文档库 最新最全的文档下载
当前位置:文档库 › 无穷大量与无穷小量极限的运算法则

无穷大量与无穷小量极限的运算法则

无穷大量与无穷小量极限的运算法则
无穷大量与无穷小量极限的运算法则

第五讲

Ⅰ 授课题目:

§2.4无穷大量与无穷小量;§2.5极限的运算法则。 Ⅱ 教学目的与要求:

1、理解无穷大与无穷小的概念,弄清无穷大与无穷小的关系;

2、掌握极限的运算法则。 Ⅲ 教学重点与难点:

1、无穷大与无穷小的概念、相互关系;

2、用极限的运算法则求极限。 Ⅳ 讲授内容:

§2.4无穷大量与无穷小量 一、无穷大的概念: 引例:讨论函数 1

1

)(-==x x f y ,当 1→x 时的变化趋势。

当 1→x 时,

1

1

-x 越来越大(任意大),即:+∈?R E ,要 E x >-11?E

x 1

1<-, 也即:+∈?R E ,01>?E ,当 E

x 1

1<-时,有:

E x >-11。 定义2.9:+∈?R E ,变量y 在其变化过程中,总有一时刻,在那个时刻以后,E y >成立,则称变量y 是无穷大量,或称变量y 趋于无穷大,记:∞=y lim 。 如:∞=-→11

lim

1

x x ,-∞=+→x x lg lim 0,+∞=-→

tgx x 2

lim π。

注 1. 若:∞=y lim ,则习惯地称此时)(x f y =的极限为无穷(大);

2.无穷大不能与很大的数混淆;

3.无穷大与无界变量的区别;

例如:x

x f y sin 1

)(=

= 当)2,1,0(,ΛΛ±±==k k x π时,∞→)(x f ,无界,但非无穷大,πk x ≠Θ时,)(x f 为有限数。

例1 函数 ?),(cos 内是否有界在+∞-∞=x x y 又当 +∞→x 时,此函数是否为无穷大?为什么? 解 用反证法

若:当+∞→x 时,x x y cos =非无穷大,

)1(,cos ,,0,0M x x X x X M >>>?>?有时当则,取2

π+

=n x n ,当n 充分大时

必有X x n >,而 0cos =n n x x 与(1)式矛盾。

∴ +∞→x 时,x x y cos =,非无穷大。

4.无穷大运算的结论:

(1)有界变量与无穷大量之和是无穷大量; (2)两个无穷大量之积是无穷大量; (3)有限个无穷大量之积是无穷大量。 二、无穷小量: 1.概念:

定义2.10 以零为极限的变量称为无穷小量。 例如:021lim

=∞→n n ,则称 ∞→n 时,变量 n

n

y 21

=是无穷小量。 注 无穷小量非很小的数,但零是可作为无穷小量的唯一的数。

2.两个重要结论: 结论1

定理2.9 A y =lim ,?α+=A y ,0lim =α。 例如: ?56lim

=+∞→x x x ,Θx x x 5656+=+,而:05lim =∞→x x ,∴65

6lim =+∞→x

x x 。

结论2

定理2.10 若:0lim =α,且:0,>≤M M y ,?0lim =y α 推论 若:C 为常数,0lim =α?0lim =αC 。

例如:?1

sin

lim 0=→x

x x

0lim 0=→x x Θ,11sin ≤x ,∴01

sin lim 0=→x

x x 。

三、无穷大量与无穷小量的关系: 定理2.11 若:∞=y lim ,? 01lim =y ;若:)0(,0lim ≠=αα?∞=α

1

lim 。 例如:∞=+∞

→x x e lim ,? 01

lim

=+∞→x

x e 。

注 无穷大、无穷小与极限过程有关。 四、无穷小的阶(无穷小的比较): 1.概念:

定义2.11 设βα,是关于同一过程的无穷小,α

β

lim 也是关于同一过程的极限, 若:0lim

β

,则称β是比α较高阶的无穷小,记:)(αβο=;

若:∞=αβ

lim ,则称β是比α低阶的无穷小; 若:)0(lim ≠=c c α

β

,则称β是与α同阶的无穷小;

特别地:1=c 时,称α与β是等价的无穷小,记:α~β。

例如:2

1

2lim

0=→x x x Θ,∴ 0→x 时,x 与x 2是同阶无穷小。

注 1.同一过程的无穷小方能比较;

2.α

β

lim

存在,方能比较。 2.重要结论:

定理2.12 若:α~'

α,β~'

β,且:?''lim αβ ,则 αβ

lim =''lim α

β。

常用的等价无穷小:

0→x 时,x x sin ~~tgx ~1~)1ln(~~arcsin -+x e x arctgx x ,……。

例2 设:0→x 时,)1ln()cos 1(2x x +-是比n x x sin 高阶的无穷小,而n x x sin 是比12

-x e

高阶的无穷小,则 ?=n

解 Θ 021lim 2lim sin )1ln()cos 1(lim 302

2020===+--→→→n x n x n x x xx

x

x x x x x ,∴ 03>-n ? ?3

又:0lim lim 1sin lim 10

2002

===--→→→n x n

x x n x x x

xx e x x ,∴01>-n ? 1>n , 即:31<

定理2.13 若:A x =lim ,B y =lim ?=±)lim(y x B A y x ±=±lim lim 。 推论1 i i A x =lim ,n i ,,2,1Λ=,? ∑∑∑=====n i n

i i

i

n i A

x x 1

1

1

lim lim

推论2 0lim lim ==βα,? 0)lim(=±βα 注 可推广到有限个。

定理2.14 若:A x =lim ,B y =lim ? AB y x xy ==lim lim )lim( 推论1 i i A x =lim ,n i ,,2,1Λ=,? ∏∏∏=====n i n

i i

i

n i i

A x x 1

1

1

lim lim

推论2 0lim lim ==βα,? 0lim =αβ 注 可推广到有限个。

推论3 0)(lim ≠=A x f ,0lim =α,? 0)

(lim

=x f α

推论4 A x =lim ,c 为常数 ? cA x c cx ==lim lim

推论5 A x =lim ?n

n

n

A x x ==)(lim lim ,n

n

n

A x x 111)(lim lim == (0>A ),

+∈Z n 。

定理2.15 若:A x =lim ,0lim ≠=B y ?B

A y x y x ==lim lim lim 。 例1 求:)123(lim 21

+-→x x x 。

解 2112131lim 2lim 3)123(lim 21

21

21

=+?-?=+-=+-→→→x x x x x x x

注 若:)(x f 是一多项式,则:)()(lim 00

x f x f x x =→。

例2 求:若:)(x f 是1

35

2lim 22+-+→x x x x 。

解 7

5)13(lim )52(lim 1352lim 2

2

2

22=+-+=+-+→→→x x x x x x x x x

注 若:0)(,)()()(0≠=x p x p x q x f )(),(x q x p 是多项式,则:==→→)

()

(lim )(lim 00x p x q x f x x x x

=

)

()

()

(lim )

(lim 000

0x p x q x p x q x x x x =

→→。 例3 研究:45lim

22-→x x

x

解 Θ 054lim 22=-→x x x ,∴ ∞=-→4

5lim 22x x

x 。

例4 求:93

lim 23--→x x x 。

解 )3)(3(3lim 93lim 323+--=--→→x x x x x x x 31lim 3+=→x x 6

1

=

例5 求:42lim 4--→x x x 。(41

)

解 42lim

4--→x x x )2)(2(2

lim 4

+--=→x x x x 4

12

1lim 4

=

+=→x x 例6 求:x

x x 1

1lim 0

-+→。 解

x x x 11lim

-+→)

11()

11)(11(lim

0++++-+=→x x x x x )11(lim 0++=→x x x x 21111lim 0=++=→x x

例7 求:2

23

21lim 4

---+→x x x 。

解 2

23

21lim

4

---+→x x x )321)(4()22)(82(lim 4++-+--=→x x x x x 322)321()22(2lim 4=

+++-=→x x x 例8 求:1

31

24lim 423+-+∞→x x x x 。 解 1

3124lim

423+-+∞→x x x x 03013124lim 4

42==+-+=∞→x

x x x x 例9 求:x

x x x 781

2lim 22++∞→。

解 x x x x 7812lim 2

2

++∞→4

17812lim 2=+

+=∞→x

x x 注

????

?????>∞<==++++++++----∞→m

n m n m n b a b x b x b x b a x a x a x a m m m m n n n n x ,,0,lim 0

11101110ΛΛ(j i b a b a ,,0,000≠≠是常数,且: n i ,,2,1,0Λ=,m j ,,2,1,0Λ=)。

例10 已知:???

??≥+-+<-==0,1

130,1)(3

2x x x x x x x f y ,研究:)(lim 0x f x →,)(lim x f x +∞→,)(lim x f x -∞→。

解 Θ 1)1(lim )(lim 00-=-=→→-x x f x x ,11

1

3lim )(lim 3200-=+-+=→→+x x x x f x x ,∴1)(lim 0

-=→x f x ;

又:=+∞→)(lim x f x 01

1

3lim

32=+-+∞→x x x x ;=-∞→)(lim x f x -∞=--∞→)1(lim x x 。 例11 求:)1(lim 2

x x x x -++∞

解 2

11lim

)1(lim 22

=

++=-++∞

→+∞

→x

x x x x x x x 。 例12 求:)11(lim 2

2

--

+∞

→x x x

解 )11(lim 2

2

--

+∞

→x x x =1

1)1(1lim

2

2

22-++--+∞

→x x x x x =1

12lim

2

2

-++=∞

→x x x =

=011112lim

2

2=-++

→x x x x 。

Ⅴ 小结与提问:

1. 无穷小与无穷大是相对于过程而言的

主要内容:两个定义,三个定理,一个推论; 几点注意:五点注意。 2.无穷小的阶

意义:同一过程的无穷小的比较,比较趋于零的快慢; 应用:等价无穷小在求极限中有非常巧妙的应用。 3.极限的运算法则

在极限存在的情况下,和、差、积、商(分母非零)的极限等于极限的和、差、积、商。 Ⅵ 课外作业:

89P 7~13.15.19.36.37。

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

极限的四则运算教案(1)

2.4 极限的四则运算(一) 古浪五中---姚祺鹏 【教学目标】 (一)知识与技能 1.掌握函数极限四则运算法则; 2.会用极限四则运算法则求较复杂函数的极限; 3.提高问题的转化能力,体会事物之间的联系与转化的关系; (二)过程与方法 1.掌握极限的四则运算法则,并能使用它求一些复杂数列的极限. 2.从函数极限联想到数列极限,从“一般”到“特殊”. (三)情态与价值观 1.培养学习进行类比的数学思想 2.培养学习总结、归纳的能力,学会从“一般”到“特殊”,从“特殊”到“一般”转化的思想.同时培养学生的创新精神,加强学生的的实践能力。 (四)高考阐释: 高考对极限的考察以选择题和填空题为主,考察基本运算,此类题目的特点在于需要进行巧妙的恒等变形,立足课本基础知识和基本方法 【教学重点与难点】 重点:掌握函数极限的四则运算法则; 难点:难点是运算法则的应用(会分析已知函数由哪些基本函数经过怎样的运算结合而成的). 【教学过程】 1.提问复习,引入新课 对简单函数,我们可以根据它的图象或通过分析函数值的变化趋势直接写出它们的极

限.如 1lim ,2121lim 1 1==→→x x x x . 让学生求下列极限: (1)x x 1lim →; (2)x x 21lim 1→; (3))12(lim 21+→x x ; (4)x x 2lim 1→ 对于复杂一点的函数,如何求极限呢?例如计算??? ? ?+→x x x 21lim 1即x x x 212lim 21+→,显然通过画图或分析函数值的变化趋势找出它的极限值是不方便的.因此、我们有必要探讨有关极限的运算法则,通过法则,把求复杂函数的极限问题转化为求简单函数的极限. 板书课题:极限的四则运算. 2.特殊探路,发现规律 考察x x x 212lim 21+→完成下表: 根据计算(用计算器)和极限概念,得出2 3212lim 21=+→x x x ,与1lim 2121lim 11==→→x x x x 、 对比发现:2321121lim lim 21lim 212lim 11121=+=+=??? ? ?+=+→→→→x x x x x x x x x x . 由此得出一般结论:函数极限的四则运算法则: 如果b x g a x f x x x x ==→→)(lim ,)(lim 0 0,那么 []b a x g x f x x ±=±→)()(lim 0 []b a x g x f x x ?=?→)()(lim 0 )0()()(lim 0≠=??????→b b a x g x f x x 特别地:(1)[])(lim )(lim 0 0x f C x f C x x x x →→?=?(C 为常数) (2)[])N ()(lim )(lim *00∈??????=→→n x f x f n x x n x x

人教版高中数学(理科)选修函数极限的运算法则教案

函数极限的运算法则 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 也就是说,如果两个函数都有极限,那么这两个函数的和、差、积、商组成的函数极限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→ 例2 求1 12lim 231++-→x x x x

例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→ 例5 求1 342lim 232+--+∞→x x x x x 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以3x ,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1))32(lim 21 -→x x ; (2))132(lim 22 +-→x x x (3))]3)(12[(lim 4 +-→x x x ; (4)14312lim 221-++→x x x x

极限四则运算法则

极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

高三选修2教案2.4极限的四则运算(一)

课 题:2.4极限的四则运算(一) 教学目的:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数a ,那么就说数列}{n a 以a 为极限.记作lim n n a a →∞ =. 2.几个重要极限:

(1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)无穷等比数列}{n q (1

极限的运算法则

7.7 (2)极限的运算法则 一、教学内容分析 本小节的教学内容是在理解无穷数列极限的概念的基础上学习数列极限的运算性质及四个重要的极限,鉴于高二学生现有的数学基础,教材采取从实际的例子引入,给出数列极限的运算性质及四个重要极限的结论,然后通过例题加以说明的方式. 教学重点是数列极限的运算性质,教学中要强调运算性质成立的条件是两个数列的极限都存在. 教学难点是数列极限的运算性质及四个重要极限结论的灵活运用,会进行恒等变形,运算性质可从两个数列推广到有限个数列,注意有限与无限的本质区别. 二、教学目标设计 掌握数列极限的运算性质,会利用这些性质计算数列的极限. 知道数列极限的四个重要结论,并会用它们来求有关数列的极限; 会运用式的恒等变形,把分子、分母极限不存在的分式转化为若干个极限存在的数列的代数和,从而求出极限,提高观

察,分析以及等加转换的能力. 三、教学重点及难点 重点:数列极限的运算性质. 难点:数列极限的运算性质及重要极限的灵活运用. 四、教学流程设计 五、教学过程设计 一、复习回顾 1、数列极限的定义. 2、已知1 23-=n n a n 试判断数列{}n a 是否有极限,如果有,写 出它的极限. 二、讲授新课

1、实例引入 计算由抛物线x y =2,x 轴以及直线x=1所围成的区域 面积S :2 6)12)(1(lim lim n n n S S n n n --==∞→∞→ 2、数列极限的运算性质 (1)数列极限的运算性质 如果B b A a n n n n ==∞ →∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞ →∞→∞→lim lim )(lim ; (2)B A b a b a n n n n n n n ?=?=?∞ →∞→∞→lim lim )(lim ; (3)B A b a b a n n n n n n n ==∞ →∞→∞→lim lim lim ; (2)的推论:若C 是常数,则A C a C b C n n n n n ?=?=?∞ →∞→∞→lim lim )(lim 说明:1、运算性质成立的条件 2、在数列商的极限中,作为分母的数列的项及其极 限都不为零. (2)常用的数列极限的几个结论 (1)对于数列{}n q ,当1

函数极限的运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞ →lim ,01lim .若求极限的函 数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 二 0). 说明:当三 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 2 31 ++-→x x x x 例3 求4 16lim 2 4 --→x x x

分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数4 16 2 --= x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 33lim 22 ++-∞ →x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、2 总结:lim x x o →lim x ∞ →例5 求lim ∞ →x 分析:同例计算了。 四 (1)lim 2 1 → x (3)lim 4 →x 1 432 1 -+→x x x (5)1 1lim 2 1 +--→x x x (6)9 65lim 2 2 3 -+-→x x x x (7)1 3322lim 2 3 2 +--+∞ →x x x x x (8)5 2lim 3 2 --∞ →y y y y

五 小结 1 有限个函数的和(或积)的极限等于这些函数的和(或积); 2 函数的运算法则成立的前提条件是函数 )(),(x g x f 的极限存在,在进行极限运算时, 要特别注意这一点. 3 两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在. 4 在求几个函数的和(或积)的极限时,一般要化简,再求极限. 六 作业(求下列极限) (1) lim -→x 2 (4)lim 0 →x (7)lim 2 →x (10)x → (13)1 3lim 2 4 3 +++∞ →x x x x x (14)2 3 3 2 )2 312( lim -+→x x x (15)3 526113lim 2 2 1 --+-→x x x x x (16) 3 526113lim 22 --+-∞ →x x x x x (17) 3 2 320 3526lim x x x x x x x ----→ (18) 3 2 323526lim x x x x x x x ----∞ →

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

数列的极限及运算法则

数列的极限及其运算法则 学习要求: 1.理解数列极限的概念。正确认识极限思想和方法是从有限中认识无限,从近似中认识精确,从量变中认识质变的一种辩证唯物主义的思想 2.理解和掌握三个常用极限及其使用条件.能运用化归转化和分类讨论的思想解决数列极限问题的能力. 3.掌握数列极限的运算法则,并会求简单的数列的极限 4. 掌握无穷等比数列各项的和公式. 学习材料: 一、基本知识 1.数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a (即n a a -无限趋近于0),那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞ =,读作“当n 趋向 于无穷大时,n a 的极限等于a ” “n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思n a a →∞ =有时也记作:当n →∞时,n a →a . 理解:数列的极限的直观描述方式的定义,只是对数列变化趋势的定性说明,而不是定量化的定义.“随着项数n 的无限增大,数列的项n a 无限地趋近于某个常数a ”的意义有两个方面:一方面,数列的项 n a 趋近于a 是在无限过程中进行的,即随着n 的增大n a 越来越接近于a ;另一方面,n a 不是一般地趋近 于a ,而是“无限”地趋近于a ,即n a a -随n 的增大而无限地趋近于0. 2.几个重要极限: (1)01 lim =∞→n n (2)C C n =∞ →lim (C 是常数) (3)lim 0n n a →∞ = (a 为常数1a <),当1a =时,lim 1n n a →∞ =;当1a =-或1a >时,lim n n a →∞ 不存在。 3. 数列极限的运算法则: 与函数极限的运算法则类似, 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 特别:若C 为常数,则lim()lim n n n n C a c a CA →∞ →∞ ==g g 推广:上面法则可以推广到有限..多个数列的情,若{}n a ,{}n b ,{}n c 有极限,则 n n n n n n n n n c b a c b a ∞ →∞→∞→∞→++=++lim lim lim )(lim

极限的性质与四则运算法则

第四节 极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设A x f x x =→)(lim 0 , (i ) 若)0(0<>A A ,则0>?δ,当),(0δ∧ ∈x U x 时,0)(>x f )0)((A 的情形。取2 A =ε,由定义,对此0,>?δε,当),(0δ∧∈x U x 时, 2)(A A x f =<-ε,即0)(2 32)(220>?=+<<-=”,“<”不能改为“≥”,“≤”。 在(ii)中,若0)(>x f ,未必有0>A 。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。 定理1:若B x g A x f ==)(lim ,)(lim ,则)]()(lim[x g x f ±存在,且 )(lim )(lim )]()(lim[x g x f B A x g x f ±=±=±。 证明: 只证B A x g x f +=+)]()(lim[,过程为0x x →,对0,01>?>?δε,当 100δ<-?δ,当2 00δ<-

2019-2020年高二数学函数极限的运算法则教案 上教版

2019-2020年高二数学函数极限的运算法则教案 上教版 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如.若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 对于函数极限有如下的运算法则: 0). 说明:当n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于的情况仍然适用. 三 典例剖析 例1 求 例2 求 例3 求 分析:当时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数在定义域内,

可以将分子、分母约去公因式后变成,由此即可求出函数的极限. 例4 求 分析:当时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim * N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→ 例5 求 分析:同例4一样,不能直接用法则求极限. 如果分子、分母都除以,就可以运用法则计算了。 四 课堂练习(利用函数的极限法则求下列函数极限) (1); (2) (3); (4) (5) (6) (7) (8)

最新1.4极限的性质与四则运算法则

1.4极限的性质与四 则运算法则

第四节极限的性质与四则运算法则 教学目的:使学生掌握极限的四则运算法则,并会利用它们求极限; 教学重点:有理函数极限的计算; 教学过程: 一、复习无穷大和无穷小的概念及性质 二、讲解新课: 一、函数极限的性质 定理1:(保号性)设?Skip Record If...?, (i)若?Skip Record If...?,则?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...??Skip Record If...?。 (ii)若?Skip Record If...?,必有?Skip Record If...?。 证明:(i)先证?Skip Record If...?的情形。取?Skip Record If...?,由定 义,对此?Skip Record If...?,当?Skip Record If...?时,?Skip Record If...?,即?Skip Record If...?。 当?Skip Record If...?时,取?Skip Record If...?,同理得证。 (ii)(反证法)若?Skip Record If...?,由(i)?Skip Record If...?矛盾,所以?Skip Record If...?。 当?Skip Record If...?时,类似可证。 注:(i)中的“?Skip Record If...?”,“?Skip Record If...?”不能改为“?Skip Record If...?”,“?Skip Record If...?”。 在(ii)中,若?Skip Record If...?,未必有?Skip Record If...?。 二、极限四则运算法则 由极限定义来求极限是不可取的,也是不行的,因此需寻求一些方法来求极限。定理1:若?Skip Record If...?,则?Skip Record If...?存在,且?Skip Record If...?。

极限的运算法则

极限的运算法则 目的要求 1.掌握数列极限与函数极限的运算法则。 2.能运用极限的运算法则,求出较复杂的函数和数列的极限。 3.让学生体验“化归”、“类比”的数学思想方法。 内容分析 1.简单的函数极限可以从函数值的变化趋势中找出,但较为复杂的函数极限,就必须把它“化归”为简单的函数的极限,通过运算而得出。因此,极限的运算法则是我们实现化繁为简的基本手段。 2.教科书中给出了0x x →时,函数f (x )极限的四则运算法则,我们类似地可以给出当x →∞时,函数f(x)极限的运算法则,即 如果极限)(lim x f x ∞→与)(lim x g x ∞ →都存在,那么 )()(x g x f ±,)()(x g x f ?,) ()(x g x f (当x →∞时)的极限也存在,并且 )(lim )(lim )]()([lim x g x f x g x f x x x ∞→∞ →∞→±=±, )(lim )(lim )]()([lim x g x f x g x f x x x ∞ →∞→∞→?=?, )0)(lim ()(lim )(lim )()(lim ≠=∞ →∞ →∞→∞→x g x g x f x g x f x x x x 。 这些法则,可用类比的方法,直接改变式中的0x x →为x →∞而得出,以便学生理解记忆。 3.对于函数极限的运算法则,教科书只给出结论,不要求证明。 4.在上一节课中,已经给学生讲述了数列与函数的关系,即把数列看成是特殊的函数,根据演绎推理,很自然地得出数列的极限运算法则。进一步地令C b n =(C 为常数),则可推得:n n n n a C a C ∞ →∞→?=?lim )(lim 。 5.极限运算法则可以推广到有限多个数列的情况,让学生感受数学思维的一般规律,养成从特殊到一般,从具体到抽象的归纳思维习惯。 6.教科书中的例1~例5,共包含了0x x →与x →∞两类极限的计算问题。其中,0x x →的函数f (x )的极限计算时,分f(x)在0x x =处有定义和无定义的两种(例1、例2是有定

高三数学教案:数列极限的运算法则

数列极限的运算法则(5月3日) 教学目标:掌握数列极限的运算法则,并会求简单的数列极限的极限。 教学重点:运用数列极限的运算法则求极限 教学难点:数列极限法则的运用 教学过程: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]=±→) ()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限.. 多个数列的情况。例如,若{}n a ,{}n b ,{}n c 有极限, 则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 二.例题: 例1.已知,5lim =∞ →n n a 3lim =∞ →n n b ,求).43(lim n n n b a -∞ → 例2.求下列极限: (1))45(lim n n + ∞ →; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限, 上面的极限运算法则不能直接运用。

极限的性质和运算法则

第 周第 学时教案 授课教师:贾其鑫 1.4 极限的性质与运算法则 教学目标: 1.掌握极限的性质及四则运算法则。 2.会应用极限的性质及运算法则求解极限 教学重点:极限的性质及四则运算法则; 教学难点:几种极限的种类及求解方法的归纳 教学课时:2学时 教学方法:讲授法、归纳法、练习法 教学过程: 1.4.1 极限的性质 性质1.5(唯一性) 若极限)(lim x f 存在,则极限值唯一. 性质1.6(有界性) 若极限)(lim 0 x f x x →存在,则函数)(x f 在0x 的某个空心邻域内有界. 性质1.7(保号性) 若A x f x x =→)(lim 0 ,且0>A (或0x f (或0)(

第 周第 学时教案 授课教师:贾其鑫 (3)当0)(lim ≠=B x v 时,B A x v x u x v x u ==)(lim )(lim )()(lim 证 我们只证(1). 因为A x u =)(lim ,B x v =)(lim ,由定理1.2有α+=A x u )(,β+=B x v )(,其中α,β是同一极限过程的无穷小量,于是)()()()(βα+±+=±B A x v x u )()(βα±+±=B A .根据无穷小量的性质,βα±仍是无穷小量,再由定理1.2的充分性可 得.[]B A x v x u x v x u ±=±=±)(lim )(lim )()(lim . 上述运算法则,不难推广到有限多个函数的代数和及乘法的情况. 推论 设)(lim x u 存在,c 为常数,n 为正整数,则有 (1) [])(lim )(lim x u c x u c ?=?; (2) []n n x u x u )]([lim )(lim =. 在使用这些法则时,必须注意两点: (1)法则要求每个参与运算的函数的极限存在. (2)商的极限的运算法则有个重要前提,即分母的极限不能为零. 例1 求)522(lim 1 +--→x x x . (初等函数定义域内某点的极限) 解 )522(lim 1 +--→x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x 5lim 1 )2(lim 1)2(lim 1-→+-→--→=x x x x x

§1-2 函数极限的运算规则

第1章 函数的极限和连续函数 8 §1-2 函数极限的运算规则·单调有界原理 1.极限的运算规则 记号“(,)x c c c -+→”和“(,)x →∞+∞-∞”都称为极限过程.若把它们统一地表示成“x →?”,则各种形式的函数极限,都具有像数列极限那样的运算 规则.要证明它们,也属于高等微积分(证明在第二篇中). 设在同一个极限过程中,有极限)(lim x f x ? →和)(lim x g x ? →. ⑴ lim[()]lim ()x x c f x c f x →? →? =(c 为常数); (齐次性) ⑵ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? ±=±; (可加性) ⑶ lim[()()]lim ()lim ()x x x f x g x f x g x →? →? →? =?; (乘积的极限等于极限的乘积) ⑷ lim ()()lim lim ()0()lim () x x x x f x f x g x g x g x →? →?→?→? ??=≠???? ; (商的极限等于极限的商) ⑸ 若()()f x g x ≤,则lim ()lim ()x x f x g x →? →? ≤; (极限运算的单调性) ⑹ 若()()()f x h x g x ≤≤,且lim ()lim ()x x f x g x C →? →? ==,则也有极限lim ()x h x C →? =. (夹挤规则) 根据夹挤规则,若lim ()0x f x →? =,且)(x g 在极限过程?→x 中是有界变量(())g x B ≤, 则应直接写成 lim[()()]0x f x g x →? = 因为 0()()()0()f x g x B f x x ≤≤→→?且lim ()()0lim[()()]0x x f x g x f x g x →? →? =??= 而不能写成 []lim ()()lim ()lim ()0x x x f x g x f x g x →? →? →? =?=[逻辑错误!] 例如函数1sin y x x =(图1-15),应当直接写成 01 lim sin 0x x x →=(因为1sin 1x ≤) 而不能写成 00011 lim sin lim limsin 0x x x x x x x →→→=?= 因为不存在极限01 limsin x x →(图1-10). 例3 设有多项式 2012()(0)n n n P x a a x a x a x a =+++ +≠ 则 2012lim ()lim lim()lim()lim()n n x c x c x c x c x c P x a a x a x a x →→→→→=+++ + 2012(lim )(lim )(lim )n n x c x c x c a a x a x a x →→→=+++ +

(完整版)数列极限四则运算法则的证明

数列极限四则运算法则的证明 设limAn=A,limBn=B,则有 法则1:lim(An+Bn)=A+B 法则2:lim(An-Bn)=A-B 法则3:lim(An·Bn)=AB 法则4:lim(An/Bn)=A/B. 法则5:lim(An的k次方)=A的k次方(k是正整数) (n→+∞的符号就先省略了,反正都知道怎么回事.) 首先必须知道极限的定义: 如果数列{Xn}和常数A有以下关系:对于?ε>0(不论它多么小),总存在正数N,使得对于满足n>N的一切Xn,不等式|Xn-A|<ε都成立, 则称常数A是数列{Xn}的极限,记作limXn=A. 根据这个定义,首先容易证明:引理1: limC=C.(即常数列的极限等于其本身) 法则1的证明: ∵limAn=A,∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-A|<ε.①(极限定义) 同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-B|<ε.② 设N=max{N?,N?},由上可知当n>N时①②两式全都成立. 此时|(An+Bn)-(A+B)|=|An-A)+(Bn-B)|≤|An-A|+|Bn-B|<ε+ε=2ε. 由于ε是任意正数,所以2ε也是任意正数. 即:对任意正数2ε,存在正整数N,使n>N时恒有|(An+Bn)-(A+B)|<2ε. 由极限定义可知,lim(An+Bn)=A+B. 为了证明法则2,先证明1个引理. 引理2:若limAn=A,则lim(C·An)=C·A.(C是常数) 证明:∵limAn=A,∴对任意正数ε,存在正整数N,使n>N时恒有|An-A|<ε.①(极限定义) ①式两端同乘|C|,得:|C·An-CA|<Cε. 由于ε是任意正数,所以Cε也是任意正数. 即:对任意正数Cε,存在正整数N,使n>N时恒有|C·An-CA|<Cε. 由极限定义可知,lim(C·An)=C·A.(若C=0的话更好证) 法则2的证明: lim(An-Bn) =limAn+lim(-Bn)(法则1) =limAn+(-1)limBn(引理2) =A-B. 为了证明法则3,再证明1个引理. 引理3:若limAn=0,limBn=0,则lim(An·Bn)=0. 证明:∵limAn=0,∴对任意正数ε,存在正整数N?,使n>N?时恒有|An-0|<ε.③(极限定义)同理对同一正数ε,存在正整数N?,使n>N?时恒有|Bn-0|<ε.④

大一高数复习资料【完整版】

大一高数复习资料【完整版】

高等数学(非数院) 第一章 函数与极限 第一节 函数 ○函数基础(高中函数部 分相关知识)(★★★) ○邻域(去心邻域)(★) (){},|U a x x a δδ=-< (){},|0U a x x a δδ=<-< 第二节 数列的极限 ○数列极限的证明(★) 【题型示例】已知数列{}n x ,证明{}lim n x x a →∞ = 【证明示例】N -ε语言 1.由n x a ε-<化简得()εg n >, ∴()N g ε=???? 2.即对0>?ε,()N g ε?=????。当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞ →lim 第三节 函数的极限 ○0 x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0 lim 【证明示例】δε-语言 1.由()f x A ε-<化简得()0 0x x g ε<-<, ∴()εδg = 2.即对0>?ε,()εδg =?,当0 0x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0 lim ○∞→x 时函数极限的证明 (★) 【题型示例】已知函数()x f ,证明()A x f x =∞ →lim 【证明示例】X -ε语言 1.由()f x A ε-<化简得()x g ε>, ∴()εg X = 2.即对0>?ε,()εg X =?,当X x >时,始终有不等式 ()f x A ε-<成立, ∴()A x f x =∞ →lim 第四节 无穷小与无穷大 ○无穷小与无穷大的本质(★) 函数()x f 无穷小?()0lim =x f 函数()x f 无穷大 ?()∞=x f lim ○无穷小与无穷大的相

相关文档