文档库 最新最全的文档下载
当前位置:文档库 › 直线中的最值问题

直线中的最值问题

直线中的最值问题
直线中的最值问题

直线中的最值问题

基础卷

一.选择题:

1.设-π≤α≤π,点P (1, 1)到直线x cos α+y sin α=2的最大距离是

(A )2-2 (B )2+2 (C )2 (D )2

2.点P 为直线x -y +4=0上任意一点,O 为原点,则|OP |的最小值为

(A )6 (B )10 (C )22 (D )2

3.已知两点P (cos α, sin α), Q (cos β, sin β),则|PQ |的最大值为

(A )2 (B )2 (C )4 (D )不存在

4.过点(1, 2)且与原点距离最大的直线方程是

(A )x +2y -5=0 (B )2x +y -4=0 (C )x +3y -7=0 (D )x -2y +3=0

5.已知P (-2, -2), Q (0, 1), R (2, m ),若|PR |+|RQ |最小,则m 的值为

(A )21

(B )0 (C )-1 (D )-34

6.已知A (8, 6), B (2, -2),在直线3x -y +2=0上有点P ,可使|PA |+|PB |最小,则点P 坐标为

(A )(2, 0) (B )(-4, -10) (C )(-10, -4) (D )(0, 2)

二.填空题:

7.已知点A (1, 3), B (5, -2),在x 轴上取点P ,使||PA |-|PB ||最大,则点P 坐标为 .

8.当2x +3y -7=0 (-1≤x ≤2)时,4x -5y 的最大、最小值分别为 .

9.函数y 的最小值为 .

10.给定三点A (0, 6), B (0, 2), C (x , 0),当x <0且∠BCA 最大时, x = .

提高卷

一.选择题:

1.在直线y=-2上有一点P,它到点A(-3, 1)和点B(5, -1)的距离之和最小,则点P的坐标为

(A)(1, -2) (B)(3, -2) (C)(19

4

, -2) (D)(9,-2)

2.对于两条直线l1: A1x+B1y+C1=0, l2: A2x+B2y+C2=0,下列说法中不正确的是(A)若A1B2-A2B1=0,则l1// l2(B)若l1// l2,则A1B2-A2B1=0

(C)若A1A2+B1B2=0,则l1⊥l2(D)若l1⊥l2,则A1A2+B1B2=0

3.已知三点A(3, 4), M(4, -2), N(-2, 2),则过点A且与M, N等距离的直线的方程是

(A)2x+3y-18=0 (B)2x-y-2=0

(C)3x-2y+18=0或x+2y+2=0 (D)2x+3y-18=0或2x-y-2=0

4.在△ABC中,lgsin A, lgsin B, lgsin C成等差数列,则两直线x sin2A+y sin A=a, x sin2B+y sin C=c的位置关系是

(A)平行(B)重合(C)垂直(D)相交但不垂直

5.已知点A(3, 0), B(0, 4),动点P(x, y)在线段AB上运动,则xy的最大值为

(A)12

5(B)144

49

(C)3 (D)4

二.填空题:

6.从点P(3, -2)发出的光线,经过直线l1: x-y-2=0反射,若反射光线恰好通过点Q(5, 1),则光线l所在的直线方程是.

7.若x+y+1=0的最小值为.

8.直线l在x轴上的截距是1,又有两点A(-2, -1), B(4, 5)到l的距离相等,则l的方程为.

9.过点P(2, 1)的直线分别交x轴、y轴的正半轴于A, B两点,当|PA|·|PB|取最小值时,直线l的方程为.

三.解答题:

10.某糖果公司的一条流水线不论生产与否每天都要支付3000元的固定费用(管理费、房租、还贷款、维修等),它生产一千克糖果的成本是10元,而销售价是一千克15元,试问:每天应当生产并售出多少糖果,才能使收支平衡?即它的盈亏平衡点是多少?

综合练习卷

一.选择题:

1.已知A (-1, 1), B (1, 1),在直线x -y -2=0上求一点P ,使它与A , B 的连线所夹的角最大,则点P 的坐标和最大角分别为

(A )(-1, 1), 4π

(B )(1, -1), 43π (C )(1, -1), 4π (D )(-1, 1), 43π

2.已知直线l : y =4x 和点P (6, 4),在直线l 上有一点Q ,使过P , Q 的直线与直线l 及x 轴在第一象限内围成的三角形面积最小,则点Q 坐标为

(A )(2, 8) (B )(8, 2) (C )(3, 7) (D )(7, 3)

3.已知三点P (1, 2), Q (2, 1), R (3, 2),过原点O 作一直线,使得P , Q , R 到此直线的距离的平方和最小,则此直线方程为

(A )y =(-

)x (B )y =(-1

)x

(C )y =

-14--

x (D )y

4x

4.过点M (4, 6)且互相垂直的两直线l 1, l 2分别交x 轴、y 轴于A , B 两点,若线段AB 的中点为P ,O 为原点,则|OP |最小时,点P 的坐标为

(A )(2, 3) (B )(3, 2) (C )(2, -3) (D )(-3, 2)

5.集合A ={点斜式表示的直线},B ={斜截式表示的直线},C ={两点式表示的直线},D ={截距式表示的直线},则间的关系是

(A )A =B =C =D (B )A YB YC YD (C )A =B , C =D (D )A =B YC YD

6.已知两点A (8, 6), B (-4, 0),在直线3x -y +2=0上有一点P ,使得P 到A , B 的距离之差最大,则点P 坐标为

(A )(-4, 10) (B )(4, -10) (C )(-4, -10) (D )(-10, -4)

二.填空题:

7.已知两点A (-2, -2), B (1, 3),直线l 1和l 2分别绕点A , B 旋转,且l 1//l 2,则这两条平行直线间的距离的取值范围是 .

8.已知三条直线l 1: 4x +y -4=0, l 2: mx +y =0, l 3: 2x -3my -4=0不能构成三角形,则m 的值为 .

9.已知定点A (0, 3),动点B 在直线l 1: y =1上,动点C 在直线l 2: y =-1上,且∠BAC =90°,则△ABC 面积的最小值为 .

10.有两直线ax -2y -2a +4=0和2x -(1-a 2)y -2-2a 2=0,当a 在区间(0, 2)内变化时,直线与两坐标轴围成的四边形面积的最小值为 .

三.解答题:

11.在呼伦贝尔大草原的公路旁,某镇北偏西60°且距离该镇30km 处的A 村和在该镇东北50km 的B 村,随着改革开放要在公路旁修一车站C ,从C 站向A 村和B 村修公路,问C 站修在公路的什么地方可使费用最省?

12.如图,在平面直角坐标系中,在y 轴的正半轴(坐标原

点除外)上给定两点A , B ,试在x 轴的正半轴(坐标原点除

外) 上求一点C ,使∠ACB 取得最大值。

参考答案

直线与圆中的最值问题专题

直线与圆中的最值问题 一、到圆心距离的最值问题: 精品文档,超值下载 二、到圆上一点距离的最值问题: 三、与圆上一点的坐标有关的最值问题: 四、与圆半径有关的最值问题: 2213480,2210,P x y PA PB x y x y A B C PACB ++=+--+=例:已知是直线上的动点,是圆的两条切线,是切点,是圆心,求四边形面积的最小值。 2221:250P x y Q l x y PQ +=+-=例:已知是圆上一点,是直线上一点,求的最小值。 ()()()()222231,0,1,0344A B x y P PA PB P --+-=+例:已知定点和圆上的动点,求使最值时点的坐标。 ()()2204134312x x y y x x y x y ≥??≥-+-??+≤?例:设,满足求的最小值。2222,(1)1,2134 2 31x y x y y x y x y x +-=++++练习1:求实数满足求下列各式的最值:()()()()()()222430 1.2.,C x y x y C x y C P x y PM M O PM PO ++-+==练习2:已知圆:若圆的切线在轴和轴上截距相等, 求切线的方程;从圆外一点向圆引切线, 为切点,为坐标原点,且,

强化训练 1 、如图24-1,已知圆x 2+y 2=1的一条切线与x 轴、y 轴分别交于点A 、B ,则线段AB 长度的最小值为________. ()()()()()()222210,,2,2. 1.222 2..C x y x y l x y A B O OA a OB b a b C l a b AB AOB +--+===>>--=?例5:已知与曲线:相切的直线交轴,轴于两点,为原点,求证曲线与直线相切的条件是 ;求线段中点的轨迹方程; 3求的面积的最小值。 ()()()0,0, 4,0,0,3,,ABC A B C P PA PB PC ?练习3:已知三个顶点坐标,点是它的内切圆上一点,求以为直径的三个圆面积之和 的最大值和最小值。 4(1)2(2)3:1 (1)(2):20y x l x y -=练习:设圆满足: 截轴所得弦长为;被轴分成两圆弧,其弧长比为。在满足条件的所有圆中,求圆心到 直线的距离最小的圆的方程。

1、与直线和圆有关的最值问题-理(解析版)

圆锥曲线专题突破一:与直线和圆有关的最值问题 题型一 有关定直线、定圆的最值问题 例1 已知x ,y 满足x +2y -5=0,则(x -1)2 +(y -1)2 的最小值为________. 破题切入点 直接用几何意义——距离的平方来解决,另外还可以将x +2y -5=0改写成x =5-2y ,利用二次函数法来解决. 解析 方法一 (x -1)2+(y -1)2 表示点P (x ,y )到点Q (1,1)的距离的平方. 由已知可知点P 在直线l :x +2y -5=0上,所以PQ 的最小值为点Q 到直线l 的距离, 即d =|1+2×1-5|1+22 =255,所以(x -1)2+(y -1)2的最小值为d 2 =45. 方法二 由x +2y -5=0,得x =5-2y ,代入(x -1)2 +(y -1)2 并整理可得 (5-2y -1)2+(y -1)2=4(y -2)2+(y -1)2=5y 2 -18y +17=5(y -95)2+45,所以可得最小值为45. 题型二 有关动点、动直线、动圆的最值问题 例2 直线l 过点P (1,4),分别交x 轴的正方向和y 轴的正方向于A 、B 两点.当OA +OB 最小时,O 为坐标原点,求l 的方程. 破题切入点 设出直线方程,将OA +OB 表示出来,利用基本不等式求最值. 解 依题意,l 的斜率存在,且斜率为负,设直线l 的斜率为k ,则y -4=k (x -1)(k <0). 令y =0,可得A (1-4 k ,0);令x =0,可得B (0,4-k ). OA +OB =(1-4k )+(4-k )=5-(k +4k )=5+(-k +4 -k )≥5+4=9. 所以,当且仅当-k =4 -k 且k <0,即k =-2时,OA +OB 取最小值.这时l 的方程为2x +y -6=0. 题型三 综合性问题 (1)圆中有关元素的最值问题 例3 由直线y =x +2上的点P 向圆C :(x -4)2 +(y +2)2 =1引切线PT (T 为切点),当PT 的长最小时,点P 的坐标是________. 破题切入点 将PT 的长表示出来,结合圆的几何性质进行转化. 解析 根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2 -1,故PT 最小时,即PC 最小,此时PC 垂直于直线y =x +2,则直线PC 的方程为y +2=-(x -4),即y =-x +2,联立方程? ?? ?? y =x +2, y =-x +2,解得点P 的坐标 为(0,2). (2)与其他知识相结合的范围问题 例4 已知直线x +y -k =0(k >0)与圆x 2+y 2 =4交于不同的两点A ,B ,O 是坐标原点,且有|OA →+OB →|≥33 |AB →|,那么 k 的取值范围是________. 破题切入点 结合图形分类讨论.

(完整word版)“隐圆”最值问题习题

B M C D A E F D C B A B D C F A “隐圆”最值问题 重难点:分析题目条件发现题目中的隐藏圆,并利用一般的几何最值求解方法来解决问题 【例1】在平面直角坐标系中,直线y = - x + 6分别与x 轴、y 轴交于点A 、B 两点,点C 在y 轴的左边,且∠ACB = 90°,则点C 的横坐标x C 的取值范围是__________. 分析:在构造圆的前提下 考虑90°如何使用。直角对直径所以以AB 为直径画圆。使用垂径定理即可得到3-20c x ≤<3 【练】(2013-2014·六中周练·16)如图,已知Rt △ABC 中,∠ACB = 90°,AC = 3,BC = 4,点D 是AB 的中点,E 、F 分别是直线AC 、BC 上的动点,∠EDF = 90°,则EF 长度的最小值是__________. 分析:过D 点作DE 垂直AB 交AC 于点M 可证△FBD ∽△ECD 即可 求出最小值 【例2】如图,在Rt △ABC 中,∠ACB = 90°,D 是AC 的中点, M 是BD 的中点,将线段AD 绕A 点任意旋转(旋转过程中始 终保持点M 是BD 的中点),若AC = 4,BC = 3,那么在旋转 过程中,线段CM 长度的取值范围是_______________. 分析:将线段AD 绕A 点任意旋转隐藏着以A 为圆心AD 为半径的圆构造 出来。接下来考虑重点M 的用途即可。中点的用法可尝试下倍长和中位线。 此题使用中位线。答案是 3722 c x ≤≤ 【练】已知△ABC 和△ADE 都是等腰直角三角形,∠ACB =∠ADE = 90°,AC 2,AD = 1,F 是BE 的中点,若将△ADE 绕点A 旋转一周,则线段AF 4242 AC -+≤≤ 分析:同例题 【例3】如图,已知边长为2的等边△ABC ,两顶点A 、B 分别在平面直角

直线与圆的最值问题讲课稿

直线与圆的最值问题

题型一:过圆内一定点的直线被圆截得的弦长的最值. 例1:.圆x 2+y 2-4x +6y -12=0过点(-1,0)的最大弦长为 m ,最小弦长为n ,则m -n 等 于 解析圆的方程x 2+y 2-4x +6y -12=0化为标准方程为(x -2)2+(y +3)2=25. 所以圆心为(2,-3),半径长为 5. 因为(-1-2)2+(0+3)2=18<25, 所以点(-1,0)在已知圆的内部, 则最大弦长即为圆的直径,即m =10. 当(-1,0)为弦的中点时,此时弦长最小 . 弦心距d =2+12+-3-02=32, 所以最小弦长为 2r 2-d 2=225-18=27,所以m -n =10-27. 变式训练 1:1y kx 与圆C 2214x y 相交于,A B 两点,则AB 的最小值是多 少?解:直线1y kx 过定点1,0M ,当MC AB 时,AB 取最小值,由 2222l d r ,可知,222d R l ,2MC d ,故2 2222d R l 变式训练 2:已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4= 0(m ∈R). (1)求证不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时的 l 的方程. (1)证明因为l 的方程为(x +y -4)+m(2x +y -7)=0(m ∈R), 所以2x +y -7=0, x +y -4=0,解得x =3,y =1, 即l 恒过定点A(3,1).

因为圆心为C(1,2),|AC|=5<5(半径), 所以点A 在圆C 内, 从而直线l 与圆C 恒交于两点. (2)解由题意可知弦长最小时,l ⊥AC. 因为k AC =-12 ,所以l 的斜率为 2. 又l 过点A(3,1),所以l 的方程为2x -y -5=0. 方法总结:过圆内一定点的直线被圆截得的弦长的最大值为圆的直径,最小值为垂直于直 径的弦. 题型二:圆外一点与圆上任一点间距离的最值 直线与圆相离,圆上的点到直线的距离的最值 .例2:求点 A )(0,2到圆C 122y x 的距离的最大值和最小值?解:AC d 2,故距离的最大值为 3r d ,最小值为1r d 变式训练1:圆122y x 上的点到直线2x y 的距离的最大值?解:圆心到直线的距离为222 d , 则圆上的点到直线2x y 的最大值为12r d 则圆上的点到直线2x y 的最小值为1-2-r d 方法总结:圆外一点与圆上任一点间距离的最大值为r d ,最小值为r d 直线与圆相离,圆上的点到直线的距离的最大值为r d ,最小值为r d 题型三:切线问题 例3由直线y =x +2上的点P 向圆C :(x -4)2+(y +2)2=1引切线PT(T 为切点),当PT 最小的时候P 的坐标? 解析根据切线段长、圆的半径和圆心到点P 的距离的关系,可知PT =PC 2-1,故PT 最小时,即PC

人教版九年级数学精品专题14.圆中的最值问题

拔高专题圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考图(1)两点之间线段最短; 图(2)垂线段最短。 .在直线L上的同侧有两个点 A、B,在直线L上有到A、B 的距离之和最短的点存在,可 以通过轴对称来确定,即作出 其中一点关于直线L的对称 点,对称点与另一点的连线与 直线L的交点就是所要找的点.二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A点是⊙O上直径MN所分的半圆的一个三等分点,B点是弧AN的中点,P 点是MN上一动点,⊙O的半径为3,求AP+BP的最小值。 解:作点A关于MN的对称点A′,连接A′B,交MN于点P,连接OA′,AA′. ∵点A与A′关于MN对称,点A是半圆上的一个三等分点, ∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN的中点, ∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=3, ∴A′B=32.∵两点之间线段最短,∴PA+PB=PA′+PB=A′B=32. 【教师总结】解决此题的关键是确定点P的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题

例2:如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值 解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 2, ∴AB=2OA=6,∴OP= ? OA OB AB =3,∴PQ=22 OP OQ =22. 【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值. 解:(1)线段AB长度的最小值为4, 理由如下: 连接OP, ∵AB切⊙O于P, ∴OP⊥AB, 取AB的中点C, ∴AB=2OC; 当OC=OP时,OC最短, 即AB最短, 此时AB=4.

直线与圆位置关系知识点与经典例题

直线与圆位置关系 一.课标要求 1.能根据给定直线、圆的方程,判断直线与圆的位置关系; 2.能用直线和圆的方程解决一些简单的问题; 3.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。 二.知识框架 相离 几何法 弦长 直线与圆的位置关系 相交 代数法 切割线定理 相切 直线与圆 代数法 求切线的方法 几何法 圆的切线方程 过圆上一点的切线方程 圆的切线方程 切点弦 过圆外一点的切线方程 方程 三.直线与圆的位置关系及其判定方法 1.利用圆心0),(=++C By Ax b a O 到直线的距离2 2 B A C Bb Aa d +++=与半径r 的大小来判 定。 (1)?r d 直线与圆相离 2.联立直线与圆的方程组成方程组,消去其中一个未知量,得到关于另外一个未知量的一元二次方程,通过解的个数来判定。 (1)有两个公共解(交点),即?>?0直线与圆相交 (2)有且仅有一个解(交点),也称之为有两个相同实根,即0=??直线与圆相切 (3)无解(交点),即????r d 练习

(位置关系)1.已知动直线5:+=kx y l 和圆1)1(:2 2=+-y x C ,试问k 为何值时,直线与圆相切、相离、相交? (位置关系)2.已知点),(b a M 在圆1:2 2 =+y x O 外,则直线1=+by ax 与圆O 的位置关系是() A.相切 B.相交 C.相离 D.不确定 (最值问题)3.已知实数x 、y 满足方程0142 2 =+-+x y x , (1)求 x y 的最大值和最小值; (2)求y x -的最大值和最小值; (3)求2 2 y x +的最大值和最小值。 〖分析〗考查与圆有关的最值问题,解题的关键是依据题目条件将其转化为对应的几何问题求解,运用数形结合的方法,直观的理解。①转化为求斜率的最值;②转化为求直线b x y +=截距的最大值;③转化为求与原点的距离的最值问题。 (位置关系)4.设R n m ∈,,若直线02)1()1(=-+++y n x m 与圆1)1()1(2 2 =-+-y x 相切,则n m +的取值围是() (位置关系)5.在平面直角坐标系xoy 中,已知圆224x y +=上有且仅有四个点到直线 1250x y c -+=的距离为1,则实数c 的取值围是 6.直线0323=-+y x 截圆x 2+y 2=4得的劣弧所对的圆心角是 ( C ) A 、 6π B 、4π C 、3π D 、2 π (位置关系)7.圆01222 2 =+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 2 1+ D .221+ (最值问题)8.设A 为圆1)2()2(22=-+-y x 上一动点,则A 到直线05=--y x 的最大距离为______. 9.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆 C 的方程为( ) A .0322 2 =--+x y x B .042 2=++x y x C .0322 2 =-++x y x D .042 2 =-+x y x

直线与圆中的最值问题

直线与圆中的最值问题 Prepared on 24 November 2020

二、弦长公式:直线与二次曲线相交所得的弦长 1直线具有斜率k ,直线与二次曲线的两个交点坐标分别为 1122(,),(,)A x y B x y ,则它的弦长 2221212121(1)()4AB x x x x x ??=+-=++-??k k 1211y y =+-2k 注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为 1212()y y x x -=-k ,运用韦达定理来进行计算. 2当直线斜率不存在是,则12AB y y =-. 三、过两圆C 1: x 2 + y 2 +D 1x +E 1y +F 1 = 0和C 2: x 2 + y 2 +D 2x +E 2y +F 2 = 0的交点的圆系方程,一般设为 x 2+y 2 +D 1x +E 1y +F 1+λ(x 2 + y 2 +D 2x +E 2y +F 2) = 0 (λ为参数)此方程不包括圆C 2. 四、对称问题1和最小,化异侧(两边之和大于第三边,三点共线时取等号即最小值) 2差最大,化同侧(两边之差小于第三边,三点共线时取等号即最大值) 例题分析 1、如果实数y x ,满足等式22(2)3x y -+=, (1)求 y x 的最大值和最小值;(2)求y x -的最大值与最小值;(3)求22x y +的最大值与最小值. 直线与圆

2、已知两定点(3,5)A -,(2,15)B ,动点P 在直线3440x y -+=上,当 PA +PB 取最小值时,这个最小值为( ).A .513 B .362 C .155 D .5102+ 3、已知点)8,3(-A 、)2,2(B ,点P 是x 轴上的点,求当PB AP +最小时的点P 的坐标. 【解答】如图示: ,考虑代数式的几何意义: ⑴y x 即圆上的点与原点所在直线的斜率.当直线与圆相切时,斜率取得最大值和最小值,即y x 取得最大值与最小值; ⑵y x -即过圆上点,且斜率为1的直线在y 轴上截距; ⑶22x y +即圆上的点到原点距离的平方. 当点位于圆与x 轴的左交点时,点到原点的距离最小;当点位于圆与x 轴的右交点时,点到原点的距离最大. 解(1)设(,)P x y 为圆22(2)3x y -+=上一点.y x 的几何意义为直线OP 的斜率,设y k x =,则直线OP 的方程为y kx =.当直线OP 与圆相切时,斜率取最大值与最小值. ∵圆心到直线y kx =的距离222211d k k = =++2231k =+3k =OP 与圆相切.∴y x 的最大值为3,最小值为3-. (2)令y x b -=,即y x b =+,求y x -的最大值与最小值即过圆上点,且斜率为1的直线在y 轴上截距的最大值与最小值. 当直线与圆相切时,截距取得最大值与最小值.∵圆心到直线y x b =+的距离222 11d ==+ 32 =62b =时,直线OP 与圆相切.∴y x -62,最小值为62. (3)要22x y +的最大值与最小值,即求圆上的点到原点距离的平方的最大值与最小值. 当点位于圆与x 轴的左交点时,点到原点的距离最小;

2016年中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E, ?AB BC=,AC=,求的最大值. a b a b 引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE 长度的最大值为( ). A.3 B.6 C D. 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

直线与圆中的最值问题

二、弦长公式:直线与二次曲线相交所得的弦长 1直线具有斜率k ,直线与二次曲线的两个交点坐标分别为 1122(,),(,)A x y B x y ,则它的弦长 12AB x =-= 12y y =- 注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为 1212()y y x x -=-k ,运用韦达定理来进行计算. 2当直线斜率不存在是,则12AB y y =-. 三、过两圆C 1: x 2 + y 2 +D 1x +E 1y +F 1 = 0和C 2: x 2 + y 2 +D 2x +E 2y +F 2 = 0的交点的圆系方程,一般设为 x 2+y 2 +D 1x +E 1y +F 1+λ(x 2 + y 2 +D 2x +E 2y +F 2) = 0 (λ为参数)此方程不包括圆C 2. 四、对称问题1和最小,化异侧 2差最大,化同侧 例题分析 1、如果实数y x ,满足等式22(2)3x y -+=, (1)求 y x 的最大值和最小值;(2)求y x -的最大值与最小值;(3)求22x y +的最大值与最小值. 2、已知两定点(3,5)A -,(2,15)B ,动点P 在直线3440x y -+=上,当 PA +PB 取最小值时,这个最小值为().A .B .362 C .D .5+ 3、已知点)8,3(-A 、)2,2(B ,点P 是x 轴上的点,求当PB AP +最小时的点P 的坐标. 直线与圆

【解答】如图示:,考虑代数式的几何意义: ⑴y x 即圆上的点与原点所在直线的斜率.当直线与圆相切时,斜率取得最大值和最小值,即y x 取得最大值与最小值; ⑵y x -即过圆上点,且斜率为1的直线在y 轴上截距; ⑶22x y +即圆上的点到原点距离的平方. 当点位于圆与x 轴的左交点时,点到原点的距离最小;当点位于圆与x 轴的右交点时,点到原点的距离最大. 解(1)设(,)P x y 为圆22(2)3x y -+=上一点.y x 的几何意义为直线OP 的斜率,设y k x =,则直线OP 的方程为y kx =.当直线OP 与圆相切时,斜率取最大值与最小值. ∵圆心到直线y kx =的距离 d = =,=即k =直线OP 与圆 相切.∴y x 的最大值为3,最小值为(2)令y x b -=,即y x b =+,求y x -的最大值与最小值即过圆上点,且斜率为1的直线在y 轴上截距的最大值与最小值. 当直线与圆相切时,截距取得最大值与最小值.∵圆心到直线y x b =+的距离 d == =2b =时,直线OP 与圆相切.∴y x -2,最小值为2. (3)要22x y +的最大值与最小值,即求圆上的点到原点距离的平方的最大值与最小值. 当点位于圆与x 轴的左交点时,点到原点的距离最小; 当点位于圆与x 轴的右交点时,点到原点的距离最大; ∵左交点坐标为(2,右交点坐标为(2 的最大值与最小值分别为22 ∴22x y +的最大值与最小值分别为7+,7-2【分析】先求出点A 关于直线3440x y -+=的对称点'A ,连接A '和B 交直线于点P ,根据三角形的两边之和大于第三边可知,此时PA +PB 取值最小,最小值为|'|A B .根据两点间的距离公式即可求得最小值。

直线与圆的最值问题归纳(缺答案)

直线与圆的最值专题 一、动点的最值问题 1.若动点P 在直线l 1:2x -y -2=0上,动点Q 在直线圆(x -2)2+(y -1)2 =1上,线段PQ 的最小值是________. 2.若动点P 在直线l 1:x -y -2=0上,动点Q 在直线l 2:x -y -6=0上,设线段PQ 的中点为M(x 0,y 0),且(x 0-2)2+(y 0+2)2≤8,则x 20+y 20的取值范围是________. 3.已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则PM +PN 的最小值为________. 4.在平面直角坐标系xOy 中,设点P 为圆C :22(1)4x y -+=上的任意一点,点Q (2a ,3a -)(a ∈R ),则线段PQ 长度的最小值为______. 5.直线2ax +by =1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P(a ,b)与点(0,1)之间的距离的最大值为________. 6.直线l 过点(0,-4),从直线l 上的一点P 作圆C :x 2+y 2-2y =0的切线PA ,PB (A ,B 为切点),若四边形PACB 面积的最小值为2,则直线l 的斜率k 为________. 7.C :(x -a )2+(y -1)2=1在不等式x +y +1≥0所表示的平面区域内,则a 的最小值为________ 二、定直线与定圆的最值问题 8.已知x ,y 满足x +2y -5=0,则(x -1)2+(y -1)2的最小值为________. 9.已知点P (x ,y )是圆(x +2)2+y 2=1上任意一点. (1)求点P 到直线3x +4y +12=0的距离的最大值和最小值; (2)求y -2x -1 的最大值和最小值. 10.若曲线x 2+y 2+2x -4y +1=0上的任意一点关于直线2ax -by +2=0(a ,b ∈R +)的对称 点仍在该曲线上,则1a +1b 的最小值是________. 三、动直线与的动圆的最值问题 11.过点(2,0)引直线l 与曲线y =1-x 2 相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率为________.

椭圆中的常见最值问题.

椭圆中的常见最值问题 1、椭圆上的点P 到二焦点的距离之积||||21PF PF 取得最大值的点是椭圆短轴的端点,取得最小值的点在椭圆长轴的端点。 例1、椭圆19 252 2=+y x 上一点到它的二焦点的距离之积为m ,则m 取得的 最大值时,P 点的坐标是 。P (0,3)或(0,-3) 例2、已知椭圆方程122 22=+b y a x (222,0c b a b a +=>>)p 为椭圆上一点,2 1,F F 是椭圆的二焦点,求||||21PF PF 的取值范围。 分析:22221))((||||x e a ex a ex a PF PF -=-+=,)|(|a x ≤ 当a x ±=时,min 21||||PF PF =222b c a =-,当0=x 时,2max 21||||a PF PF = 即≤2b ||||21PF PF 2a ≤ 2、椭圆上到的椭圆内一个定点的距离与它到焦点距离之差取得最大值或最小值的点是这个定点与焦点连线延长线或反向延长线与椭圆的交点,最大值、最小值分别是定点到该焦点的距离和其相反数。 例3、已知)1,1(A ,1F 、2F 是椭圆15 92 2=+y x 的左右焦点,P 为椭圆上一动 点,则||||2PF PA -的最大值是 ,此时P 点坐标为 。||||2PF PA -的最小值是 ,此时P 点坐标为 。 3、椭圆上到椭圆内定点的距离与它到椭圆的一个焦点的距离之和取得最小值或最大值的点是另一焦点与定点连线的延长线或反向延长线与椭圆的交点。 例4、已知)1,1(A ,1F 是椭圆15 92 2=+y x 的左焦点,P 为椭圆上一动点,则

直线与圆中的最值问题

直线与圆 Q?空总**涉艮与酣关幻恳值冋题:可i6?gjι? 质,利用数徘言求解,-??: ω≡?u=τ≡-^式的最竄问题,可蒔比为动直嗾斜率生 (2)SJflr=OX+ ?f?式的最值问题,可轻址为动≡?≡ 的显审冋恿. ^5D?-^ + ?-?bfl?^的晨值问题.可转忆圆b已尼 ff]?R半径&!最苜冋胡. 1直线具有斜率k,直线与二次曲线的两个交点坐标分别为A(X1, y I),B(X2, %),则它的弦长 AB=J1 +k2∣Xι_X2〔=J(1+k2)仪+X2)2—4>?χj =屮 +评,yι _ y2 注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为yι一y2 = k(Xl - X2),运用韦达定理来进行计算. AB = y — Vc 2当直线斜率不存在是,则y1 72 . 三、过两圆G: χ2 + y2 +D i x +E i y +F i = 0和C2: χ2 + y2 +D2x +E2y +F2 = 0的交点的圆系方程,一般设为 2 2 2 2 X +y +D i x +E i y +F i+ λx + y +D2x +E2y+F2) = 0( λ为参数)此方程不包括圆C2. 四、对称问题i和最小,化异侧(两边之和大于第三边,三点共线时取等号即最小值) 2差最大,化同侧(两边之差小于第三边,三点共线时取等号即最大值) 例题分析 1、如果实数X,V满足等式(X -2)2 V2 =3, (1)求-的最大值和最小值;(2)求V-X的最大值与最小值;(3)求X2y2的最大值与最小值 2、已知两定点A(-3,5),B(2,15),动点P在直线3x-4V F=O上,当PA+PB取最小值时,这个 最小值为( ).A. 5 13 B. 362 C. 155 D. 5 10' 2 3、已知点A(-3,8)、B(2,2),点P是X轴上的点,求当AP* PB最小时的点P的坐标. 最道冋题. 直线与岡的位置关系有二种:和离、相切F相交” 判 定方法有两种土 ⑴代数?^1?=A JΓ÷B1÷C =0?烁√?i+l)A H-E l÷F=

中考数学圆的最值问题(含答案)之欧阳数创编

数学组卷圆的最值问题 时间:2021.03.02 创作:欧阳数 一.选择题(共7小题) 1.(2014春?兴化市月考)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C为第一象限内一点,且AC=2,设tan∠BOC=m,则m的取值范围是() A.m≥0B.C.D. 2.(2013?武汉模拟)如图∠BAC=60°,半径长1的⊙O 与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA 长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为() A.3B.6C.D. 3.(2014?武汉模拟)如图,P为⊙O 内的一个定点,A为⊙O上的一个动 点,射线AP、AO分别与⊙O交于B、C 两点.若⊙O的半径长为3,OP=,则 弦BC的最大值为() A.2B.3C.D.3 4.(2015?黄陂区校级模拟)如图,扇形AOD中, ∠AOD=90°,OA=6,点P为弧AD上任意一点(不与点A和

D重合),PQ⊥OD于Q,点I为△OPQ的内心,过O,I和D三点的圆的半径为r.则当点P 在弧AD上运动时,r的值满足() A.0<r<3B.r=3C.3<r<3D.r=3 5.(2010?苏州)如图,已知A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心坐标为(﹣1, 0),半径为1.若D是⊙C上的一个动点,线段DA与 y轴交于点E,则△ABE面积的最小值是() A.2B.1C.D. 6.(2013?市中区模拟)如图,已知A、B两点的坐标 分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是() A.63B.31C.32D.30 7.(2013?枣庄)如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP的最大值 是() A.90°B.60°C.45°D.30° 二.填空题(共12小题) 8.(2013?武汉)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG

直线与圆定点定值问题

直线与圆定点,定值范围问题习题 1.直线(21)(1)740()m x m y m m R +++--=∈,则直线过定点____________. 2.若圆2 2 2 (3)(5)x y r -++=上有且仅有两个点到直线4320x y --=的距离等于1,则半径r 的取值范围为____________. 3.在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是 ________. 4.圆2 2 2 :22440C x y tx t y t +--+-=,则圆过定点________________. 5.若直线y=x+b 与曲线y =b 的取值范围______________. 6.平面内动点M 到定点(2,0),(2,0)A B -的距离之比为1 2 ,则动点M 的轨迹方程是 ______________________. 7已知圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0(a ,b ∈R)对称,则ab 的取值范围是 ________. 8.一束光线从点A (-1,1)出发经x 轴反射,到达圆C :(x -2)2+(y -3)2=1上一点的最短路 程是________ 9.设有一组圆C k :(x -k +1)2+(y -3k )2=2k 4(k ∈N * )下列四个命题正确的序号有: ①存在一条定直线与所有的圆均相切; ②存在一条定直线与所有的圆均相交; ③存在一条定直线与所有的圆均不相交; ④所有的圆均不经过原点. 10.已知过点A (0,1),且斜率为k 的直线l 与圆C :1)3()2(22 =-+-y x ,相交于M 、 N 两点. (1)求实数k 的取值范围; (2)AM ?AN 是否为定值,若是,求出定值;若不是,请说明理 由。 11.已知⊙C,22 (1)5,x y +-=直线mx-y+1-m=0 (1)证明:对于m R ∈,直线与圆总有两个不同的交点A,B, (2)求弦AB 中点的轨迹方程,并说明轨迹是什么曲线。 (3)若定点P(1,1)分弦满足PB=2PA,求AB 直线方程 12.已知⊙O 2 2 4x y +=过点 P (作倾斜角互补的直线交圆A,B ,证明直线AB 的斜率为定值。 13.点A(0,2)是圆2 2 16x y +=内的一定点,B,C 是这个圆上的两动点,若AB CA ⊥,求BC 中点M 的轨迹方程,并说明轨迹的形状。 14.已知:点P 是圆2 2 16x y +=上的一个动点,点A 是x 轴上的定点,坐标为(12,0),当P 点在圆上运动时,求线段PA 的中点M 的轨迹方程

直线与圆中的最值问题

直线与圆中的最值问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

二、弦长公式:直线与二次曲线相交所得的弦长 1直线具有斜率k ,直线与二次曲线的两个交点坐标分别为1122(,),(,)A x y B x y ,则它的弦长 2 2 2 1212121(1)()4AB x x x x x ??=+-=++-??k k 12 11y y =+-2 k 注:实质上是由两点间距离公式推导出来的,只是用了交点坐标设而不求的技巧而已(因为 1212() y y x x -=-k ,运用韦达定理来进行计算. 2当直线斜率不存在是,则12 AB y y =-. 三、过两圆C 1: x 2 + y 2 +D 1x +E 1y +F 1 = 0和C 2: x 2 + y 2 +D 2x +E 2y +F 2 = 0的交点的圆系方程,一般设为 x 2+y 2 +D 1x +E 1y +F 1+λ(x 2 + y 2 +D 2x +E 2y +F 2) = 0 (λ为参数)此方程不包括圆C 2. 四、对称问题1和最小,化异侧(两边之和大于第三边,三点共线时取等号即最小值) 2差最大,化同侧(两边之差小于第三边,三点共线时取等号即最大值) 例题分析 1、如果实数y x ,满足等式22(2)3x y -+=, (1)求y x 的最大值和最小值;(2)求y x -的最大值与最小值;(3)求22x y +的最大值与最小值. 直线与圆

2、已知两定点(3,5)A -,(2,15)B ,动点P 在直线3440x y -+=上,当 PA + PB 取最小值 时,这个最小值为( ).A .513 B .362 C .155 D .5102+ 3、已知点)8,3(-A 、)2,2(B ,点P 是x 轴上的点,求当 PB AP +最小时的点P 的坐标. 【解答】如图示: ,考虑代数式的几何意义: ⑴y x 即圆上的点与原点所在直线的斜率.当直线与圆相切时,斜率取得最大值和最小值,即 y x 取得最大值与最小值; ⑵y x -即过圆上点,且斜率为1的直线在y 轴上截距; ⑶22x y +即圆上的点到原点距离的平方. 当点位于圆与x 轴的左交点时,点到原点的距离最小;当点位于圆与x 轴的右交点时,点到原点的距离最大. 解(1)设(,)P x y 为圆22(2)3x y -+=上一点.y x 的几何意义为直线OP 的斜率,设y k x =,则直线OP 的方程为y kx =.当直线OP 与圆相切时,斜率取最大值与最小值. ∵圆心到直线y kx =的距离2 2 2 2 1 1 d k k = = ++2 2 31 k =+3k =OP 与圆相切.∴y x 的最大值为3,最小值为3- (2)令y x b -=,即y x b =+,求y x -的最大值与最小值即过圆上点,且斜率为1的直线在y 轴上截距的最大值与最小值. 当直线与圆相切时,截距取得最大值与最小值.∵圆心到直线y x b =+的距离 22 2 11d = =+

圆中的最值问题

圆中的最值问题 【考题展示】 题1 (2012年武汉中考)在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 题2 (2013年武汉元调)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作 +⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b 的最大值.(有修改) 题3 (2013年武汉四调)如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P 为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为_________.题 4 (2013年武汉五模)在△ABC中,120 BC=.若△ABC的内切圆半径为r,则r的最大值为 A ∠=?,6 _________.(有修改) 题5 (2013年武汉中考)如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是_________. 题1图题2 图题3 图 题4图题5图

【典题讲练】 类型1(相关题:题5) 如图,边长为a的等边△ABC的顶点A,B分别在x轴正半轴和y轴正半轴上运动,则动点C到原点O的距离的最大值是_________. 在直角坐标系中,△ABC满足,∠C=90°,AC=8,BC=6,点A,B分别在x轴、y轴上,当A点从原点开始在正x轴上运动时,点B随着在正y轴上运动(下图),求原点O到点C的距离OC的最大值,并确定此时图形应满足什么条件. 如图,在平面直角坐标系中,已知等腰直角三角形ABC,∠C=90°,AC=BC=2,点A、C分别在x轴、y轴上,当点A从原点开始在x轴的正半轴上运动时,点C在y轴正半轴上运动. (1)当A在原点时,求点B的坐标; (2)当OA=OC时,求原点O到点B的距离OB; (3)在运动的过程中,求原点O到点B的距离OB的最大值,并说明理由.

直线和圆基础习题和经典习题加答案

【知识网络】 综合复习和应用直线和圆的基础知识,解决对称问题、轨迹问题、最值问题,以及直线与圆和其他数学知识的综合问题,提高分析问题和解决问题能力. 【典型例题】 [例1](1)直线x +y=1与圆x 2+y 2-2ay=0(a >0)没有公共点,则a 的取值范围是 ( ) A .(0, 2 -1) B .( 2 -1, 2 +1) C .(- 2 -1, 2 -1) D .(0, 2 +1 (2)圆(x -1)2+(y + 3 )2=1的切线方程中有一个是 ( ) A .x -y=0 B .x +y=0 C .x=0 D .y=0 (3)“a =b ”是“直线222()()2y x x a y b =+-++=与圆相切”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 (4)已知直线5x +12y +a=0与圆x 2+y 2-2x=0相切,则a 的值为 . (5)过点(1, 2 )的直线l 将圆(x -2)2+y 2=4分成两段弧,当弧所对的圆心角最小时,直线l 的斜率k= . [例2] 设圆上点A (2,3)关于直线x +2y=0的对称点仍在圆上,且圆与直线x -y +1=0相交的弦长为2 2 ,求圆的方程. [例3] 已知直角坐标平面上点Q (2,0)和圆C :x 2+y 2=1,动点M 到圆C 的切线长与|MQ|的比等于λ(λ>0).求动点M 的轨迹方程,并说明它表示什么曲线. [例4] 已知与曲线C :x 2+y 2-2x -2y +1=0相切的直线l 叫x 轴,y 轴于A ,B 两点,|OA|=a,|OB|=b(a >2,b >2). (1)求证:(a -2)(b -2)=2; (2)求线段AB 中点的轨迹方程; (3)求△AOB 面积的最小值. 【课内练习】 1.过坐标原点且与圆x 2+y 2-4x +2y +5 2 =0相切的直线的方程为 ( )

相关文档
相关文档 最新文档