文档库 最新最全的文档下载
当前位置:文档库 › 3吨碱性蛋白酶课程设计

3吨碱性蛋白酶课程设计

3吨碱性蛋白酶课程设计
3吨碱性蛋白酶课程设计

年产3吨碱性蛋白酶发酵工艺设计

王鑫

(中北大学化工与环境学院)

摘要

在现代食品工业中, 酶的应用几乎涉及到食品加工的各个领域。随着酶制剂日益广泛的应用,经济效益显著。蛋白酶是水解蛋白质肽链的一类酶的总称, 而碱性蛋白酶则适宜在碱性条件( pH9——11) 下水解动植物蛋白质, 广泛存在于动植物及微生物中。设计中首先根据参考资料选定了碱性蛋白酶发酵生产的具体工艺流程,通过物料衡算确定需要立方米发酵罐台和立方米种子罐台,在此基础上得出发酵工段所需要的各种原料量,通过能量衡算确定水、无菌空气和蒸汽等的消耗量。然后对主要设备进行计算和选型,得出发酵罐、种子罐及通用设备、非标准设备等的结构尺寸、冷却装置、传动装置,根据工艺要求确定罐的附属设备和辅助设备以及发酵过程中的优化控制。

根据计算结果,设计了两张图纸,分别为发酵罐装配图、工艺流程图。

关键词:碱性蛋白酶发酵罐种子罐物料衡算

1绪论-------------------------------------------------------------- 1

1.1碱性蛋白酶概述---------------------------------------------- 1

1.2碱性蛋白酶的性质-------------------------------------------- 1

1.3碱性蛋白酶的使用条件---------------------------------------- 1

1.4碱性蛋白酶的保存-------------------------------------------- 1

1.5注意事项---------------------------------------------------- 1

1.6碱性蛋白酶的主要应用---------------------------------------- 2

1.6.1在洗涤剂中的应用-------------------------------------- 2

1.6.2在皮革中的应用---------------------------------------- 2

1.6.3在饲料添加剂中的应用---------------------------------- 3

1.6.4在纺织行业的应用-------------------------------------- 3

1.6.7在玉米深加工中的应用---------------------------------- 3

1.7碱性蛋白酶的发展前景---------------------------------------- 4 2设计任务---------------------------------------------------------- 4

2.1设计内容---------------------------------------------------- 4

2.2设计要求---------------------------------------------------- 4 3碱性蛋白酶生产工艺选择-------------------------------------------- 5

3.1生产工艺的选择---------------------------------------------- 5

3.2工艺流程图-------------------------------------------------- 5

3.3工艺流程图说明---------------------------------------------- 6

3.3.1菌种的制备-------------------------------------------- 6

3.3.2孢子的制备-------------------------------------------- 6

3.3.3种子的制备-------------------------------------------- 6

3.4菌种的改良-------------------------------------------------- 6

3.5培养基的制备------------------------------------------------ 8

3.6灭菌的方法-------------------------------------------------- 8

3.6.1湿热灭菌---------------------------------------------- 8

3.6.2培养基的连续灭菌-------------------------------------- 9

3.6.3空气除菌---------------------------------------------- 9

3.6.4无菌空气的质量标准----------------------------------- 10

3.6.5无菌空气的制备--------------------------------------- 10

3.7发酵------------------------------------------------------- 11

3.8分离纯化--------------------------------------------------- 12 4工艺计算--------------------------------------------------------- 12

4.1 碱性蛋白酶发酵工艺技术指标--------------------------------- 12

4.2 工艺参数与基本物性数据的选取------------------------------- 12

4.2.1 工艺参数--------------------------------------------- 12

4.2.2基本物性数据的选取----------------------------------- 13

4.3物料衡算--------------------------------------------------- 13

4.4热量衡算--------------------------------------------------- 14

4.4.1 基准温度的选定--------------------------------------- 14

4.4.2 连消塔的热量衡算------------------------------------- 14

4.4.3 发酵罐的热量衡算------------------------------------- 14 5分离干燥--------------------------------------------------------- 14

5.1双水相萃取------------------------------------------------- 14

5.2干燥------------------------------------------------------- 15 6后记------------------------------------------------------------- 16 参考文献:--------------------------------------------------------- 17

1绪论

1.1碱性蛋白酶概述

碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白酶的能力。生产工艺是采用微滤超滤膜分离、喷雾干燥或真空冷冻干燥等先进技术,广泛应用于食品、医疗、酿造、洗涤、丝绸、制革等行业。

碱性蛋白酶是目前市场上流行的洗涤添加剂,能大幅度提高洗涤去污能力,特别对血渍、汗渍、奶渍、油渍等蛋白类污垢,具有独特的洗涤效果。碱性蛋白酶在技术采用细菌原生质体诱变处理方法,从国内碱性蛋白菌生产菌2709枯草杆菌中研究选育出若干稳定高性能菌株,在后处理上,采用去渣盐析沉淀法,减少了蛋白酶的杂质含量和产品特有的气味,提高了溶解速度,与洗涤剂有更好的配伍性,延长了保质期。目前,在世界范围内蛋白分解酶是工业酶种中用得最多的一种酶,约占酶总量的60%,其中碱性蛋白酶就占25%.它在商业中的巨大应用前景及在基础研究中的重要作用,吸引着国际国内的许多公司及研究单位竞相对其进行多方面的研究。

1.2碱性蛋白酶的性质

碱性蛋白酶外观为褐色粉末,有酵曲的特殊臭味,能够分解蛋白质分子中的肽键成为小分子的氨基酸和肽。碱性蛋白酶是由造育的地衣芽孢杆菌发酵而得,主要成分为枯草杆菌蛋白酶,是一种内切酶,催化部位为丝氨酸,分子量约为27300.

1.3碱性蛋白酶的使用条件

底物浓度10—25%,温度50—60℃,pH值9—11,反应时间3—6小时(根据要求可长可短),添加酶0.03—0.06%(以水解溶液重量计)。

1.4碱性蛋白酶的保存

5℃保藏,保质期一年;25℃储存,酶活保存期至少3个月以上。

1.5注意事项

(1)此产品可完全溶于水,使用安全可靠。操作时请勿直接与酶制剂接触,若有接触需及时用清水冲洗。

(2)原包装打开后尽快食用,剩余部分需扎口保存。

(3)本品在贮存中要避免雨淋和曝晒,禁止与有毒有害物质混运混存。

1.6碱性蛋白酶的主要应用

1.6.1在洗涤剂中的应用

日常生活中遇到的污垢,特别是衣服上的污垢组成是十分复杂的,一般来说,主要有尘土的微粒、人体分泌的皮脂和汗液、食物的汁液和残余物等,有机污垢是以蛋白质与纤维结合的方式存在的。用于洗涤这些污物的洗涤剂是由表面活性剂、纯碱、水玻璃(硅酸盐)、三磷酸盐等配制而成,洗涤时水溶液显示出较高的碱性pH一般在9-11之间,在这种条件下,碱性蛋白酶正好可以发挥其催化活性,催化污物中的蛋白质水解,使复杂的蛋白质分解成结构简单、相对分子量较小的水溶性肤,或者进一步分解为氨基酸。这样,原来粘在衣物上的其它污物也可以一起被洗下来。在整个洗涤过程中,碱性蛋白酶可反复起分解蛋白质的作用,只是酶活越来越低。

1.6.2在皮革中的应用

我国皮革工业资源丰富,发展十分迅速,猪、羊皮产量居世界之首。猪、牛、羊皮制革时,首先要除去皮上的毛,然后才能进一步加工蹂制成革。过去脱毛工艺沿用石灰、硫化钠浸渍,不仅时间长,工序多,而且劳动强度大,污染严重。采用蛋白酶脱毛是利用酶分解毛、表皮同真皮层连接处的蛋白质,从而使毛同皮的联结松开而脱毛。目前,我国的皮革制品不仅满足了国内市场的需求,还大量出口创汇。另外,在猪皮加工的包酶阶段,因皮液系统pH值约在10士0.5之间,故常用碱性蛋白酶进行局部处理

1.6.3在饲料添加剂中的应用

猪、禽等单胃动物消化道的内源酶系不全;幼龄畜禽缺乏淀粉酶、糖化酶和蛋白酶:处于疾病的畜禽,其内源酶(如淀粉酶、蛋白酶等)急剧下降。动物饲料是以淀粉、蛋白质等大分子化合物作为营养源,不同动物消化道中的酶系不同,数量也很有限,再加上饲料在消化道中停留的时间一般都很短,饲料往往未被充分消化就随粪便排出体外,造成部分浪费。据研究,不少动物对饲料的消化吸收率仅20%左右。在饲料中添加酶制剂就可以与动物内源酶发挥协同作用,将难消化吸收的蛋白质、淀粉等大分子化合物降解为氨基酸、肤、脉、单糖、寡糖等小分子物质,从而提高饲料的消化率和利用率,并提高畜禽及鱼类的生产性能,同时可以减少畜禽排泄物中氮、磷的排泄量,保护水体和土壤免受污染。饲用酶制剂多为复合酶,由非内源消化酶和内源消化酶两大类组成。非内源消化酶包括木聚糖酶、p-葡聚糖酶、纤维素酶、果胶酶、甘露聚糖酶等,内源消化酶包括蛋白酶、淀粉酶、脂肪酶等。其中蛋白酶是主要成分,可将饲料中的蛋白质分解多肽及游离氨基酸,从而提高饲料的利用率。

1.6.4在纺织行业的应用

在纺织工业中应用碱性蛋白酶可一定程度的取代强碱等有毒有害物质,为减少污染、保护生态环境提供经济有效的方法。特别是在羊毛减量加工和丝绸精炼脱胶等方面具有广泛应用,使用碱性蛋白酶可以解决羊毛仿羊绒物质的生硬、粗糙等问题,并能改善和提高丝绸与棉、麻、毛等纤维混纺产品的手感和风格,增加羊毛产品的附加值。

1.6.7在玉米深加工中的应用

玉米黄粉是玉米湿法淀粉厂的副产品,其中含有40%-60%的蛋白质,这些蛋白质大部分是醇溶蛋白、谷蛋白和球蛋白。玉米醇蛋白具有大区域的a-螺旋结构,N-末端有很强的疏水性,是高憎水蛋白,因此只能溶于异丙酮和乙醇中,不溶于水。谷蛋白只溶于碱水溶液。因此与其它商业化蛋白源相比,玉米蛋白的疏水性使得其食品功能特性极差。要想使蛋白质具有理想的食品功能,就必须使其成为水溶解状态或处于较好的悬浮状态。为了提高玉米蛋白的水溶性以制备一些特殊产品,用碱性蛋白酶修饰玉米蛋白使其成为可溶性肤的研究成为热点。王梅谷等对碱性蛋白酶水解玉米蛋白的反应动力学进行了研究,探索了酶法修饰玉米

蛋白的可行性,在适宜的反应体系中,可大幅度提高酶促玉米蛋白的溶解量。为玉米黄粉的食品工业应用和饲料营养的特殊要求提供可靠的依据。玉米鼓质白质具有独特的氨基酸组成,使它成为多种生理活性功能肤的良好天然来源。

1.7碱性蛋白酶的发展前景

蛋白酶是一种重要的工业用酶,占世界酶制剂销售量的60%以上。上世纪五十年代蛋白酶的主要来源是植物的木瓜蛋白酶,菠萝蛋白酶和动物内脏,而微生物来源的蛋白酶一经研究,因具有培养简便,耗时短,产量丰富等优点,应用尤为广泛,被认为是最重要的酶资源。水解蛋白的最适PH在碱性范围内的蛋白酶称为碱性蛋白酶。它在工业上具有巨大的应用潜力,如洗涤剂、皮革制造、食品加工、制药以及废物处理等工业中,碱性蛋白酶的使用能显著改善产品品质,大大减少了对环境的污染,节约成本,为传统的行业和生产带来了一场革命。尤其是作为无磷洗衣粉的添加剂使用,已使碱性蛋白酶商业制剂的销售占整个蛋白酶市场的1/3。由于碱性蛋白酶作用环境的特殊性,要求其在极端的条件下具有较高的蛋白质水解活力。其克服不良环境的能力愈强,应用愈广泛,愈能耐受恶劣的工业条件。

2设计任务

2.1设计内容

包括菌种选育、培养基的设计及灭菌、空气除菌(如为需氧发酵)、种子的扩大培养、发酵过程中的控制参数和下游加工等,并由此形成一套完整的生产工艺。

2.2设计要求

按照年产量要求进行工艺设计,不得造成设备浪费,节约人力、物力和能源。进行简单的物料衡算。绘制设计图,要求至少一张工艺流程图和一张主设备结构图,A4纸。

3碱性蛋白酶生产工艺选择

3.1生产工艺的选择

采用液态深层发酵

3.2工艺流程图

空气菌种培养基离心分离 PEG盐

预热冷冻干燥

除菌

连消产品

无菌空气二级种子维持

降温

发酵液

高压匀质机

离心分离

废液项 PEG水相

3.3工艺流程图说明

3.3.1菌种的制备

选择合适的产碱性蛋白酶的菌,经过分离、选育、纯化和鉴定后成为菌种。菌种可用沙土管保存,若有条件可采用液氮超低温保存。

3.3.2孢子的制备

(1)制备母液斜面孢子

将保存在冰箱中的沙土孢子,在无菌超净工作台上接种于以灭菌的斜面培养上于37℃培养9-10天,放入2-6℃冰箱中备用。

(2)制备子瓶斜面孢子

将生长好且在冰箱存放一周以上的母瓶取出,制成菌悬液接种于子瓶斜面上,于37℃恒温培养8-9天,培养好的子斜面侧摇瓶效价合格后保存在2-6℃冰箱中备用。

3.3.3种子的制备

其目的是使孢子发芽、繁殖以获得足够数量的菌丝,并接种到发酵罐中,种子制备可用摇瓶培养后再接入种子罐进行逐级扩大培养。以微孔压差法或打开接种口在火焰保护下接种。接种量视需要而定,在罐内培养过程中需要搅拌和通入无菌空气。控制罐温、罐压,并定时取样做无菌试验,观察菌丝形态,测定种子液中发酵单位和进行生化分析,并观察有无杂菌的情况种子质量合格后移到发酵罐中。

3.4菌种的改良

菌种改良的方法有很多,最常用的方法有诱变育种。诱变育种的原理:是用物理或化学的诱变剂使诱变对象内的遗传物质(DNA)的分子结构发生改变,引起性状变异并通过筛选获得符合要求的变异菌株的一种育种方法。诱变的方法:

A:物理方法:射线(紫外线、X 光线、Y 射线,中子线),激光 微束,离子束,微波,超声波,热力等。 B:化学诱变 常用方法:浸渍法、涂抹法、 滴液法、注射法、施入法和熏蒸法。化学诱变剂有碱基类似物、烷化剂,移码诱 变剂,硫酸二乙酯(DFS )、5-溴尿嘧 啶(5-BU )、氮芥(Nm )。C: 生物方法:空间条件处理诱变,病原微生物诱变,转基因诱变。

诱变育种的过程

原种特性考察

斜面 制备单孢子菌悬液 诱变处理 稀释涂平板

摇瓶初筛 挑取单菌落传种斜面 挑出高产斜面 挑出高产菌株做稳定性试验和菌种特性考

留种保藏 传种斜面 做活菌计数,统计存活

率 放大罐试验,中试考察

大型投产 摇瓶复筛 埋制沙土管 观察菌株形态 复筛,摇瓶次数

出发菌株

3.5培养基的制备

培养基是指可供微生物细胞生长繁殖所需的一组营养物质和原料,同时也为微生物生长提供除营养外的其他生长所需的条件。原则上①必须含有细胞组成所必须原料;②满足一般生化反应的基本条件(温度、溶氧和批pH);③来源丰富、价格低廉、取材方便、质量稳定;④培养基成分性质稳定不影响下游产品的提取加工。

培养基按照用途可以分成孢子培养基、种子培养基和发酵培养基。

孢子培养基是供菌种繁殖孢子的一种常用固体培养基,对这类培养基的要求是能使菌体生长迅速,产生数量多而且优质的孢子,并且不会引起菌体变异。所以孢子培养基的配置要求如下:①培养基的营养不要太丰富,特别是有机氮源要低一些,否则孢子不易形成。②无机盐的浓度要适当,不然会影响孢子的颜色和数量。③应注意培养基的pH值和湿度。

3.6灭菌的方法

常用的灭菌方法有:化学灭菌;射线灭菌;干热灭菌;湿热灭菌和过滤除菌等。影响灭菌效果的因素:①微生物的种类和数量,②培养基性质、浓度、成分,③灭菌的温度、时间。

本实验采用湿热灭菌。湿热灭菌即利用饱和水蒸气进行灭菌。由于蒸汽有很强的穿透力,而且冷凝时放出大量的冷凝热,很容易是蛋白质凝固而杀灭各种微生物。通常蒸汽灭菌的条件是在121℃(表压约0.1MPa)维持30min。

3.6.1湿热灭菌

对培养基进行湿热灭菌时,培养基中的微生物受热死亡速率与残存数量成正

比,即

d N

kN

-=

(3—1)

式中:N 培养基中活微生物的个数;τ为微生物受热时间,s ; κ为比死亡速率,1s -;若开始灭菌时(τ=0),培养基中或微生物数为N 0,将式(3—1)积分可得

0N N e κτ-= (3—2)

上式被称为对数残留定律。其中N 为经τ时间灭菌后培养基中活微生物数。

3.6.2培养基的连续灭菌

培养基连续灭菌在短时间内被加热到灭菌温度(130~140),短时间保温(一般为5~8min ),升降温时间相对较短,可以实现自动控制、提高发酵罐的设备利用率、蒸汽用量平稳等优点,培养基在短时间内被加热到灭菌温度,短时间保温后被快速冷却,再进入早已灭完菌的发酵罐,这样不但可以节省时间,更重要的是减少了培养基的破坏率。对补料培养基的灭菌方法跟发酵培养基的灭菌方法一样都是湿热灭菌,其加热蒸汽的压力要求较高,一般不小于0.45Mpa.连续灭菌的流程,如图所示

3.6.3空气除菌

根据国家药品质量管理规范的要求,生物制品、药品的生产场地业需要符合空气洁净度的要求。

3.6.4无菌空气的质量标准

国家所规定无菌空气的质量标准为:1、连续提供一定流量的压缩空气。2、空气的压强为0.2~0.4Mpa。3、进入过滤器前空气的相对湿度应小于等于70.4、进入发酵罐的空气温度可比培养基温度高10~30℃左右。5、压缩空气的洁净度,在设计空气过滤器时,一般取失败概率为0.001为指标。

3.6.5无菌空气的制备

过滤是空气除菌的主要手段,按过滤介质孔隙将空气过滤器分为两类:绝对过滤,深层过滤。后者主要原理为:1、惯性滞留作用2、拦截滞留作用3、布朗扩散作用4、重力沉降5、静电作用。

其过滤除菌流程为:采风塔→粗过滤器→空气压缩机→空气储存罐→冷却器→气液分离设备→空气加热设备→空气过滤设备。如图5-1。

图5-1 空气除菌设备流程图

设备如下:

①采风塔:采风塔建在工厂的上风头,远离烟囱,采风塔越高越好,高至少10 m,气流速度8 m/s。

②粗过滤器:安装在空压机吸入口前,主要作用是拦截空气中较大的灰尘以保护空气压缩机,同时起一定的除菌作用,减轻总过滤器的负担。应阻力小,容量大。

③空气压缩机:作用是提供动力,以克服随后各设备的阻力。

④空气储罐:作用是消除压缩空气的脉动。

要求:H/B=2~2.5 , V=(0.1~0.2)V1

其中,H为罐高;

B为罐直径;

m

V1为空压机每分钟排气量(20℃,1×105Pa状况下),3

⑤旋风分离器:是利用离心力进行气-固或气-液沉降分离的设备。作用是分离空气中被冷却成雾状的较大的水雾和油雾粒子。

⑥冷却器:空压机出口温度气温在120℃左右,必须冷却。另外在潮湿的地域和季节还可以达到降湿的目的。空气冷却器可采用列管式热交换器空气走壳程,管内走冷却水。

⑦丝网除沫器:可以除去空气中绝大多数的20μm 以上的液滴和1μm以上的雾滴,一般采用规格为直径0.25㎜×40孔且高度为150㎜的不锈钢丝网。

⑧空气加热器:采用列管换热器,空气走管程,蒸汽走管外。

⑨总过滤器:填充物按下面顺序安装:

孔板→铁丝网→麻布→活性炭→麻布→棉花→麻布→铁丝网→孔板

介质要紧密均匀,压紧一致,上下棉花层厚度为总过滤层厚度的1/4,中间活性炭层为1/3。

无菌空气的检查

空气系统的无菌检测主要考察过滤器是否失效。过滤器失效的检测方法之一是检测过滤器两侧的压降,压降大说明过滤介质被堵塞;二是用粒子计数器测定空气中的粒子数是否超标,有无达到洁净度要求。

3.7发酵

以2%的接种量接种于发酵培养基,35℃培养56小时,进行液体深层发酵培养;在发酵过程中,采取调节pH的方法控制发酵,即:将种子接种于发酵培养基后,使发酵液初始pH为7;在发酵期间,当发酵液酸性逐渐增加时,应控制发酵液pH不低于6.0;随后,当发酵液碱性逐渐增加时,应控制发酵液的pH 不高于8.0。

3.8分离纯化

工业中使用的基本都是碱性蛋白酶的粗制品,进一步的分离纯化有助于更好地确定酶的性质及作用机制。以菌株的发酵液为处理对象,首先离心除去菌体细胞及其它不溶性物质,对无细胞发酵液进行沉淀,达到分离和浓缩的目的。再通过等电层析、亲和层析等不同的色谱层析手段对碱性蛋白酶进一步纯化。

4工艺计算

4.1 碱性蛋白酶发酵工艺技术指标

指标名称单位指标数

生产规模t/a 3

生产方法深层液态发酵

年生产天数d/a 100

产品日产量t/a 0.03

产品质量比活力(U/g)50万

倒罐率% 1.0

发酵周期h 36

发酵液酶活力U/ml 18000 碱性蛋白酶提取率% 85

冷冻干燥酶收率% 80

平均总收率率% 68

4.2 工艺参数与基本物性数据的选取

4.2.1 工艺参数

碱性蛋白酶比活力比活力为50万U/g,生产周期为36h,发酵温度为37℃,溶氧为0.03-0.04MPa。

4.2.2基本物性数据的选取

在低温下油或油脂的平均热容在2.05-2.51kJ/(kg·℃),随着温度升高比热将增加。

4.3物料衡算

根据物料衡算的质量守衡定律,在间歇操作过程中,若系统内不发生物料量的积累,输入的物料量等于输出的物料量。

表1 物料的基本物性参数

密度(kg/m3)汽化替热

kJ/kg 比热容

kJ/(kg·℃)

沸点(℃)

培养基1000 4.183

水998 2258 4.183 100 生产1000kg比活力为50万U/g的发酵液量:

50万U/g×1000×1000=108万U

108万U/18000=2.78×107ml=27.8m3

18000U/ml –发酵液酶活

每日所需量

V0=V发/(0.68×0.7)=0.278/(0.68×0.7)=1.75m3

0.68—平均总收率 0.7—填充系数

发酵液所需淀粉量:1.75×2%=0.035kg

发酵液所需麸皮量:1.75×5%=0.0875kg

发酵液所需玉米浆量:1.75×3%=0.0525kg

二级接种量:V2=1%V1=0.0175m3

吐温-80(M / V):0.02%×1.75=0.00035kg

MgSO4(M / V):0.02%×1.75=0.00035kg

发酵罐的尺寸个数:

尺寸:2立方米个数;1个

4.4热量衡算

4.4.1 基准温度的选定

为便于计算,热量输入和输出的基准温度选为20℃(293K)。

4.4.2 连消塔的热量衡算

Q=Gc(t2-t1)=13406×3.91×(115-70)=2.36×106(kJ/h)

4.4.3 发酵罐的热量衡算

发酵时放出的生物热:Q总=4.18×6000×102.14=2.56×106(kJ/h)

5分离干燥

5.1双水相萃取

萃取原理:将亲水性聚合物加入水中会形成两相。聚合物以不同的比例分配与这两相中,而水分在每一相中都会占很大的比例(85%-95%),生物蛋白质等在这种体系中能够保持自然活性。

当两种聚合物的水溶液相互混合时,究竟是分层成两相,还是混合成一相,取决于两种因素,一是混合熵的变化,二是分子间的作用力。对大分子而言,则分子间的作用力占主导地位,也就是说,由分子间的作用力决定混合的结果。

若两种聚合物的分子间存在斥力,那么再某一分子的周围就可能系同种分子而非异种分子。当达到平衡后则分成两相,两种聚合物分别进入到每一相中,达到分离的目的。反过来,如果两种聚合物之间存在引力,如在带相反电荷的两种聚合物电解质之间,则它们相互结合而存在于同一相中,若两种聚合物间不存在分子间力,则它们相互混合。根据上述分析可知,能够进行双水相萃取的必要条件是:形成的两种聚合物分子间存在引力。

双水相萃取中,影响分配的主要参数有聚合物的分子质量和浓度、pH、盐的种类和浓度、操作稳定等。聚合物分子质量低时,生物大分子易分配于富含该聚合物的相中,当远离临界点时,双水相萃取本身受温度的影响很小。大规模生产总是在常温下操作,一则节省制冷费用,再则聚合物在常温下对蛋白质有稳定作用,不会引起损失,同时温度高时,粘度低,有利于相的分离操作。因此,确定适宜的操作条件,可达到较高的分配系数和选择性。双水相萃取的一个重要优

点是可直接从细胞破碎浆液中萃取蛋白质而无需将细胞碎片分离,一步操作可达到固液分离和纯化两个目的。

双水相萃取方法:双水相萃取法的一个主要应用是胞内酶的提取,采用双水相系统可使欲提取的酶与细胞碎片以较大的分配系数分配在不同的相中,进而采用离心法就可实现分离。采用双水相萃取时,通常将蛋白质分配在上相(PEG),细胞碎片分配在下相(盐)。反过来对相的分离不利,因为当上相固含量髙时,分离机的性能会受到影响。在操作时,单位重量相系统中料浆的加入量是一个重要参数。显然,料浆的加入量愈多愈经济,但过量的料浆会影响原来聚合物的成相系统,是分配系数降低,结果收率降低。根据经验,一般每1kg萃取系统处理200-400湿菌体为宜。

5.2干燥

冷冻干燥原理:冷冻干燥是将湿物料在较低温度下冻结成固态,然后在高度真空(130Pa-0.1MPa)下,将其中固态水分直接升华为气态而除去的干燥过程,也称为升华干燥。冷冻干燥也是真空干燥的一种特例。

冷动干燥也可将湿物料不预冻,而是利用高度真空时水分汽化吸热而将物料自行冻结。这种冻结能量消耗小,但对液体物料易产生泡沫或飞溅现象而遭致损失,同时也不易获得多孔性的均匀干燥物。冷冻干燥中升华温度一般为-35℃--5℃,而抽出的水分可在冷凝器上冷冻聚集或直接为真空泵排出。若升华时需要的热量直接由所干燥的物料供给,这种情况下,物料温度减低很快,以至于冰的蒸汽压很低而使升华速率降低。一般情况下,热量由加热介质通过干燥室的间壁供给,因此,既要供给湿物料的热量以保证一定的干燥数率,又要避免冰的融化。

与其他干燥相比,冷冻干燥具有以下特点:

1)干燥温度低,特别适合于高热敏性物料的干燥,生物制品的干燥。又系在真

空下操作,氧气极少,物料中易氧化物质得到了保护,因此,制品中的有效物质及营养成分损失很少。

2)能保持原物料的外观形状。物料在升华脱水前先进行预冻,形成稳定的固体

骨架。干燥后体积形状基本不变,不失原有的固体结构,无干缩现象。

3)冻干制品具有多孔结构,因而有理想的速溶性和快速复水性。干燥过程中,

物料中溶于水的溶质就地析出,避免了一般干燥方法中因物料水分向表面转

移而将无机盐和其他有效成分带到物料表面,产生表面硬化现象。

4)冷冻干燥脱水彻底(一般低于2%-5%),质量轻,产品保存期长,若采用真空

密封包装,常温下即可运输、保存,十分简便。

但冷冻干燥需要昂贵的专用设备,干燥周期长,能耗较大,产量小,加工成本高。

冷冻干燥流程:冷冻干燥过程分为两个阶段,第一阶段,在低于熔点的温度下,使物料中的固态水分直接升华,大约有98%-99%的水分在这一阶段除去。第二阶段中,将物料温度逐渐升高甚至高于室温,使水分汽化除去,此时水分可以减少到0.5%。冷东干燥系统主要有4部分组成,即冷冻装置、真空装置、水汽去除装置和加热部分,用于生物制品的了扭动干燥流程见带控制点饿工艺流程图。预冷冻和干燥均在一个箱内完成。带干燥的物料放入干燥室内,开动预冷用冷冻机对物料进行冷冻,随之开启冷凝器和真空装置,实现升华干燥操作。加热器以作冷凝器内化霜之用。第一阶段升华干燥结束后,开启油加热循环泵对干燥室加热升温,使之汽化排除剩余的水分。

6后记

通过此次课程设计使我更扎实的掌握了有关发酵的一系列问题,使本来枯燥乏味的发酵课程变得有趣。

在这过程中遇到了很多问题,从前都未曾涉猎,但经过这次课程设计让我不光懂得了有关发酵的问题,还懂得了CAD的使用,增加了自己各方面的认识,我不断地查找资料,遇到不懂得及时请教丰富了自己的知识面,同时深刻领悟了“致知于行”的意义。从理论到实践的过程是一个很重要的过程,终于明白“纸上得来终觉浅,绝知此事要躬行”的意义,纸上谈兵终究不能让自己在所学的领域有多大的成就与贡献,我在这段时间里学到的我觉得比我这一学期的都多,因为这是一种实践和理论的结合。

历时两个星期的课程设计,查阅了大量的资料,在这个过程中我有时候真的心烦,由于找不到碱性蛋白酶的相关资料,但最后还是耐心的寻找,通过去图书馆查阅教辅资料和上网查找再加上向学长学姐请教,终于完成了这份课程设计,无论质量如何,这都是我精心设计的成果,他让我在完成了发酵这门课程的同时,把理论付诸于实践,让我对这门课程的了解更加深入和系统化。

参考文献:

[1] 邓菊云.微生物碱性蛋白酶研究进展[J].现代食品科学技术,2008,11(293):03 -04.

[2] 夏凡,琚争艳.微生物碱性蛋白酶在食品工业中的应用及其安全性研究进展[J].山东食品发酵,2008,1(149):32-35.

[3] Tsuyoshi Nonaka,Masahiro Fujihashi,Akiko Kita,Katsuhisa etal.The cryst al structure of an oxidatively stable subtilisin alkaline serine protease,with a C enterminal β barrel do main [J].J.Biol.Chem,Sep 2004,4(3):11-14.

[4] Kunamneni Adinarayana,Poluri Elllaiah,Davuluri Siva Prasad etal.Purificat ion and Partial Characterization of Thermostable Serine Alkaline Protease from a Newly Isolated B acillus sublitis PE211[J].AAPS PharmSciTech 2003,4(4):2 3-26.

[5] 裘娟萍.提高碱性蛋白酶生产效益的措施[J].氨基酸和生物资源,1996,18(2):32-35.

[6] 苑琳.碱性蛋白酶的发酵与酶学性质的研究[D].天津科技大学.2000.

[7] 邱秀宝,袁影.嗜碱性芽孢杆菌碱性蛋白酶的研究:Ⅱ.1诱变株选育及产酶条件[J].微生物学报,1990,30(2):129-133.

[8] 吴琼,程建军,杨秋萍等.碱性蛋白酶水解大豆分离蛋白[J].食品工业科技,2 009,3(10):19-23.

[9] 徐子渊,朱青虹,王建华等.碱性蛋白酶发酵条件的研究[J].食品与发酵工业,1984,5(4):12-16.

[10] 郑铁曾,涂提坤.提高C1213菌碱性蛋白酶活力的研究[J].食品与发酵工业,1993,2(1):25-31.

酸性蛋白酶生产工艺

第六节酸性蛋白酶生产工艺 07040642 47 李继江 1 蛋白酶、蛋白类酶、酸性蛋白酶 1.1 蛋白酶的定义 蛋白酶是催化肽键水解的一类酶,它可迅速水解蛋白质为胨、肽类,广泛存在于动物内脏、植物茎叶、果实和微生物中。同时大多数微生物蛋白酶都是胞外酶。 1.2 微生物蛋白酶分类 微生物蛋白酶按其作用的最适pH可分为酸性蛋白酶、中性蛋白酶、碱性蛋白酶三类。 碱性蛋白酶为透明褐色液体,能与水混溶,最适温度50~60℃,最适pH8.5。 中性蛋白酶为金属酶,褐色颗粒或液体,易溶于水,最适温度45~55℃,最适pH5.5~7.5。 酸性蛋白酶为近乎白色至浅黄色无定型粉末或液体,易溶于水,最适温度45℃,最适pH2.5。 1.3 蛋白类酶 蛋白类酶主要是指由蛋白质组成的酶(P酶);而主要由核糖核酸组成的酶称为核酸类酶(R酶)。 蛋白类酶分为氧化还原酶、转移酶、水解酶、裂合酶、异构酶、合成酶(或称连接酶)。 1.4 酶的生产方法 酶的生产方法主要有:提取分离法、生物合成法、化学合成法。 酶的微生物合成法主要有:液体深层发酵、固体培养发酵、固定化细胞培养、固定化原生质发酵。 酸性蛋白酶用微生物发酵法生产,采用液体深层发酵。 液体深层发酵是指液体培养基在发酵罐中灭菌冷却后,接入产酶细胞,一定条件下发酵,适用于微生物细胞、动植物细胞的培养。具有机械化程度高、技术管理严格、酶产率高、质量稳定,产品回收率高的特点,是目前酶发酵的主要方式。 1.5 酸性蛋白酶制剂的性能 1.5.1 酸性蛋白酶的作用机理 酶是一种蛋白质,它是活细胞产生的生物催化剂,生物体的新陈代谢活动都离不开酶的作用。酶的种类很多,酸性蛋白酶是水解酶类的一种,能够在微酸环境下(pH2.5~4.0)

20立方米液氨储罐设计说明书

目录 课程设计任务书 2 20m3液氨储罐设计 2 课程设计容 3 液氨物化性质及介绍 3 1. 设备的工艺计算 3 1.1 设计储存量 3 1.2 设备的选型的轮廓尺寸的确定 3 1.3 设计压力的确定 4 1.4 设计温度的确定 4 1.5 压力容器类别的确定 4 2. 设备的机械设计 5 2.1 设计条件 5 2.2 结构设计 6 2.2.1 材料选择 6 2.2.2 筒体和封头结构设计 6 2.2.3 法兰的结构设计 6 (1)公称压力确定7 (2)法兰类型、密封面形式及垫片材料选择7 (3)法兰尺寸7 2.2.4 人孔、液位计结构设计8 (1)人孔设计8 (2)液位计的选择9 2.2.5 支座结构设计10 (1)筒体和封头壁厚计算10 (2)支座结构尺寸确定12 2.2.6 焊接接头设计及焊接材料的选取14 (1)焊接接头的设计14 (2)焊接材料的选取16 2.3 强度校核16 2.3.1 计算条件16 2.3.2 压圆筒校核17 2.3.3 封头计算18 2.3.4 鞍座计算20 2.3.5 开孔补强计算21 3. 心得体会22 4. 参考文献22

课程设计任务书 20m3液氨储罐设计 一、课程设计要求: 1.按照国家最新压力容器标准、规进行设计,掌握典型过程设备设计的全过程。 2.设计计算采用手算,要求设计思路设计思路清晰,计算数据准确、可靠。 3.工程图纸要求计算机绘图。 4.独立完成。 二、原始数据 设计条件表 三、课程设计主要容 1.设备工艺设计 2.设备结构设计 3.设备强度计算 4.技术条件编制 5.绘制设备总装配图 6.编制设计说明书 四、学生应交出的设计文件(论文): 1.设计说明书一份; 2.总装配图一(A1图纸一)

液氨储罐课程设计分析

课程设计任务书 课程设计任务书 1. 设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规范进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据: 1

3. 工艺条件图 4. 计算及说明部分内容(设计内容): 第1章绪论: (1)液氨储罐的设计背景 (2)液氨贮罐的分类及选型; (3)主要设计参数的确定及说明。 第2章材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍座的选择确定。 第3章工艺尺寸的确定 第4章设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; (6)选择液位计; (7)选配工艺接管。 设计小结 参考文献 5.绘图部分内容: 总装配图一张(A1图纸) 2

课程设计任务书 6.设计期限:1周( 2013 年 06月 24 日~ 2013 年 07 月 05 日) 7、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 8.参考资料: (一)国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998; (二)国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999 (三)《金属化工设备·零部件》第四卷 (四)中华人民共和国化学工业部,中华人民共和国待业标准《钢制管法兰、垫片、紧固件》,1997 (五)《化工设备机械基础课程设计指导书》(图书馆借阅书号:TQ 05/51) (六)刁玉纬王立业,《化工设备机械基础》,大连理工大学出版社,2003年第五版; (七)李多民俞惠敏,《化工过程设备机械基础》,中国石化出版社,2007; (八)董大勤,《化工设备机械基础》,化学工业出版社,1994年第二版; (九)汤善甫朱思明,《化工设备机械基础》,华东理工大学出版社,2004年第二版; 发给学生(签名):指导教师: 年月日 (注:此任务书应附于所完成的课程设计说明书封面后) 3

机械设计课程设计题目

附录I: 机械零件课程设计题目 题目A 设计一用于带式运输机上的圆锥园柱齿轮减速器。工作经常载,空载起动,工作有轻震,不反转。单班制工作。运输机卷筒直径D=320mm,运输带容许速度误差为5%。减速器为小批生产,使用期限10年。 附表1 原始数据 题号 A1A2A3A4A5A6 运输带工 作拉力F (N) 2×103 2.1×103 2.2×103 2.3×103 2.4×103 2.5×103 运输带工 作速度V (m/s) 1.2 1.3 1.4 1.5 1.55 1.6 1.电动机2.联轴器3.圆锥齿轮减速器4.带式运输机 附图1

题目B 设计一用于带式运输机上的同轴式两级圆柱齿轮减速器。工作平稳。单向运转,两班制工作。运输带容许速度误差为5%。减速器成批生产,使用期限10年。 附表2 原始数据 题号 B1B2B3B4B5B6B7 运输机工 作轴扭矩 T(N。 m) 1300135014001450150015501600 运输带工 作速度V (m/s) 0.650.700.750.800.850.900.80 卷筒直径 D(mm) 300320350350350400350 1.带传动2.电动机3.同轴式两级圆柱齿轮减速器4.带式运输机5.卷筒 附图2

题目C 设计一用于链式运输机上的圆锥圆柱齿轮减速器。工作平稳,经常满载,两班制工作,引链容许速度误差为5%。减速器小批生产,使用期限5年。

附表3 1.电动机2.联轴器3.圆锥齿轮减速器4.链传动5.链式运输机 附图3 题目D 设计一斗式提升机传动用的二级斜齿圆柱齿轮同轴式减速器。传动简图如下,设计参数列于附表4。 附表4斗式提升机的设计参数 题号参数 题号 D1D2D3D4 生产率Q(t/h)15162024提升带速度V(m/s) 1.82 2.3 2.5m)

机械设计课程设计完整版

------------------------------------------装订线------------------------------------------ 综合课题说明书 题目传动系统测绘与分析 机电工程系机械设计专业04机43 班 完成人xx 学号xxxxxx 同组人xx、xxx…… 指导教师XX 完成日期200x 年x 月xx 日 XX机电工程学院

目录 课题任务书 (1) 一、减速器结构分析 (1) 1、分析传动系统的工作情况 (1) 2、分析减速器的结构 (2) 3、零件 (3) 二、传动系统运动分析计算 (7) 1、计算总传动比i;总效率 ;确定电机型号 (7) 2、计算各级传动比和效率 (9) 3、计算各轴的转速功率和转矩 (9) 三、工作能力分析计算 (10) 1、校核齿轮强度 (10) 2、轴的强度校核 (13) 3、滚动轴承校核 (17) 四、装备图设计 (18) 1、装备图的作用 (18) 2、减速器装备图的绘制 (19) 五、零件图设计 (22) 1、零件图的作用 (22) 2、零件图的内容及绘制 (22) 参考文献 (25)

04机电综合课题任务书 学号:xxx 姓名:xxx 指导教师:xx 同组姓名:xx、xxx、xxx、xx、xx 一、课题:机械传动系统与分析 二、目的 综合运用机械设计基础、机械制造基础的知识和绘图技能,完成传动装置的测绘与分析,通过这一过程全面了解一个机械产品所涉及的结构、强度、制造、装配以及表达等方面的知识,培养综合分析、实际解决工程问题的能力,培养团队协作精神。 三、已知条件 1.展开式二级齿轮减速器产品(有关参数见名牌) 2.工作机转矩:300N.m,不计工作机效率损失。 3.动力来源:电压为380V的三相交流电源;电动机输出功率 P=1.5kw。 4.工作情况:两班制,连续单向运行,载荷较平稳。 5.使用期:8年,每年按360天计。 6.检修间隔期:四年一次大修,二年一次中修,半年一次小修。 7.工作环境:室内常温,灰尘较大。 四、工作要求 1.每组拆卸一个减速器产品,测绘、分析后将零件装配复原,并使用传动系统能正常运转。 2.每组测绘全部非标准件草图(徒手绘制),并依据测量数据确定全部标准的型号。 3.每组一套三轴系装配图(每人一轴系)。 4.各人依据本组全部零件测绘结果用规尺绘制减速器装配图、低速级大齿轮和输出轴的零件工作图。 5.对传动系统进行结构分析、运动分析并确定电动机型号、工作能

酸性蛋白酶的作用机理

酸性蛋白酶与碱性蛋白酶生产工艺的不同之处? 酸性蛋白酶是一种在酸性环境下(pH 2.5-4.0)催化蛋白酶水解的酶制剂,适用于酸性介质中水解动植物蛋白质。可用于毛皮软化,酒精发酵,啤酒、果酒澄清,动植物蛋白质水解营养液,羊毛染色,废胶片回收,饲料添加剂等等。本品在酸性条件下有利于皮纤维松散,且软化液可连续使用,是当前理想的毛皮软化酶制剂;在酒精发酵中,添加酸性蛋白酶,能有效水解原料中的蛋白质,破坏原料颗粒粒间细胞壁的结构,有利于糖化酶的作用,使原料中可利用碳源增加,从而可提高原料出酒率;另一方面,蛋白质的水解提高了醪液中α-氨基态氮的含量,促进酵母菌的生长与繁殖,提高发酵速度,从而缩短发酵周期和提高发酵设备的生产能力。 碱性蛋白酶碱性蛋白酶是在碱性条件下水解蛋白质肽键的酶类,是一类非常重要的工业用酶,最早发现于猪胰脏。碱性蛋白酶广泛存在于动、植物及微生物中。微生物蛋白酶均为胞外酶,不仅具有动植物蛋白酶所具有的全部特性,还有下游技术处理相对简单、价格低廉、来源广、菌体易于培养、产量高、高产菌株选育简单、快速、易于实现工业化生产等诸多优点。1945年瑞士M等在地衣芽孢杆菌中发现了微生物碱性蛋白酶。 碱性蛋白酶是由细菌原生质体诱变选育出的地衣芽孢杆菌 2709,经深层发酵、提取及精制而成的一种蛋白水解酶,其主要酶成分为地衣芽孢杆菌蛋白酶,是一种丝氨酸型的内切蛋白酶,它能水解蛋白质分子肽链生成多肽或氨基酸,具有较强的分解蛋白质的能力,广泛应用

于食品、医疗、酿造、洗涤、丝绸、制革等行业。 1、碱性蛋白酶是一种无毒、无副作用的蛋白质,属于丝氨酸型内切蛋白酶,应用在食品行业可水解蛋白质分子肽链生成多肽或氨基酸,形成具有独特风味的蛋白质水解液。 2、碱性蛋白酶成功应用于洗涤剂用酶工业,可添加在普通洗衣粉、浓缩洗衣粉和液体洗涤剂当中,既可用于家庭洗衣,也可用于工业洗衣,可以有效的去除血渍、蛋类、乳制品、或肉汁、菜汁等蛋白类的污渍,另外也可作为医用试剂酶清洗生化仪器等。 3、在生物技术领域,碱性蛋白酶可作为工具酶用于核酸纯化过程中的蛋白质(包括核酸酶类)去除,而对DNA无降解作用,避免对DNA 完整性的破坏。 酸性蛋白酶如何灭活第一种方法几乎所有酶都适用,就是加热。第二种,既然是酸性酶,加入强碱应该也是可以的。 酸性蛋白酶产生菌的筛选方法?酸性蛋白酶是一种能在酸性环境下水解蛋白质的酶类,其最适作用pH值为2.5-5.0。由于酸性蛋白酶具有较好的耐酸性,因此被广泛地应用于食品、医药、轻工、皮革工艺以及饲料加工工业中。目前用于工业化生产的酸性蛋白酶大多为霉菌酸性蛋白酶,此类酶的最适作用pH值为3.0左右,当pH值升高时,酸性蛋白酶的酶活会明显降低,且此类酶不耐热,当温度达到50℃以上时很不稳定,从而限制了酸性蛋白酶的应用范围。因此,本研究以开发耐温偏酸性蛋白酶为目标,进行了以下几方面的研究:(1)偏酸性蛋白酶产生菌的分离筛选。 (2)偏酸性蛋白酶粗酶酶学性

液氨储罐机械设计分析

课程设计任务书 广东石油化工学院 《化工机械基础》课程设计任务书 1.设计题目:液氨储罐机械设计 2. 设计数据: 技术特性 公称容积V0(m3) 16 公称直径D i(mm) 2000介质液氨筒体长度L(mm) 4000 工作压力(MPa) 2.07 工作温度(0C) ≤50 厂址茂名推荐材料16MnR 管口表 编号名称公称直径(mm) 编号名称公称直径(mm) a1-2 液位计15 e 安全阀32 b 进料管50 f 放空管25 c 出料管32 g 人孔500 d 压力表15 h 排污管50 工艺条件图

广东石油化工学院课程设计毕业书 3.计算及说明部分内容(设计内容): 第一部分绪论: (1)设计任务、设计思想、设计特点; (2)主要设计参数的确定及说明。 第二部分材料及结构的选择与论证 (1)材料选择与论证; (2)结构选择与论证:封头型式的确定、人孔选择、法兰型式、液面计的选择、鞍式支座的选择确定。 第三部分设计计算 (1)计算筒体的壁厚; (2)计算封头的壁厚; (3)水压试验压力及其强度校核; (4)选择人孔并核算开孔补强; (5)选择鞍座并核算承载能力; 第四章主要附件的选用 (1)、液面计选择 (2)、各进出口的选择 (3)、压力表选择 第五章设计小结 附设计参考资料清单 4.绘图部分内容: 总装配图一张(1#) 5.设计期限:1周(2014 年 07 月 07 日—— 2014 年 07月 11 日) 6、设计参考进程: (1)设计准备工作、选择容器的型式和材料半天 (2)设计计算筒体、封头、选择附件并核算开孔补强等一天 (3)绘制装配图二天 (4)编写计算说明书一天 (5)答辩半天 7.参考资料: [1]《化工过程设备机械基础》,李多民、俞慧敏主编,中国石化大学出版社

机械设计课程设计题目5

中北大学
课 程 设 计 说 明 书
学生姓名: 学 专 题 院: 业:
学 号:
目: 设计同轴线式二级斜齿圆柱齿轮减速器,该减速
器用于汽车发动机装配车间的皮带运输机的传 动系统中
指导教师: 指导教师:苗鸿宾 程志刚
职称: 职称: 副教授 高工
2011 年 5 月
27 日

中北大学
课程设计任务书
2010/2011 学年第 二 学期
学 专
院: 业: 学 号:
学 生 姓 名:
课程设计题目:设计同轴线式二级斜齿圆柱齿轮减速器,
该减速器用于汽车发动机装配车间的皮带 运输机的传动系统中
起 迄 日 期: 课程设计地点: 指 导 教 师: 系 主 任: 苗鸿宾 暴建岗 程志刚
下达任务书日期:
2011 年 5 月 27 日

课 程 设 计 任 务 书
1.设计目的:
1)、综合运用本课程的理论和生产实际知识进行设计训练,使所学的知识得到进一 步的巩固和发展; 2)、学习机械设计的一般方法和步骤,初步培养学生分析和解决工程实际问题的能 力,树立正确的设计思想,为今后毕业设计设计和工作打下良好的基础; 3)、进行方案设计、结构设计、机械制图和运用设计手册、标准及规范等技能的训 练,使学生具有初步机械设计的能力。
2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等) :
技术要求: 技术要求 该运输机两班制工作,单向回转,工作平稳,传送带运行速度允许误差为±5%,使 用期限为 10 年。 原始数据 滚筒直径: 传动带运行速度: 传动带主轴所需扭矩:
mm
m/s
N·m
1-电动机 4-联轴器
2-带传动 5-滚筒
3-减速器 6-传动带
3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、 实物样品等〕 :
1) 完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 2) 设计主要零件,完成 3 张零件工作图。 3) 编写设计说明书。

化工机械基础化工设备课程设计液氨储罐机械设计详解

目录 第一章、绪论-----------------------------------------------------2 1.液氨贮罐的设计背景---------------------------------------------5 2.设计任务----------------------------------------------------- 3.设计思路----------------------------------------------------- 4. 2.液氨贮罐的分类及选型-------------------------------------------5 3.设计温度和设计压力的确定--------------------------------------- 第二章、材料及结构的选择与论证-----------------------------------6 1.材料选择与论证-------------------------------------------------6 2.结构选择与论证-------------------------------------------------7 第三章工艺尺寸的确定-------------------------------------------8 第四章设计计算-------------------------------------------------9 1.计算筒体的壁厚-------------------------------------------------9 2.计算封头的壁厚------------------------------------------------10 3.水压试验压力及其强度校核--------------------------------------10 4.选择人孔并核算开孔补强----------------------------------------11 5.选择鞍座并核算承载能力----------------------------------------13 6.选择液位计----------------------------------------------------14 7.选配工艺接管--------------------------------------------------14 设计小结--------------------------------------------------------15 参考文献--------------------------------------------------------16总图材料明细表………………………………………………………

液氨储罐的设计

化工设备机械基础课程设计题目:液氨贮罐的机械设计 班级: 学号:0708010213 姓名:陈剑 指导教师:崔岳峰 沈阳理工大学环境与化学工程学院 2010年11月 设计任务书 课题:液氨储罐的机械设计 设计内容:根据给定的工艺参数设计一台液氨储罐。 已知工艺参数: 最高使用温度:T=50℃

公称直径:DN=3000mm 筒体长度:L=4500mm 具体内容包括: (1)筒体材料的选择 (2)储罐的结构和尺寸 (3)罐的制造施工(焊接焊缝) (4)零部件的型号、位置和接口 (5)相关校核计算 设计人:陈剑 学号:0708010213 下达时间:2010年11月19日 完成时间:2010年12月24日 目录 前言 1 1液氨储罐的设计背景 2 2液氨储罐的分类和选型 3

2.1 储罐的分类 3 2.2 储罐的选型 3 3 材料用钢的选取 4 3.1容器用钢 4 3.2附件用钢 4 4工艺尺寸的确定 5 4.1储罐的体积 5 5工艺计算 6 5.1筒体壁厚的计算 6 5.2封头壁厚的计算6 5.3水压试验7 5.4支座7 5.4.1支座的选取7 5.4.2鞍座的计算7 5.4.3安装高度9 5.5人孔的选取9 5.6人孔补强9 5.6.1人孔补强的计算9 5.6.2 不需补强的最大开孔直径11 5.7接口管12 5.7.1液氨进料管12

5.7.2液氨出料管12 5.7.3排污管12 5.7.4液面计接管12 5.7.5放空接口管13 5.7.6安装阀接口管13 6参数校核14 6.1筒体轴向应力校核14 6.1.1 筒体轴向弯矩的计算14 6.1.2筒体轴向应力的计算14 6.2 筒体和封头切向应力的校核15 6.2.1筒体切向应力的计算15 6.2.2封头切向应力的计算16 6.3筒体环向应力的计算与校核16 6.3.1环向应力的计算16 6.3.2环向应力校核17 6.4鞍座有效断面平均压力17 7总结18 8设计结果一览表19 9液氨储罐化工设计图20 参考文献21

压力容器设计说明书(储罐液氨)

武汉工程大学 课程设计 题目:液氨储罐设计 院系:化学工程学院 专业:化学工程与工艺 班级: 姓名: 指导教师: 完成日期:2010年12月25日

设计任务书 设计题目:液氨储罐设计 设计任务:试设计一液氨储罐,完成主体设备的工艺设计和附属设备的选型设计。 包括筒体、封头、零部件的材料的选择及结构的设计;罐的制造施工及焊接形式等;设计计算及相关校核;各设计的参考标准;附CAD图。 已知工艺参数如下: 最高使用温度:T=50℃; 公称直径:DN=3000㎜; 筒体长度(不含封头):Lo=5900㎜。 任务下达时间:2010年11月19日 完成截止时间:2010年12月30日

目录 设计任务书 1 前言 (1) 2 设计选材及结构 (2) 2.1 工艺参数的设定 (2) 2.1.1设计压力 (2) 2.1.2筒体的选材及结构 (2) 2.1.3封头的结构及选材 (2) 3 设计计算 (4) 3.1 筒体壁厚计算 (4) 3.2封头壁厚计算 (4) 3.3压力试验 (5) 4 附件的选择 (6) 4.1人孔的选择 (6) 4.2人孔补强的计算 (7) 4.3进出料接管的选择 (9) 4.4液面计的设计 (10) 4.5安全阀的选择 (10) 4.6排污管的选择 (10) 4.7 鞍座的选择 (11) 4.7.1鞍座结构和材料的选取 (11) 4.7.2容器载荷计算 (12) 4.7.3鞍座选取标准 (12) 4.7.4鞍座强度校核 (13) 5 容器焊缝标准 (14) 5.1压力容器焊接结构设计要求 (14) 5.2筒体与椭圆封头的焊接接头 (14) 5.3管法兰与接管的焊接接头 (14) 5.4接管与壳体的焊接接头 (14)

液氨储罐设计说明书

学号:11014020817 《化工机械基础》 课程设计说明书 设计题目:液氨储罐机械设计 学院化学与环境工程学院专业化学工程与工艺班级化工11-8 学生白涛指导教师陈华豪 完成时间2013年06月24日至2013年06月30日 课程设计任务书 1.设计题目:液氨储罐机械设计 2. 课程设计要求及原始数据(资料): (1)、课程设计要求: ①.使用国家最新压力容器和换热器标准、规范进行设计,掌握典型过程设备设计的全过程。 ②.广泛查阅和综合分析各种文献资料,进行设计方法和设计方案的可行性研究和论证。 ③.设计计算要求设计思路清晰,计算数据准确、可靠。 ④.设计说明书可以手写,也可打印,但工程图纸要求手工绘图。 ⑤.课程设计全部工作由学生本人独立完成。 (2). 设计数据:

4. 计算及说明部分内容(设计内容): 1 绪论 1.1 液氨储罐的设计背景 1.2 液氨储罐的分类及选型 2 材料及结构的选择与论证 2.1 工艺参数的设定 2.1.1设计压力 2.1.2筒体的选材及结构 2.1.3封头的结构及选材 3 设计计算 3.1 筒体壁厚计算 3.2 封头壁厚计算 3.3 压力试验 4 附件的选择 4.1 人孔的选择 4.2 人孔补强的计算 4.3 进出料接管的选择 4.4 液面计的设计 4.5 安全阀的选择 4.6 排污管的选择 4.7 真空表选择 4.8 鞍座的选择 4.8.1 鞍座结构和材料的选取 4.8.2 容器载荷计算 4.8.3 鞍座选取标准 4.8.4 鞍座强度校核 5 容器焊缝标准 5.1 压力容器焊接结构设计要求 5.2 筒体与椭圆封头的焊接接头 5.3 管法兰与接管的焊接接头 5.4 接管与壳体的焊接接头 6 筒体和封头的校核计算

《机械设计课程设计》答辩题

机械设计课程设计综合答辩题 1#题: ●电动机的类型如何选择?其功率和转速如何确定? ●联轴器的类型如何选择?你选择的联轴器有何特点? ●圆柱齿轮的齿宽系数如何选择?闭式传动中的软齿面和硬齿面的齿宽系数有何不同,开式齿 轮呢? ●箱体上装螺栓和螺塞处,为何要有鱼眼坑或凸台? 2#题: ●试分析你设计的减速器中低速轴齿轮上的作用力。 ●考虑传动方案时,带传动和链传动谁布置在高速级好,谁在低速级好,为什么? ●滚动轴承部件设计时,如何考虑因温度变化而产生轴的热胀或冷缩问题? ●为什么要设视孔盖?视孔盖的大小和位置如何确定? 3#题: ●一对圆柱齿轮传动啮合时,大小齿轮啮合处的接触应力是否相等?接触许用应力是否相等? 为什么? ●圆柱齿轮在高速轴上非对称布置时,齿轮接近扭转输入端好,还是远离输入端好?为什么? ●轴的强度不够时,应怎么办?定位销有什么功能?在箱体上应怎样布置?销的长度如何确 定?你所设计的齿轮加工及测量基准在何处?齿轮的公差一般应包括哪些内容? 4#题: ●双级圆柱齿轮减速器的传动比分配的原则是什么?高速级的传动比尽可能选得大是否合适, 为什么? ●滚动轴承的类型如何选择?你为什么选择这种轴承?有何特点?齿形系数与哪些因素有 关?试说明齿形系数对弯曲应力的影响? ●以你设计的减速器为例,试说明高速轴的各段长度和跨距是如何确定的?啮合特性表中的检 验项目分别属于齿轮公差的第几公差组?各公差组分别检验齿轮的什么精度? 5#题: ●开式圆轮应按什么强度进行计算?磨损问题如何在设计中考虑?一对相啮合的齿数不等的标 准圆柱齿轮,哪个弯曲应力大?如何两轮的弯曲强度接近相等? ●固定式刚性凸缘联轴器和尼龙柱销联轴器在性能上有何不同?试讲述你所选联轴器的特点? ●轴承凸缘旁螺栓孔中心位置(相对轴心距离)如何确定?它距轴承轴线距离近好还是远好?●减速器内最低和最高油面如何确定? 6#题: ●提高圆柱齿轮传动的接触强度有哪些措施?为什么? ●一对相啮合的大、小圆柱齿轮的齿宽是否相等?为什么? ●设计带传动时,发现带的根数太多,怎么办? ●旁螺栓距箱体外壁的位置如何确定?考虑哪些问题?

酶作用机理和调节【生物化学】

酶作用机理和调节 一、选择题 ⒈关于酶活性中心的描述,哪一项正确?() A、所有的酶都有活性中心; B、所有酶的活性中心都含有辅酶; C、酶的必须基团都位于酶的活性中心内; D、所有的抑制剂都是由于作用于酶的活性中心; E、所有酶的活性中心都含有金属离子 ⒉酶分子中使底物转变为产物的基团是指:() A、结合基团; B、催化基团; C、疏水基团; D、酸性基团; E、碱性基团

⒊酶原的激活是由于:() A、氢键断裂,改变酶分子构象; B、酶蛋白和辅助因子结合; C、酶蛋白进行化学修饰; D、亚基解聚或亚基聚合; E、切割肽键,酶分子构象改变 ⒋同工酶是指() A、辅酶相同的酶; B、活性中心的必需基团相同的酶; C、功能相同而分子结构不同的酶; D、功能和性质都相同的酶; E、功能不同而酶分子结构相似的酶 ⒌有关别构酶的结构特点,哪一项不正确?() A、有多个亚基; B、有与底物结合的部位; C、有与调节物结合的部位; D、催化部位和别

构部位都位于同一亚基上;E、催化部位与别构部位既可以处于同一亚基也可以处于不同亚基上。 ⒍属于酶的可逆性共价修饰,哪项是正确的? A、别构调节; B、竞争性抑制; C、酶原激活; D、酶蛋白和辅基结合; E、酶的丝氨酸羟基磷酸化 ⒎溶菌酶在催化反应时,下列因素中除哪个外,均与酶的高效率有关?() A、底物形变; B、广义酸碱共同催化; C、临近效应与轨道定向; D、共价催化; E、无法确定 ⒏对具有正协同效应的酶,其反应速度为最大反应速度0.9时底物浓度([S]0.9)与最大反应

旗开得胜速度为0.1时的底物浓度([S]0.1)二者的比值[S]0.9/[S]0.1应该为() A、>81; B、=81; C、<81; D、无法确定 ⒐以Hill系数判断,则具负协同效应的别构酶() A、n>1; B、n=1; C、n<1; D、n≥1; E、n≤1

课程设计液氨储罐设计

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1) 二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2)

3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 设计参数的确定 (3) 筒体壁厚的设计 (3) 刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 液压试验压力的确定 (3) 液压试验的强度校核 . (3) 压力表的量程、水温的要求 (3) 液压试验的操作过程 (3) 4、罐体的气压试验 (4) 气压试验压力的确定 (4) 气压试验的强度校核 (4) 、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计 算 ..................................4 、开孔

补强的有关计算参数 .......................5 、补强圈的 设计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7) 2、液氨出料管 (7) 3、排污管 (7) 4、安全阀接口管 (7) 5、压力表接口管 (8) 七、设计结果一览表 (9) 八、液氨储罐装配图(见附图)............................... 一、设计任务书 试设计一液氨储罐,其公称容积、储罐内径、罐体(不包括封头)长度见下表。使用地点:家乡--湖北省十堰市竹溪县。 技术特性表

液氨储罐的设计

化工设备机械基础课程设计 题目:液氨贮罐的机械设计 班级:07080102 学号:0708010213 姓名:陈剑 指导教师:崔岳峰 沈阳理工大学环境与化学工程学院 2010年11月

设计任务书 课题:液氨储罐的机械设计 设计内容:根据给定的工艺参数设计一台液氨储罐。已知工艺参数: 最高使用温度:T=50℃ 公称直径:DN=3000mm 筒体长度:L=4500mm 具体内容包括: (1)筒体材料的选择 (2)储罐的结构和尺寸 (3)罐的制造施工(焊接焊缝) (4)零部件的型号、位置和接口 (5)相关校核计算 设计人:陈剑 学号:0708010213 下达时间:2010年11月19日 完成时间:2010年12月24日

目录 前言 (1) 1液氨储罐的设计背景 (2) 2液氨储罐的分类和选型 (3) 2.1储罐的分类 (3) 2.2 储罐的选型 (3) 3 材料用钢的选取 (4) 3.1容器用钢 (4) 3.2附件用钢 (4) 4工艺尺寸的确定 (5) 4.1储罐的体积 (5) 5工艺计算 (6) 5.1筒体壁厚的计算 (6) 5.2封头壁厚的计算 (6) 5.3水压试验 (7) 5.4支座 (7) 5.4.1支座的选取 (7) 5.4.2鞍座的计算 (7) 5.4.3安装高度 (9) 5.5人孔的选取 (9) 5.6人孔补强 (9) 5.6.1人孔补强的计算 (9) 5.6.2 不需补强的最大开孔直径 (11) 5.7接口管 (12) 5.7.1液氨进料管 (12) 5.7.2液氨出料管 (12) 5.7.3排污管 (12) 5.7.4液面计接管 (12) 5.7.5放空接口管 (13)

机械设计课程设计答辩经典题目复习进程

机械设计课程设计答辩经典题目

机械设计课程设计答辩经典题目 1. 你所设计的传动装置的总传动比如何确定和分配的? 答题要点:由选定的电动机满载转速和工作机转速,得传动装置总传动比为:i w m n n = 总传动比为各级传动比的连乘积,即 齿轮带i i i ?=,V 带传动的传动比范围在2—4 间,单级直齿轮传动的传动比范围在3—6间,一般前者要小于后者。 2. 在闭式齿轮传动中,若将齿轮设计成软齿面,一般使两齿轮齿面硬度有一 差值,为多少HBS ?,为什么有差值? 答题要点:20—50HBS ;因为一对齿轮在同样时间,小齿轮轮齿工作次数较大齿轮的材料多,齿根弯曲疲劳强度较大齿轮低为使其强度和寿命接近,小齿轮齿面硬度应较大齿轮大。 3. 简述减速器上部的窥视孔的作用。其位置的确定应考虑什么因素? 答题要点:在减速器上部开窥视孔,可以看到传动零件啮合处的情况,以便检查齿面接触斑点和齿侧间隙。润滑油也由此注入机体内。窥视孔开在机盖的顶部,应能看到传动零件啮合,并有足够的大小,以便于检修。 4. 轴上的传动零件(如齿轮)用普通平键作周向固定时,键的剖面尺寸b ×h 值是根据何参数从标准中查得? 答题要点:与齿轮相配合处轴径的大小;答辩时,以从动齿轮上键联接为例,让考生实际操作。 5. 当被联接件之一不易作成通孔,且需要经常拆卸时,宜采用的螺纹联接形 式是螺栓联接、双头螺柱联接还是螺钉联接? 答题要点:螺钉联接。 6. 在设计单级原柱齿轮减速器时,一般减速器中的最大齿轮的齿顶距箱体的 距离大于30—50mm ,简述其主要目的。 答题要点:圆柱齿轮和蜗杆蜗轮浸入油的深度以一个齿高为宜,但不应小于10mm ,为避免油搅动时沉渣泛起,齿顶到油池底面的距离不应小于30~50mm 7. 你所设计的齿轮减速器中的齿轮传动采用何种润滑方式?轴承采用何种润 滑方式?简述润滑过程。 答题要点:齿轮传动采用浸油润滑方式;轴承采用飞溅润滑或脂润滑方式。以飞溅润滑为例,当轴承利用机体内的油润滑时,可在剖分面联接凸缘上做出输油沟,使飞溅的润滑油沿着机盖经油沟通过端盖的缺口进入轴承 8. 简述减速器的油标的作用。 答题要点:检查减速器内油池油面的高度,经常保持油池内有适量的油,一般在箱体便于观察、油面较稳定的部位,装设油标。 9. 齿轮和轴满足何种条件时,应齿轮和轴一体,作成齿轮轴。

课程设计液氨储罐设计精编WORD版

课程设计液氨储罐设计精编W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

湖北大学化学化工学院化工设备机械基础课程设计计算说明书 课程设计题目: 液氨储罐设计 姓名邹晓双 学号 专业年级 12级化工2班 指导教师鲁德平 日期 目录 一、设计任务书 (1)

二、液氨储罐设计参数的确定 (2) 1、根据要求选择罐体和封头的材料 (2) 2、确定设计温度与设计压力 (2) 3、其他设计参数 (2) 三、筒体和封头壁厚的计算 (2) 1、筒体壁厚的计算 (2) 1.1设计参数的确定 (3) 1.2筒体壁厚的设计 (3) 1.3刚度条件设计筒体的最小壁厚 (3) 2、罐体封头壁厚的计算 (3) 3、罐体的水压试验 (3) 3.1液压试验压力的确定 (3) 3.2液压试验的强度校核 . (3) 3.3压力表的量程、水温的要求 (3) 3.4液压试验的操作过程 (3) 4、罐体的气压试验 (4)

4.1气压试验压力的确定 (4) 4.2气压试验的强度校核 (4) 4.4、气压试验的操作过程 (4) 四、罐体的开孔与补强 (4) 1、开孔补强的设计准则 (4) 2、开孔补强的计算 ..................................4 2.1、开孔补强的有关计算参数 .......................5 2.2、补强圈的设 计 (5) 五、选择鞍座并核算承载能力 (5) 1、支座的设计 (5) 2、鞍座的计算 (6) 3、安装位置 (6) 4、人孔的设计 (6) 5、液面计的设计 (7) 六、选配工艺接管 (7) 1、液氨进料管 (7)

液氨贮罐的设计及计算

液氨贮罐的设计及计算 第一章贮罐筒体与封头的设计 一、罐体DN、PN的确定 1、罐体DN 的确定 液氨贮罐的长径比L/Di一般取3~3.5,本设计取L/Di=3.2,由V=(πDi2/4) ·L=10 L/Di=3.2得:Di =( 40/ 3.2π)1/3 =1.585 m= 1585 mm 因圆筒的内径已系列化,由Di=1585 mm可知: DN=1600 mm 2、釜体PN 的确定 因操作压力P=16 Kgf/cm2,由文献 [1]可知:PN=1.6 MPa 二、筒体壁厚的设计 1、设计参数的确定 p=(1.05-1.1) p w ,p =1.1×1.6MPa=1.76MPa,p c =p+p ∵ p 液< 5 % P ,∴可以忽略p 液 p c =p=1.76 MPa , t = 100 ℃,Ф=1(双面焊,100%无损探伤), c 2 =2 mm(微弱腐蚀) 2、筒体壁厚的设计 设筒体的壁厚S n ′=14 mm,[σ]t=170MPa ,c 1 =0.8 mm 由公式S d =p c Di/(2 [σ]tФ-P c)+c 可得: S d =1.76×1600/(2×170×1-1.76)+ 2 +0.8=11.13(mm) 圆整S n =12 mm ∵S n ≠ S n ′∴假设S n = 14mm是不合理的. 故筒体壁厚取S n =12 mm 3、刚度条件设计筒体的最小壁厚 ∵ Di=1600 mm < 3800 mm ,S min =2 Di /1000且不小于3 mm 另加 C 2 , ∴ S n =5.2 mm 按强度条件设计的筒体壁厚S n =12 mm >S n =5.2 mm,满足刚度条件的要求. 三、罐体封头壁厚的设计 1、设计参数的确定 p=(1.05-1.1) p w ,p =1.1×1.6MPa=1.76MPa,p c =p+p 液 ,∵ p 液 < 5 % p , ∴可以忽略p 液 p c =p=1.76 MPa , t=40 ℃,Ф=1(双面焊,100%无损探伤), c 2 =2 mm(微弱腐蚀) 2、封头的壁厚的设计 采用标准椭圆形封头,设封头的壁厚S n ′=14 mm,[σ]t=170 MPa ,c 1 = 0.8 mm 由公式S d =P c Di/(2 [σ]tФ-0.5P c )+c 可得: S d =1.76×1600/(2×170×1-0.5×1. 76)+ 2 +0.8=11.10 mm 圆整 S n =12 mm

机械设计机械原理课程设计题目

设计题目1:手动圆柱螺旋弹簧缠绕机设计 机构简图: 导轨 技术要求:弹簧螺距通过调整挂轮传动比可变,钢丝应拉紧,弹簧直径可变,最大长度Lmax为300mm。 主要参数: 弹黄中径D2:mm 钢丝直径d:mm 弹簧螺距p :mm 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期:年月日指导教师

设计题目2:稳速器的设计 工作简图: 4 1-输出轴2-机体3-主输入轴4-辅输入轴 技术要求:输出轴转速稳定,主轴速度波动由辅轴调节。 主要参数: 输出轴转速n2 r/min 主轴转速范围n1±r/min 输出轴功率P kw 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期:年月日指导教师

设计题目3:自动钢板卷花机设计 工作简图: 技术要求:卷花轴转φ1角后,内限位板与卷花轴共同转φ2角,外限位板可限位和 退出,并有退料装置。限位板直径D :400mm , 主要参数: 卷花轴转角φ1:3600 内限位板转角φ2:1800 钢板宽和厚:30×3 生产率: 电机功率P :1.1kw 设计要求: 1)拟定机构系统总体运动方案,画出系统运动方案简图,完成论证报告。 2)完成传动系统或执行系统的结构设计,画出传动系统或执行系统的装配图。 3)设计主要构件和零件,完成1张构件图和3张零件工作图。 4)编写设计说明书。 完成日期: 年 月 日 指导教师 1 2 3 4 1-卷花轴 2-模板 3-钢板花 4-内限位板

酸性蛋白酶的应用

YR-ACPro 酸性蛋白酶 ◇产品概述: 蛋白质由氨基酸组成,是自然界中发现的最复杂的有机化合物之一。由盐酸和蛋白酶分解成易被高等动物的肠道和微生物有机体的细胞膜吸收的氨基酸。 包括人类在内的每种动物,必须要有足够的蛋白质来维持自身生长,来生成每个细胞所必需的氨基酸,一些特种蛋白质还是某些特殊细胞、腺体分泌物、酶和激素的功能性组成元素。 蛋白酶是指一些有催化功能的酶,能够水解(断裂)蛋白质,因此也被称为蛋白水解酶。蛋白水解酶在许多的生理和病理过程中发挥着重要作用,在食品和乳品加工业也有着广泛应用。 本产品是一种酸性蛋白酶制剂,在酸性条件下具有较高活性,由酸性蛋白酶高产菌株——曲霉菌(Aspergillus)深层发酵而成。它广泛应用于饲料、纺织、废水处理和果汁提纯方面。 ◇工作机理: 蛋白水解酶制剂本产品能在酸性条件下水解蛋白质食品中的缩氨酸键,释放氨基酸或者多肽。在酒精、葡萄酒、果汁、啤酒、黄油和酱油生产中,添加酸性蛋白酶可澄清发酵液中的雾气。酵母在发酵阶段的生长可以通过悬浮蛋白质转化的氨基酸来加以促进,从而加速发酵并提高产量。 ◇产品特性: 本产品能够产生最大活性的pH范围是2.5-6.0,最适pH值是3.5;温度范围是10-50℃(50-122°F),最适温度是50℃。 ◇产品规格: 产品为固体:酶活力为 10,000 U/g) 酶活力单位定义: 温度为40℃,pH3.0条件下,1分钟内释放1ug酪氨酸所需要的酶量。 ◇使用说明: 用作饲料添加剂时,本产品的添加量为5-10U/g。 在酿造业使用时,本产品的添加比例为5U/g。 ◇产品包装及储存: 本产品的包装规格为25kg/箱。也可根据客户需求提供大小不等的包装。

相关文档
相关文档 最新文档