因为许多基因的表达有时相性和组织特异性(如有些基因在胎儿早期并不表达、苯丙氨酸羟化酶只在肝组织中表达)。用常规的方法采集的胎儿标本或其他人体材料,常常不能测出这些基因的产物或代谢产物。 然而,作为构成机体基本单位的细胞,无论其来自何种器官或组织,它们的基因组成却是完全一致的;虽然在某些特异化的组织细胞中某些基因并不表达,但那些基因的突变却存在于一切细胞之中。如果采用基因分析的方法进行监测,在个体发育的任何阶段,以任何一种有核细胞为检材,基因的缺陷都能被监测出来。 这就是近十几年来飞速发展的重组DNA技术给遗传病的早期(症状前和出生前)诊断带来的福音。重组DNA 技术不仅极大地丰富了我们对人类遗传病分子病理学的知识,而且同时也提供了从DNA水平对遗传病进行基因诊断的手段。自从1978年发现第一个限制酶切位点多态性并应用于遗传病(镰形细胞贫血)的基因诊断以后,能够进行基因诊断的病种不断增加,方法和途径越来越多。 一、基因突变的类型 造成基因突变的原因很多,有自发的也有外界理化因素的影响。从DNA序列改变的角度来看,不外乎单核苷酸的取代和DNA片段的插入或缺失两大类型。所产生的后果取决于突变发生的位置和性质,只要影响了基因表达过程中的任何一个环节,都会导致遗传性疾病。归纳起来如表1所示 表1 基因突变及效应一览表 DNA序列的改变突变发生的部位mRNA水平的表现基因产物的改变举例 1.大片段缺失或插入 整个基因缺如缺如α地中海盆血 基因片段异常功能缺陷DMD、BMD 2.少数核苷酸的缺失或插入 外显子与内含子接界拼接异常缺如 3的整数倍外显子缩短或延长异常(氨基酸缺失或插入)Hb Leiden 非3的整数倍外显子缩短或延长异常(移码突变)β地中海盆血 3.单核苷酸取代 启动子减少减少β地中海盆血 剪接信号剪接异常缺如β地中海盆血 PolyA信号不稳定减少β地中海盆血 密码子中性突变正常 密码子错义突变氨基酸取代异常血红蛋白 密码子或内含子剪接异常缺如或移码突变β地中海盆血 密码子无义突变肽链提前终止β地中海盆血 终止密码肽链延长,量减少Hb Canstant spring 起始密码β地中海盆血缺如β地中海盆血 二、遗传病基因诊断的途径 在了解了基因突变的各种类型之后,对应用何种方法来诊断它们便很容易理解了。例如某种遗传病是由于基因缺失造成的,可通过监测受检者是否缺失该基因来直接判断其基因型。如果某遗传病是核苷酸取代造成的点突变,便可以通过监测该突变的方法(ASO探针或酶切位点监测)来进行诊断。如果致病突变或病

基因科普知识

什么是基因? A:我们通常所说的基因,并不是一个基因,而是人体细胞内基因的集合,被称为基因组。我们身体的每一个细胞内都有一套完整的基因组。从父母遗传来,向儿女传递去。基因令人区别于动物,使家族不同于家族,兄弟姐妹相似却不相同。这些细微差异常常不超过基因的0.1%,却决定了不同的外貌、性格、遗传特性,以及我们对外界环境的适应。 基因检测跟一般体检有什么区别或优势? A:基因检测可以发现一些未知的遗传相关的疾病,也能对遗传相关的疾病的风险做出一些预测,提醒被检测者有针对性的改变生活习惯或者是做更深入的临床检查。不仅仅是疾病,基因检测还能在运动锻炼方式和饮食等方面为每个人给出有针对性的建议。跟一般体检的差异很难一两句话说清楚。简单来说,一般的体检查的是“结果”,而基因检测更多的是寻找“原因”。 为什么要做基因检测? 1)了解自身是否有遗传性的致病基因 具有地贫、癌症或高血压等家族病史的人是最需要做基因体检的对象,通过基因检测,这些高危险人群可知道自己是不是带有疾病基因,以便及早发现和及早预防,并做好饮食保健与生活习惯的调整,以避免疾病的发生。 2)正确选择药物,避免药物浪费和药物不良反应 由于个体遗传基因上的差异,不同的人对药物的反映也会有所不同,因此部分人使用某种药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效还有毒副作用,通过基因检测后,可根据每一个人的基因情况,制定特定的治疗方案,从而科学地指导患者使用药物的种类和剂量,进而达到合理用药,避免药物毒副作用,让患者走出用药盲区,用准药,用好药。把握最佳治疗时期。 3)提供科学的健康管理 目前的很多不良环境因子,如空气、水质及农药的污染加上不良生活习惯像抽烟、饮酒等,都会容易使体内的基因受到破坏而产生疾病。长期暴露在这些高度污染环境或有不良生活习惯的人以及目前身体健康的民众都可以通过基因检测了解个人在不同疾病上的发生倾向,进行全面的生活调整或干预,以期降低风险延缓疾病发生,达到所倡导的“个性医疗,解码健康”的目的。人类疾病的发生是基因、环境共同作用的结果,若检测出某种疾病的风险,那么可以针对性的避开不良的环境,从而让疾病不能表达,做到真正的预防疾病。 基因检测的原理是什么?

叶酸能力代谢基因检测

荧光PCR仪检测平台:叶酸能力代谢基因检测 一、叶酸能力代谢基因检测的临床意义: 1、提前预防脑卒中,降低脑卒中发生率和死亡率 大量研究数据显示:亚甲基四氢叶酸还原酶(MTHFR)基因型变异是导致我国人群脑卒中高发最主要的遗传危险因素。 MTHFR基因的多个位点在人群中具有多态性,其中与功能和疾病最为相关的是C677T位点多态性。在MTHFR基因第677个核苷酸位置,其碱基可发生胞嘧啶(C)向胸腺嘧啶(T)的突变,MTHFR酶的活性逐级降低(CC型活性为100%,CT型活性为70%,TT型活性为35%),引起同型半胱氨酸在人体内不同程度的蓄积,破坏全身血管,从而形成”H型高血压”,导致卒中风险比一般人高出11-28倍。因此提前检测与脑中风最相关的基因MTHFR677C/T基因对预防脑卒中,提前进行干预治疗,从而降低脑卒中的发病率,有着非常重要的意义。 2、提前预防新生儿出生缺陷,提高我国人口素质 神经管畸形,唇腭裂等是常见的新生儿缺陷。出生缺陷不仅影响儿童的生命健康和生活质量,而且给患者家庭带来巨大的精神痛苦和经济负担。而大量的研究表明MTHFR677C/T基因突变会导致孕妇体内同型半胱氨酸升高,从而导致孕妇早产、低出生体重儿、新生儿神经管畸形、唇腭裂等。因此提前检测与孕妇早产,新生儿出生缺陷相关基因,提前进行干预治疗,从而降低新生儿出生缺陷以及孕妇早产,对提高我国人口素质,降低国家和家庭负担方面有着重要的意义。二、检测试剂盒介绍及优势 采用实时荧光定量PCR(Quantitative Real-time PCR)、对MTHFR 基因C677T 位点多态性进行定性检测:首先从EDTA 抗凝的全血中提取基因组DNA,在PCR反应体系中加入荧光探针,利用荧光利用探针可与DNA模板特异性结合的特点,通过报告荧光的不同来分辨出样本的亚甲基四氢叶酸还原酶(MTHFR)的基因型,最后通过电脑软件自动计算给出结果,区分该基因位点的野生型(CC)、杂合型(CT)和纯合突变型(TT)。 基因多态性检测试剂盒优势: 1.灵敏度高:可以对低至1ng的DNA模板准确的进行基因多态性检测;

基因检测运营可行性方案精编版

基因检测运营可行性方 案 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

基因检测可行性运营方案 一.项目介绍 基因是DNA分子上的一个功能片断,是的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不可分。 检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因(Gene,Mendelian factor)是指携带有遗传信息的DNA或序列(即基因是具有遗传效应的DNA或RNA片段),也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 1. 基因与健康 现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,单独由异常基因直接引起疾病,被称为为。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。 绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至死亡。

基因检测运营可行性方案

基因检测可行性运营方案一.项目介绍 基因是DNA分子上的一个功能片断,是的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不可分。 检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因(Gene,Mendelian factor)是指携带有遗传信息的DNA或序列(即基因是具有遗传效应的DNA或RNA片段),也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 1. 基因与健康 现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,单独由异常基因直接引起疾病,被称为为。 可以说,引发疾病的根本原因有三种: (1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。

绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因“工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至死亡。 健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。 基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。 2. 基因检测概念 基因检测是通过血液、其他体液或细胞对DNA进行检测的技术,是取被检测者脱落的口腔黏膜细胞或其他组织细胞,扩增其基因信息后,通过特定设备对被检测者细胞中的DNA 分子信息作检测,预知身体患疾病的风险,分析它所含有的各种基因情况,从而使人们能了解自己的基因信息,从而通过改善自己的生活环境和生活习惯,避免或延缓疾病的发生。

药物代谢酶CYP1家族相关基因的研究进展

药物代谢酶CYP1家族相关基因的研究进展 作者:许景峰 药物的代谢酶最主要的是细胞色素P450 (CYP-450)酶系,约40 %~50 %的药物降解需要它的参与,其活性决定了药物在体内的半衰期和血药浓度。 CYP1主要由CYP1A1、CYP1A2 和CYP1B1组成[1]。CYP1A1是一种肝外酶,广泛分布于肺、肾、胃肠道、皮肤、喉、胎盘、淋巴细胞及脑等肝外组织,在外源物代谢中CYP1A1 占2.5% ,参与烃类致癌物的代谢,多环芳烃是环境化学致癌物的主要组成物质,通过呼吸或饮食进入体内,经CYP1A1 代谢为活性中间物而致癌,主要致癌靶器官为肺和皮肤[1,2]。 1 CYP1A1 CYP1A1占肝脏P450 的比例不到1%但参与2.5%的药物代谢,CYP1A2为主要的存在形式,占肝脏P450的13%,参与8%药物的第1相氧化代谢作用;CYP1B1是人类第三种CYP1酶,属于一个独立的亚家族,在几种组织中以极低的水平(<1%)存在,在内源性雌激素的4-羟化代谢中起重要的作用[3]。 1.1 CYP1A1的主要突变形式及其与代谢表型间的对应关系CYP1A1基因多态性目前已知有4种基因多态性,常见的突变等位基因为m1(CYP1A1*2A)、m2(CYP1A1*2 C)、m3(CYP1A1*3)和m4(CYP1A1*4)。 1.1.1 m1 是MspI 多态性(CYP1A1*2A),MspI 多态有三种基因型:野生型纯合子(wt/wt)、杂合型(wt/vt)和突变纯合型(vt/vt)型。经限制性内切酶MspI 酶切后, 可明确MspI 多态性类型。 1.1.2 m2 是Ile/ V al多态性(CYP1A1*2C),又称为Exon7 多态性。它也有三种基因型: 野生型(Ile/ Ile 型), 杂合型(Ile/ V al 型)及突变纯合型(V al/ V al 型)三种形式。m2 与m1位点突变高度关联。 1.1.3 m3 是AA多态性(CYP1A1*3),AA多态性的改变是美籍非洲人和非洲人所特有。 1.1.4 m4(CYP1A1*4)是位于Ile/ V al 多态性位点上的碱基,导致CYP1A1 酶蛋白的苏氨酸(Thr)被天冬酰胺(Asp)替换的突变。 1.2 参与烃类致癌物的代谢CYP1A1可活化苯并芘等多环芳烃化合物,苯并芘(BAP)是一种具有强致癌性的多环芳烃类化合物,需经CYP1A1活化后方能致癌。研究表明苯并芘首先被CYP1A1环氧化,经环氧化物水解酶水解后形成二羟基化合物,经CYP1A1 再一次环氧化形成致癌物—二醇环氧化物,具有显著的致癌和诱变作用。带突变型CYP1A1 基因的个体患肺癌的危险性是其他基因型的7.3倍,且吸烟量增加患肺癌的危险性也增加。我国的肺癌病人中携带突变性CYP1A1和CYP2E1基因型的人都明显高于对照组。携带突变型CYP1A1基因的吸烟者比非突变型的吸烟者患肺癌的危险度高 2.2倍。在食管癌病人中携带突变基因CYP1A1的人数明显高于对照组,CYP1A1的突变可能是食管癌发生的重要易感性之一[4,5]。

基因检测运营可行性方案总结

基因检测可行性运营方案 项目介绍 基因是DNA分子上的一个功能片断,是遗传信息的基本单位,是决定一切生物物种最基本的因子;基因决定人的生老病死,是健康、靓丽、长寿之因,是生命的操纵者和调控者。因此,哪里有生命,哪里就有基因,一切生命的存在与衰亡的形式都是由基因决定的,包括您的长相、身高、体重、肤色、性格等均与基因密不可分。 基因检测是通过血液、其他体液、或细胞对DNA进行检测的技术。 基因(Gene,Mendelian factor)是指携带有遗传信息的DNA或RNA序列(即基因是具有遗传效应的DNA或RNA片段),也称为遗传因子,是控制性状的基本遗传单位。基因通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体 的性状表现。 1. 基因与健康 现代医学研究证明,除外伤外,几乎所有的疾病都和基因有关系。像血液分不同血型一样,人体中正常基因也分为不同的基因型,即基因多态型。不同的基因型对环境因素的敏感性不同,敏感基因型在环境因素的作用下可引起疾病。另外,单独由异常基因直接引起疾病,被称为为遗传病。 可以说,引发疾病的根本原因有三种:

(1)基因的后天突变; (2)正常基因与环境之间的相互作用; (3)遗传的基因缺陷。 绝大部分疾病,都可以在基因中发现病因。 基因通过其对蛋白质合成的指导,决定我们吸收食物,从身体中排除毒物和应对感染的效率。 第一类与遗传有关的疾病有四千多种,通过基因由父亲或母亲遗传获得。 第二类疾病是常见病,例如心脏病、糖尿病、多种癌症等,是多种基因和多种环境因素相互作用的结果。 基因是人类遗传信息的化学载体,决定我们与前辈的相似和不相似之处。在基因工作”正常的时候,我们的身体能够发育正常,功能正常。如果一个基因不正常,甚至基因中一个非常小的片断不正常,则可以引起发育异常、疾病,甚至死亡。 健康的身体依赖身体不断的更新,保证蛋白质数量和质量的正常,这些蛋白质互相配合保证身体各种功能的正常执行。每一种蛋白质都是一种相应的基因的产物。 基因可以发生变化,有些变化不引起蛋白质数量或质量的改变,有些则引起。基因的这种改变叫做基因突变。蛋白质在数量或质量上发生变化,会引起身体功能的不正常以致造成疾病。 2. 基因检测概念 基因检测是通过血液、其他体液或细胞对DNA进行检测的技术,是取被检测者脱落的口腔黏膜细胞或其他组织细胞,扩增其基因信息后,通过特定设备对被检测者细胞中的DNA分子信息作检测,预知身体患疾病的风险,分析它所含有的各种基因情况,从而使人们能了解自己的基因信息,从而通过改善自己的生活环境和生活习惯,避免或延缓疾病的发生。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。

遗传性主动脉疾病基因检测的应用

304 中国循环杂志 2016年3月 第31卷 第3期(总第213期)Chinese Circulation Journal,March,2016,Vol. 31 No.3(Serial No.213) 遗传性主动脉疾病基因检测的应用 杨航、罗明尧、殷昆仑、陈前龙综述,常谦、周洲审校 自20世纪90年代起,随着人类基因组计划的开展,生物医学领域涌现出许多新的理论与技术,疾病的分子诊断作为一个新兴的临床诊断方向逐渐得到广泛应用。近年来,测序平台与技术的不断进步和完善,极大地推动了分子诊断的应用进程。基于Sanger 双脱氧链终止法的一代测序,对于致病基因单一且外显子数较少的疾病筛查,仍不失为一个好的方法。相比一代测序技术,二代测序技术以其高通量、低成本的优势很快得到了广泛应用。目前临床上应用比较多的是基因组合检测,对相关疾病的一组基因进行检测,旨在筛查已知致病基因是否存在突变。随着测序费用的降低、数据库的积累以及研究者对数据结果解读经验的加深,全外显子组测序的方法已越来越多地应用于复杂疾病或新致病基因的探索研究,并逐步应用于临床诊断。越来越多的遗传异质性疾病的相关致病基因被检出,2010年~2015年间,利用全外显子测序技术已经检测出550多个疾病相关致病基因[1]。经过近二十年的快速发展与积累,分子诊断技术已成为推动当代医学发展的重要前沿领域之一。本文所述的遗传性主动脉疾病分子诊断的成功应用就是基因检测使临床获益的一个很好案例。 遗传性主动脉疾病以主动脉扩张、主动脉瘤/夹层为特征,可发生于马凡综合征(MFS)、Loeys-Dietz 综合征(LDS)、血管型Ehlers-Danlos 综合征(vEDS)、家族性胸主动脉瘤/夹层(FTAAD)等多种疾病。这些疾病有着不同程度的临床表型重合,又有着各自的疾病特征,早期时候仅依靠临床症状加以区分和诊断。它们的共同特点是主动脉瘤发生破裂的风险高,必须通过手术置换损伤部位动脉而避免发生致命性动脉瘤破裂[2]。这些综合征临床异质性很强,患者往往难以具有非常典型的疾病特征,诊断相对困难。因此,基因检测可在患者症状完全表现之前明确诊断,显示出无可比拟的优势。摘要 遗传性主动脉疾病以主动脉扩张、主动脉瘤/夹层为特征,可发生于马凡综合征、Loeys-Dietz 综合征、血管 型Ehlers-Danlos 综合征、家族性胸主动脉瘤/夹层等多种疾病,其共同特点是主动脉瘤发生破裂的风险高,必须通过手术置换损伤部位动脉而避免发生致命性动脉瘤破裂。这些疾病有着不同程度的临床表型重合,仅靠临床症状往往难以区分确诊。这种情况下,基因检测在患者症状完全表现之前即可明确诊断,显示出无可比拟的优势。针对遗传性主动脉疾病基因检测,主要采用基因组合测序的方法,其检测结果对于患者的早期、明确诊断和家属筛查具有重要意义,对于患者手术方案的选择及预后判断也有一定的指导作用。关键词 综述;主动脉疾病;基因 此外,还可能影响患者手术时机的选择。通常情况下,当患者主动脉直径达到5.0~5.5 cm 时,医生会建议进行预防性手术干预[3]。然而研究结果显示,多达60%的急性A 型主动脉夹层在直径<5.5 cm 时即发生了破裂[4]。在过去十年对MFS 及相关疾病的研究中,人们已经积累了一定的经验,了解到特定基因的突变可预示着患者主动脉直径<5.0 cm 时即有发生破裂的风险,以及患者预后情况[5, 6]。下面就以基因检测在遗传性主动脉疾病诊断和预后评估中的应用为例,阐述基因检测在临床中的重要作用。1 主动脉疾病的遗传学研究1.1 MFS MFS 是一种常染色体显性遗传的结缔组织疾病,发病率约为1:3 000~1:5 000[7]。病变累及多个器官系统,主要涉及心血管、骨骼和眼睛。其中,心血管系统异常包括主动脉瘤/夹层,是导致MFS 患者死亡的最主要原因。若无干预,患者平均寿命约为32岁。若得到适当干预和治疗,其平均寿命可接近于正常人[8]。 鉴于MFS 临床表现的高度异质性,国际上对于MFS 的诊断标准也在不断修改和完善。目前国际上普遍采用的是2010年修订版Ghent 标准[9],它更加重视主动脉根部瘤/夹层和晶体异位这两大表现。同时,该诊断标准首次将分子诊断(致病性基因突变筛查)纳入主要诊断条件,并赋予其重要意义。FBN1是MFS 唯一致病基因,编码原纤维蛋白(fibrillin)-1,是细胞外微纤维的重要组成部分[10]。 目前已发现的FBN1突变已有上千个,多数是单个家庭特有的。其中,错义突变是最常见类型,半胱氨酸的单碱基置换占绝大多数。现有的FBN1基因型-表型关联分析提示,FBN1基因半胱氨酸发生错义突变的患者发生晶体异位的几率高于其它突变类型[11]。此外,早发严重的MFS(新生儿 综述

解读2015年发布的药物代谢酶和药物作用靶点基因检测技术指南(试行)

解读2015年发布的药物代谢酶和药物作用靶点基因检测技术指南(试行) 药物代谢动力学(PK)侧重于阐明药物的体内过程;药物效应动力学(PD)侧重于解释药物如何与作用靶点发生作用。对药物代谢酶和药物靶点基因进行检测可指导临床针对特定的患者(可理解为具有相同临床表型和相同基因型的患者)选择合适的药物和给药剂量,实现个体化用药,从而提高药物治疗的有效性和安全性,防止严重药物不良反应的发生。本指南中所指的药物基因组生物标志物不包括影响抗感染药物反应性的微生物基因组变异。 1.本指南适用对象:开展个体化医学分子检测的医疗机构临床实验室。 2.本指南目的:为药物基因检测提供标准化指导。 3.包含重点内容:个体化用药基因检测的适应人群、标本采集、运输、接收、处理、样本检测、结果报告与解释、室内室间质控需遵循的基本原则。 4.药物基因检测流程 患者知情同意→填写规范的申请单→标本采集→标本送检(连同申请单)→标本接收登记→对检测项目的合理性进行审核(必要时可与送检医师讨论)→标本处理→基因检测(及分析中质量控制)→出具报告单(析后质量保证)→检测后样本的保存和处理。 注意: 1)用于药物基因检测的标本类型有多种,包括全血标本、组织标本(新鲜组织、冰冻组织、石蜡 包埋组织、穿刺标本)、口腔拭子、骨髓、胸腹水等。 2)个体化用药领域发展迅速,临检实验室应及时了解临床需求,优化项目目录(并非一成不变)。 实验室应定期对数据进行回顾性分析,定期对检验申请进行评审。 3)药物代谢酶和药物作用靶点基因检测必须有严格的质量控制措施,涉及基因扩增的检测项目必 须在通过技术审核的临床基因扩增检验实验室完成(不涉及基因扩增的则在普通实验室完成即可)。 5.实验室设计要求 按照《个体化医学检测质量保证指南》的要求进行。其中作为药物基因检测核心技术之一的PCR,其检测实验室应按《医疗机构临床基因扩增实验室管理办法》要求进行设置,并按要求严格控制空气流向,避免PCR产物污染。 6.药物基因检测方法 分为两大类,一类是基于PCR开展起来的,包括PCR-直接测序法、PCR-焦磷酸测序法、荧光定量PCR法、PCR-基因芯片法、PCR-电泳分析、PCR-高分辨率熔解曲线法、等位基因特异性PCR法、PCR-

什么是基因检测

什么是基因检测? 基因检测是通过血液、体液或组织细胞对DNA进行检测的技术,扩增其基因信息后,通过特定设备对被检测者细胞中的DNA分子信息作检测,分析它所含有的各种基因情况,从而使人们能了解自己的基因信息,预知身体患疾病的风险,从而通过改善自己的生活环境和生活习惯,避免或延缓疾病的发生。 基因检测可以诊断疾病,也可以用于疾病风险的预测。疾病诊断是用基因检测技术检测引起遗传性疾病的突变基因。目前应用最广泛的基因检测是新生儿遗传性疾病的检测、遗传疾病的诊断和某些常见病的辅助诊断。目前有1000多种遗传性疾病可以通过基因检测技术做出诊断。 近年来令人非常兴奋的是预测性基因检测的开展。利用基因检测技术在疾病发生前就发现疾病发生的风险,提早预防或采取有效的干预措施。目前已经有20多种疾病可以用基因检测的方法进行预测。 与传统检测的区别 疾病易感基因检测与常规体检都能起到预防的作用,但二者反映的是不同的阶段。一种疾病从开始到发病要经历很长的时间。基因检测是人在没发病时,预防将来会发生什么疾病,属于检测的第一阶段;而常规检测是发生疾病后,疾病到达什么程度。如:早期、中期等等,这属于检测的第二个阶段,是临床医学的范畴。所以说,基因检测是主动预防疾病的发生,而传统的体检手段则无法起到这样的预防作用。 传统体检主要针对人体已经出现的临床病变进行诊断和检查,它的主要任务是配合疾病的治疗,无法在病变之前预知,下更多、更深的结论。也就是说,在疾病的预防上。传统体检十分的被动和滞后。现实中很多疾病并无明显征兆,而一旦发病,现代医学往往束手无策,患者及其家人就可能一生痛苦和麻烦。

基因检测的意义 1、了解自身是否有家族性疾病的致病基因 具有癌症或多基因遗传病(如老年痴呆、高血压等)家族史的人是最需要做基因体检的对象,通过基因体检这些高危险群可以知道自己是不是带有疾病基因,以便及早发现和及早预防,并做好饮食保健与生活习惯的调整,来避免疾病发生的可能。 2、正确选择药物,避免药物浪费和药物不良反应 由于个体遗传基因上的差异,不同的人对外来物质(如药物)会产生的反映也会有所不同,因此部分病人使用正常剂量的药物时,可能会出现药物过敏、红肿发疹的现象,或者是在服用相同药物时,有人觉得神效,有人却不但无效,而且还有毒副作用,基因检测是针对个人的基因做检测,根据每一个人的基因情况,制定特定的治疗方案,从而科学地指导患者使用药物的种类和剂量,进而达到合理用药,避免药物毒副作用,让患者走出用药盲区,用准药,用好药。把握最佳治疗时期。 3、提供健康风险管理最好的依据 目前的很多不良环境因子,如空气、水质及农药的污染加上不良生活习惯,如抽烟、饮酒等,都会容易使体内的基因受到破坏而产生疾病。长期暴露在这些高度污染环境或有不良生活习惯的人以及目前身体健康的民众都可以通过基因体检了解个人在不同疾病上的发生倾向,进行全面的生活调整或干预,以期降低风险,延缓及预防疾病发生,达到基因检测所倡导的“个性医疗,解码健康”的目的。人类疾病的发生是基因、环境共同作用的结果,若检测出某种疾病的风险,那么可以针对性的避开不良的环境,从而让疾病无法生成,做到真正的疾病预防。

基因检测案例6-Usher综合征

基因检测案例6|Usher综合征 疾病简介 Usher 综合征是一种以耳聋和进展性视力丧失为特征的常染色体隐性遗传病,是最常见的引起耳聋伴眼盲的疾病,人群患病率是1/5000~1/16000。Usher 综合征分为3型:Usher 综合征Ⅰ型、Ⅱ型和Ⅲ型。USH Ⅰ型在幼年时即出现近乎全聋和前庭功能障碍,通常在成年前出现RP症状;Ⅱ型患者听力损害呈中到重度,没有前庭功能障碍,成年后出现RP 症状;Ⅲ型患者出生时听力正常,逐渐出现RP和听力丧失。 USH2A基因简介及遗传方式 USH2A基因位于染色体的1q41,具有长短两个剪切转录本,一种是由21个外显子编码的Usherin蛋白亚型a,共有1546个氨基酸,另一种是在USH2A基因3’发现的51个外显子,即共含有72个外显子编码的Usherin蛋白亚型b,编码5202个氨基酸。USH2A基因编码Usherin蛋白,主要在耳蜗和视网膜中表达。USH2A基因突变常引起Usher综合征或非综合征型视网膜色素变性,以常染色体隐性的方式遗传。

USH2A基因变异类型 HGMD数据库中收录的USH2A基因变异有1300余种,90%以上为点突变或小片段缺失/插入,10%为大片段插入缺失,USH2A基因被认为是引起USH2型最常见的致病基因,大约70%USH2型患者是由USH2A基因突变引起的。目前,已知的大部分突变位于USH2A基因的1-21外显子,即Usherin蛋白亚型a。 USH2A基因突变引起的疾病表型 除了引起Usher综合征以外,USH2A基因突变还能引起视网膜色素变性等疾病,以下表格是HGMD数据库中收录的相关文章报道的疾病表型。

相关文档
相关文档 最新文档