文档库 最新最全的文档下载
当前位置:文档库 › STM32中使用GPIO的总结(超强)

STM32中使用GPIO的总结(超强)

STM32中使用GPIO的总结(超强)
STM32中使用GPIO的总结(超强)

STM32 GPIO使用

操作步骤:

1.使能GPIO对应的外设时钟

例如://使能GPIOA、GPIOB、GPIOC对应的外设时钟

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB|

RCC_APB2Periph_GPIOC , ENABLE);

2.声明一个GPIO_InitStructure结构体

例如:

GPIO_InitTypeDef GPIO_InitStructure;

3.选择待设置的GPIO管脚

例如:/* 选择待设置的GPIO第7、8、9管脚位,中间加“|”符号 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9;

4.设置选中GPIO管脚的速率

例如:/* 设置选中GPIO管脚的速率为最高速率2MHz */

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz; //最高速率2MHz

5.设置选中GPIO管脚的模式

例如:/* 设置选中GPIO管脚的模式为开漏输出模式*/

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出模式

6. 根据GPIO_InitStructure中指定的参数初始化外设GPIOX

例如:/* 根据GPIO_InitStructure中指定的参数初始化外设GPIOC */ GPIO_Init(GPIOC, &GPIO_InitStructure);

7.其他应用

例:将端口GPIOA的第10、15脚置1(高电平)

GPIO_SetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15);

例:将端口GPIOA的第10、15脚置0(低电平)

GPIO_ResetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15);

GPIO寄存器:

寄存器描述

CRL 端口配置低寄存器

CRH 端口配置高寄存器

IDR 端口输入数据寄存器

ODR 端口输出数据寄存器

BSRR 端口位设置/复位寄存器

BRR 端口位复位寄存器

LCKR 端口配置锁定寄存器

EVCR 事件控制寄存器

MAPR 复用重映射和调试

I/O 配置寄存器

EXTICR 外部中断线路0-15配置寄存器

GPIO库函数:

函数名描述

GPIO_DeInit 将外设GPIOx寄存器重设为缺省值

GPIO_AFIODeInit 将复用功能(重映射事件控制和EXTI设置)重设为缺省值GPIO_Init 根据GPIO_InitStruct中指定的参数初始化外设GPIOx寄存器GPIO_StructInit 把GPIO_InitStruct中的每一个参数按缺省值填入GPIO_ReadInputDataBit 读取指定端口管脚的输入

GPIO_ReadInputData 读取指定的GPIO端口输入

GPIO_ReadOutputDataBit 读取指定端口管脚的输出

GPIO_ReadOutputData 读取指定的GPIO端口输出

GPIO_SetBits 设置指定的数据端口位

GPIO_ResetBits 清除指定的数据端口位

GPIO_WriteBit 设置或者清除指定的数据端口位

GPIO_Write 向指定GPIO数据端口写入数据

GPIO_PinLockConfig 锁定GPIO管脚设置寄存器

GPIO_EventOutputConfig 选择GPIO管脚用作事件输出

GPIO_EventOutputCmd 使能或者失能事件输出

GPIO_PinRemapConfig 改变指定管脚的映射

GPIO_EXTILineConfig 选择GPIO管脚用作外部中断线路

库函数:

函数GPIO_DeInit

功能描述:将外设GPIOx寄存器重设为缺省值

例:

GPIO_DeInit(GPIOA);

函数GPIO_AFIODeInit

功能描述:将复用功能(重映射事件控制和EXTI设置)重设为缺省值例:

GPIO_AFIODeInit();

函数GPIO_Init

功能描述:根据GPIO_InitStruct中指定的参数初始化外设GPIOx寄存器例:

GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_Init(GPIOA, &GPIO_InitStructure);

GPIO_InitTypeDef structure

GPIO_InitTypeDef定义于文件“stm32f10x_gpio.h”:

typedef struct

{

u16 GPIO_Pin;

GPIOSpeed_TypeDef GPIO_Speed;

GPIOMode_TypeDef GPIO_Mode;

}

GPIO_InitTypeDef;

GPIO_Pin

该参数选择待设置的GPIO管脚,使用操作符“|”可以一次选中多个管脚。可以使用下表中的任意组合。

GPIO_Pin_None:无管脚被选中

GPIO_Pin_x:选中管脚x(0--15)

GPIO_Pin_All:选中全部管脚

GPIO_Speed

GPIO_Speed:用以设置选中管脚的速率。

GPIO_Speed_10MHz:最高输出速率10MHz

GPIO_Speed_2MHz:最高输出速率2MHz

GPIO_Speed_50MHz:最高输出速率50MHz

GPIO_Mode

GPIO_Mode:用以设置选中管脚的工作状态。

GPIO_Mode_AIN:模拟输入

GPIO_Mode_IN_FLOATING:浮空输入

GPIO_Mode_IPD:下拉输入

GPIO_Mode_IPU:上拉输入

GPIO_Mode_Out_OD:开漏输出

GPIO_Mode_Out_PP:推挽输出

GPIO_Mode_AF_OD:复用开漏输出

GPIO_Mode_AF_PP:复用推挽输出

函数GPIO_StructInit

功能描述:把GPIO_InitStruct中的每一个参数按缺省值填入例:

GPIO_InitTypeDef GPIO_InitStructure;

GPIO_StructInit(&GPIO_InitStructure);

GPIO_InitStruct:

GPIO_Pin:GPIO_Pin_All

GPIO_Speed:GPIO_Speed_2MHz

GPIO_Mode:GPIO_Mode_IN_FLOATING

函数GPIO_ReadInputDataBit

功能描述:读取指定端口管脚的输入

例:

u8 ReadValue;

ReadValue = GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_7);函数GPIO_ReadInputData

功能描述:读取指定的GPIO端口输入

例:

u16 ReadValue;

ReadValue = GPIO_ReadInputData(GPIOC);

函数GPIO_ReadOutputDataBit

功能描述:读取指定端口管脚的输出

例:

u8 ReadValue;

ReadValue = GPIO_ReadOutputDataBit(GPIOB, GPIO_Pin_7);函数GPIO_ReadOutputData

功能描述:读取指定的GPIO端口输出

例:

u16 ReadValue;

ReadValue = GPIO_ReadOutputData(GPIOC);

函数GPIO_SetBits

功能描述:置位指定的数据端口位

例:将端口GPIOA的第10、15脚置1(高电平)

GPIO_SetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15);

函数GPIO_ResetBits

功能描述:清除指定的数据端口位

例:将端口GPIOA的第10、15脚置0(低电平)

GPIO_ResetBits(GPIOA, GPIO_Pin_10 | GPIO_Pin_15);

函数GPIO_WriteBit

功能描述:设置或者清除指定的数据端口位

例:

GPIO_WriteBit(GPIOA, GPIO_Pin_15, Bit_SET);

函数GPIO_Write

功能描述:向指定GPIO数据端口写入数据

例:

GPIO_Write(GPIOA, 0x1101);

函数GPIO_PinLockConfig

功能描述:锁定GPIO管脚设置寄存器

例:

GPIO_PinLockConfig(GPIOA, GPIO_Pin_0 | GPIO_Pin_1);

函数GPIO_EventOutputConfig

功能描述:选择GPIO管脚用作事件输出

例:

GPIO_EventOutputConfig(GPIO_PortSourceGPIOE, GPIO_PinSource5);

GPIO_PortSource

GPIO_PortSource用以选择用作事件输出的GPIO端口。

函数GPIO_EventOutputCmd

功能描述:使能或者失能事件输出

例:

GPIO_EventOutputConfig(GPIO_PortSourceGPIOC,GPIO_PinSource6);

GPIO_EventOutputCmd(ENABLE);

函数GPIO_PinRemapConfig

功能描述:改变指定管脚的映射

例:

GPIO_PinRemapConfig(GPIO_Remap_I2C1, ENABLE);

一.GPIO概述

1、共有8种模式,可以通过编程选择:

1. 浮空输入

2. 带上拉输入

3. 带下拉输入

4. 模拟输入

5. 开漏输出——(此模式可实现hotpower说的真双向IO)

6. 推挽输出

7. 复用功能的推挽输出

8. 复用功能的开漏输出

模式7和模式8需根据具体的复用功能决定。

2、专门的寄存器(GPIOx_BSRR和GPIOx_BRR)实现对GPIO口的原子操作,即回避了设置或清除I/O端口时的“读-修改-写”操作,使得设置或清除I/O端口的操作不会被中断处理打断而造成误动作。

3、每个GPIO口都可以作为外部中断的输入,便于系统灵活设计。

4、I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这有利于噪声控制。这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,

请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。

4.1各种借口的措施:

4.1.1对于串口,假如最大波特率只需11

5.2k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。

4.1.2对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO 的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。

4.1.3对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。

4.2GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。

4.3 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。

4.4 所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。

4.5 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。

5、所有I/O口兼容CMOS和TTL,多数I/O口兼容5V电平。

6、大电流驱动能力:GPIO口在高低电平分别为0.4V和VDD-0.4V时,可以提供或吸收8mA电流;如果把输入输出电平分别放宽到1.3V和VDD-1.3V时,可以提供或吸收20mA电流。

7、具有独立的唤醒I/O口。

8.很多I/O口的复用功能可以重新映射。

9.GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。此功能非常有利于在程序跑飞的情况下保护系统中其他的设备,不会因为某些I/O口的配置被改变而损坏——如一个输入口变成输出口并输出电流。

二.推挽结构

一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止.要实现线与需要用OC(open collector)门电路 .如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem- pole)输出电路(可惜,图无法贴上)。当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。供你参考。

推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。

输出既可以向负载灌电流,也可以从负载抽取电流

三.开漏电路

在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。

组成开漏形式的电路有以下几个特点:

1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。如图1。

2. 可以将多个开漏输出的Pin,连接到一条线上。形成“与逻辑”关系。如图1,当PIN_A、PIN_B、PIN_C任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。

3. 可以利用改变上拉电源的电压,改变传输电平。如图2, IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。

4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。

5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。

应用中需注意:

1. 开漏和开集的原理类似,在许多应用中我们利用开集电路代替开漏电路。例如,某输入Pin要求由开漏电路驱动。则我们常见的驱动方式是利用一个三极管组成开集电路来驱动它,即方便又节省成本。如图3。

2. 上拉电阻R pull-up的阻值决定了逻辑电平转换的沿的速度。阻值越大,速度越低功耗越小。反之亦然。

Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。 push-pull是现在CMOS电路里面用得最多的输出级设计方式。

at91rm9200 GPIO 模拟I2C接口时注意!!

四.OC、OD

集电极开路门(集电极开路 OC 或源极开路OD)

open-drain是漏极开路输出的意思,相当于集电极开路(open-collector)输出,即ttl中的集电极开路(oc)输出。一般用于线或、线与,也有的用于电流驱动。

open-drain是对mos管而言,open-collector是对双极型管而言,在用法上没啥区别。

开漏形式的电路有以下几个特点:

1.利用外部电路的驱动能力,减少IC内部的驱动。或驱动比芯片电源电压高的负载.

2. 可以将多个开漏输出的Pin,连接到一条线上。通过一只上拉电阻,在不增加任何器件的情况下,形成“与逻辑”关系。这也是I2C,SMBus等总线判断总线占用状态的原理。如果作为图腾输出必须接上拉电阻。接容性负载时,下降延是芯片内的晶体管,是有源驱动,速度较快;上升延是无源的外接电阻,速度慢。如果要求速度高电阻选择要小,功耗会大。所以负载电阻的选择要兼顾功耗和速度。

3.可以利用改变上拉电源的电压,改变传输电平。例如加上上拉电阻就可以提供TTL/CMOS电平输出等。

4.开漏Pin不连接外部的上拉电阻,则只能输出低电平。一般来说,开漏是用来连接不同电平的器件,匹配电平用的。

5.正常的CMOS输出级是上、下两个管子,把上面的管子去掉就是OPEN-DRAIN了。这种输出的主要目的有两个:电平转换和线与。

6.由于漏级开路,所以后级电路必须接一上拉电阻,上拉电阻的电源电压就可以决定输出电平。这样你就可以进行任意电平的转换了。

7.线与功能主要用于有多个电路对同一信号进行拉低操作的场合,如果本电路不想拉低,就输出高电平,因为OPEN-DRAIN上面的管子被拿掉,高电平是靠外接的上拉电阻实现的。(而正常的CMOS输出级,如果出现一个输出为高另外一个为低时,等于电源短路。)

8.OPEN-DRAIN提供了灵活的输出方式,但是也有其弱点,就是带来上升沿的延时。因为上升沿是通过外接上拉无源电阻对负载充电,所以当电阻选择小时延时就小,但功耗大;反之延时大功耗小。所以如果对延时有要求,则建议用下降沿输出。

五.线或逻辑与线与逻辑

在一个结点(线)上, 连接一个上拉电阻到电源 VCC 或 VDD 和 n 个 NPN 或 NMOS 晶体管的集电极 C 或漏极 D, 这些晶体管的发射极 E 或源极 S 都接到地线上, 只要有一个晶体管饱和, 这个结点(线)就被拉到地线电平上.

因为这些晶体管的基极注入电流(NPN)或栅极加上高电平(NMOS), 晶体管就会饱和, 所以这些基极或栅极对这个结点(线)的关系是或非 NOR 逻辑. 如果这个结点后面加一个反相器, 就是或 OR 逻辑.

注:个人理解:线与,接上拉电阻至电源。(~A)&(~B)=~(A+B),由公式较容易理解线与此概念的由来;

如果用下拉电阻和 PNP 或 PMOS 管就可以构成与非 NAND 逻辑, 或用负逻辑关系转换与/或逻辑.

注:线或,接下拉电阻至地。(~A)+(~B)=~(AB);

这些晶体管常常是一些逻辑电路的集电极开路 OC 或源极开路 OD 输出端. 这种逻辑通常称为线与/线或逻辑, 当你看到一些芯片的 OC 或 OD 输出端连在一起, 而有一个上拉电阻时, 这就是线或/线与了, 但有时上拉电阻做在芯片的输入端内.

顺便提示如果不是 OC 或 OD 芯片的输出端是不可以连在一起的, 总线 BUS 上的双向输出端连在一起是有管理的, 同时只能有一个作输出, 而其他是高阻态只能输入.

相关文档