文档库 最新最全的文档下载
当前位置:文档库 › 500kV输电线路故障诊断方法综述_魏智娟

500kV输电线路故障诊断方法综述_魏智娟

500kV输电线路故障诊断方法综述_魏智娟
500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1

500kV 输电线路故障诊断方法综述

魏智娟1 李春明2 付学文1

(1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080)

摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。

关键词:故障诊断;阻抗法;智能算法;小波理论;行波法

The Survey on Fault Diagnosis in the 500kV Power Transmission Lines

Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1

(1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080)

Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location.

Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method

超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重

要。国家电网公司架空送电线路运行规程明确规定

“220kV 及以上架空送电线路必须装设线路故障测

距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样

性致使输电线路工作环境极为恶劣,输电线路发生

故障导致线路跳闸、电网停电,对电力系统安全运

行造成了很大威胁,所以,在线路发生故障后迅速

准确地进行故障诊断,减少因故障引起的停电损失,

降低寻找故障点的劳动强度,尽最大可能降低对整

个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型

进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断

当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

2012年第2期

2

烈的情况下,以及对供电可靠性要求越来越高的用电设备投入使用的今天,这种低效率的传统故障定位方法日益显示出其弊端。可靠、准确地对输电线路进行故障诊断与定位可以缩短查找故障点的时间,大大减轻了人工巡线的艰辛劳动;而且,还能查出人们难以发现的故障及时发现线路的薄弱环节,排除故障,保证快速恢复供电,降低因停电而造成的经济损失。因此,输电线路故障诊断与定位技术给电力生产部门带来的社会和经济效益是难以估计的,它也一直是国内外电力生产部门及科研单位密切关注的研究课题之一。

高压输电线路故障所引起的行波中包含着丰富的故障信息。合理、准确地利用行波信号中的故障信息,可以构成超高速动作的行波保护,而且还可以形成精确的行波故障测距和不受中性点运行方式影响的小电流接地系统行波选线方法[5]。而行波保护的优势主要表现在3个方面:

1)具有快速动作性。提高继电保护的快速动作性是增大输电线路传输容量、提高电力系统稳定性的简单、有效措施。

2)从原理上,行波保护可以解决传统的工频量保护所不能解决的理论和技术问题。

3)行波保护不易受故障点的过渡电阻、电力系统振荡、短路电流的大小、电压、电流互感器的误差等因素的影响。

在现场试验和实际运行中,现有的行波测距选线方法的正确性和有效性己经被证实[6-8]。这说明了我们是可以利用行波中的故障信息对输电线路进行故障诊断与定位,同时又为行波保护的研究与应用提供了丰富的经验。近年来,随着行波理论的不断完善以及小波变换和数学形态学等理论的发展,特别是现代微电子技术的迅速发展,行波保护技术也得到了快速发展,出现了许多基于单端、双端行波测距和保护的方法和理论。因此,一些国内外学者也致力于行波保护的研究与应用。目前,虽然基于GPS 的双端故障测距装置已在输电网中获得了广泛的应用,且具有较高的测距精度,但该装置需要在输电线路两端安装设备,成本较高;而且需要通信通道和GPS ,其可靠性相对较低。所以,研究基于单端行波测距的方法具有一定的前景和意义。

2 输电线路故障诊断方法

2.1 阻抗法

将计算机技术引入到电力系统后,使得输电线

路阻抗测距法得到了长足的发展。阻抗法的基本原理是通过测量输电线路发生故障时的电压、电流量,计算出故障回路的阻抗。由于线路长度与阻抗成正比,因此便可求出装置装设处到故障点的距离,或是利用故障时记录下来的电压、电流量。通过分析计算,求出故障点的距离。由于该方法容易实现,操作方便而得到广泛应用,但架空输电线路参数R 、L 、C 是沿输电线路是按照潮流分布的,一般不能当做集中参数元件处理,且阻抗法的测距精度受系统运行方式、过渡电阻和线路分布电容等因素影响,所以该方法误差较大,很难保证测距精度[7,9-10]。 2.2 神经网络和模糊理论等智能算法

近几年国内外相关专家学者对输电线路智能诊断理论的研究也越来越多,其中以神经网络和模糊理论方法的研究尤多。各种智能技术之间的交叉结合,如模糊专家系统、模糊神经网络、神经网络专家系统等也相继出炉,但大多数尚处于研究阶段,距离输电线路故障诊断的实际应用有很长的一段路要走。相关学科的研究成果如:小波变换、优化方法、卡尔曼滤波技术、模式识别技术、概率与统计决策方法等也被引入到输电线路故障诊断与定位的研究中[7,9]。目前,这些输电线路故障诊断方法大部分也尚处于开发立论阶段。

在神经网络诊断法中人工神经元模拟了脑神经元的基本特性,它按照不同的权重接收其他神经元传递来的信号,而输出则是这种加权和信号的非线性函数值。人工神经网络由大量人工神经元相互广泛连接组成,如图1所示的前馈网络模型包含输入层、隐含层和输出层,每层由数量不等的神经元L 、M 、N 组成。相邻的各神经元之间由连接线相互联系,信息分散地存储在连接线权重上[11-13]。

图1 前馈人工神经网络简图

文献[14]研究了人工神经网络训练样本的本端等值系统阻抗及电势变化对故障测距或距离保护的影响,指出人工神经网络用于故障测距时应当考虑的因素极多,所需训练样本巨大,且训练很难收敛,人工神经网络实用于故障测距尚需进一步研究。文献[15]

2012年第2期 3

提出了一种基于模糊理论的单回线单端故障方法,因伪根问题没有得到解决,所以其定位精度不高。文献[16]对人工神经网络故障诊断做了简要概括,指出由于电力设备的实际结构非常复杂,要获得学习所需的放电数据难度很大,所以该方法距离实用阶段尚有相当距离。

2.3 小波理论

小波分析(Wavelet Analysis )是近20年来发展起来的一个新的领域,其可以称为是对傅里叶分析方法的突破性的发展,它对数学和工程应用的发展都产生了深远的影响。小波变换是一种信号的时间—尺度(时间-频率)分析方法,它具有多分辨率分析(Multi-resolution Analysis )的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变,形状可以改变,时-频窗都可以改变的时频局部化分析方法。即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常信号并展示其成分[17]

,所以被誉为分析信号的“显微镜”。正是由于这种特性,使小波变换具有对信号的自适应性。

小波分析是数值分析、傅里叶分析、泛函分析相结合而发展来一种新的数学分支,它广泛应用于生物医学工程、雷达、机器视觉、机器故障诊断、自动控制、信号处理、图像处理与分析、语音识别与合成、音乐、CT 成像、量子场论、地震勘探、天体物理、分形等领域。原则上讲,传统上使用傅里叶分析的地方,现在都可以用小波分析来取代。

小波变换是通过多尺度分析对信号奇异点进行提取的。利用小波多分辨率分析的特性将突变信号进行多尺度分解,然后通过分解后的信号来确定突变信号的突变位置。Lipschitz 指数被用来定量描述函数的奇异性。当小波变换尺度越来越精细时,小波变换的极大值信号的突变点位置越精确,其衰减速度取决于信号在突变点的Lipschitz 指数。小波变换不仅可以确定突变点发生的时间,而且可以进一步判断突变的性质。由于小波具有空间局部性,它能“聚焦”于信号的局部结构,因此,利用小波变换来确定信号的突变性位置更有效。

熵最初在热力学领域提出并得以应用的,经100多年的发展,它已深入到生命科学、工程应用等研究领域。1948年Shannon 定义了信息熵。Shannon 指出,任何信息都存在冗余,冗余大小与信息中每个符号(数字、字母或单词)的出现概率或者说不确定性有关。小波熵是小波变换和信息熵的结合,它的提出始于1998年,Blanco 基于小波变换定义了小波熵,它具有小波变换在处理不规则异常信号中的独特优势以及信息熵对信号复杂程度的统计特性。随着该理论的不断发展,小波熵在生物、机械等领域得到了广泛应用。文献[18]阐述了小波熵理论在电力系统中应用的可行性,文献[19]提出采用离散小波变换和神经网络相结合的方法,对输电线路故障进行分类和定位,虽然训练好的神经网络可以准确地对故障进行分类和定位,但存在计算量大、运算费用高的缺点。文献[20]提出一种小波熵权和支持向量机相结合的故障识别方法。该方法识别速度快,克服了常规线性分类方法的局限性,具有较强的通用性和实用性。文献[21]探讨了小波熵作为一种后处理(特征提取)方法在电力系统故障检测中的应用,证明了小波熵理论在电力系统中有很好的应用前景。由于目前小波熵在电力系统的应用甚少,而且它的各种定义还不够成熟,因此,将小波熵用在电力暂态信号的检测和分类识别有待进一步深入研究。 2.4 行波法

故障行波定位法是居于行波传输理论实现的定位方法,在线路上发生故障时,故障点会产生向线路两端传播行波,行波保护原理是根据故障时产生的行波的特征检出故障的,由于行波保护原理利用了故障初期出现的行波电压、行波电流或两者组合中含有的故障信息,因此它必须要在极短的时间内检出故障。

在电力系统中,最早利用行波的故障检测技术要追溯到1948年。受二战后雷达发明的启发,美国人Seidu 提出了利用故障后所产生的行波测量输电线路故障距离的思想,基于该想法,20世纪50年代末期先后出现了3种原理的行波测距技术,并在70-80年代达到高潮。这期间,提出了行波差动保护原理、行波判别式方向保护原理、幅值比较式行波保护原理、极性比较式行波保护原理和行波距离继电器。其中,行波差动保护、极性比较式行波保护都进行了装置的研究。由于各种技术条件的限制,早期研制的行波保护装置都没能在电力系统中获得广泛运用,这在很大程度上影响了人们对行波保护的研究热情,因此在之后的一段时间内,行波保护的研究陷入了低谷[22]。

2012年第2期

4

随着计算机技术、微电子技术、通信技术、GPS 时间同步技术和小波变换的出现,20世纪90年代再次掀起了行波保护研究和应用的高潮。小波变换具有良好的时频分析能力和消噪能力,能够同时从时域和频域描述奇异信号的每一个细节,故障产生的行波是一种非平稳变化的高频信号,因此小波变换成为分析行波信号的最为有效的数学工具,它在输电线路行波测距中的成功运用已经充分说明了这一点,为行波保护的实现奠定了坚实的数学基础。而DSP 等现代电子技术的迅速发展使得行波保护的单指令计算速度由微秒级降至纳秒级,为研制现代电力系统同步时钟创造了条件,为行波保护速动性的实现提供了硬件保证。

在此期间,我国在行波保护研究方面已取得了阶段性的成果,代表人物有清华大学的董新洲教授,西安交通大学的葛耀中教授等人。他们研究的重点是利用小波变换识别故障行波,在此基础上形成保护原理和算法,主要成果有:

1)利用GPS 技术的输配电线路两端电气量故障测距原理与技术[23-24],该技术已经由清华大学、西安交通大学、山东理工大学等单位联合研制、由山东科汇电气公司生产,并成功应用于电力系统,2007年获得国家发明奖。中国电力科学研究院、华中科技大学等单位也研制出类似装置。

2)基于组合故障测距算法的输电线路单端电气量故障测距技术,较好地解决了精度和可靠性的矛盾,已经获得国家发明专利授权。基于该算法,清华大学研制出一种高精度故障录波与测距装置并成功应用于实际电力系统。

而国外的一些学者也致力于基于故障引起暂态信号的暂态量保护研究,如英国的A.T.Johns 及阿尔斯通公司的薄志谦等,他们在20世纪90年代提出了一些关于单端暂态量的全线速动保护原理和具体实施方案,推动了单端电气量暂态保护研究的快速发展。因目前电压互感器主要采用电容分压式电压互感器(CVT ),其不能传变高频电压信号而无法获取暂态电压信号。因此,国内有关学者陆续提出了基于电流行波(或电流暂态信号)的单端量全线速动保护原理[25-27]。

总之,经过国内外10多年的运行经验表明,采用现代行波故障测距原理的输电线故障测距装置具有测距精度高和适用范围广等一系列优点。但基于暂态行波的故障测距技术尚不成熟,仍存在不少问题,概括起来主要有:

1)目前,D 型行波测距原理已在输电线路上获

得成果应用,虽然其具有较高的可靠性,但准确性稍差。它需要利用线路全长,因而其测距误差往往比单端测距原理的测距误差要大,且需要通道和时间同步设施,其准确性略低于单端测距,投资较大。

2)没有考虑线路出口故障时行波采集失真及在电压过零发生故障时对行波保护的影响。

3)在保护硬件实现技术上抗干扰问题严重。采用小波模极大值算法的现有双端行波测距方法,由于所提取特征点对应的时刻并不是所选中心频率分量到来的真正时刻,因而测距精度不够准确。

4)由于输电线路的色散效应,波速受频率影响较大,而行波检测到的频率成分又随传输距离的变化而变化,实际检测的波速难以确定[28],所以有必要对考虑频散特性的输电线路进行研究,找到检测波速度变化的规律,进而找到估算波速度的办法。因此,对单端行波实用化的测距方法进一步研究是非常必要的。

3 结论

1)阻抗法是利用测量到的故障电压、电流量,根据测量阻抗与线路长度的对应关系求得故障距离,容易实现,但误差较大,很难保证测距精度。

2)神经网络和模糊理论等智能算法,大多数尚处于研究阶段,还有赖于各种智能技术的发展与成熟。

3)小波理论,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种时频局部化分析方法。可利用小波多分辨率分析的特性将突变信号进行多尺度分解,然后通过分解后的信号来确定突变信号的突变位置。小波熵具有小波变换在处理不规则异常信号中的独特优势以及信息熵对信号复杂程度的统计特性,具有很好的应用前景。

4)行波法,行波保护原理是根据故障时产生的行波的特征检出故障的,由于行波保护原理利用了故障初期出现的行波电压、行波电流或两者组合中含有的故障信息,因此它能在极短的时间内检出故障。行波保护的超高速动作特性及其他优点吸引了众多学者的研究,现有的行波保护与早期行波保护相比,在理论和技术上都取得了较大进步,但尚存在许多问题,需要大量的研究来完善行波保护原理及其实用化技术。

5)综合输电线路故障的诊断方法,建议采用小波熵原理对输电线路故障模型进行仿真并对仿真结果进行分析,进而识别故障类型;运用基于小波熵的单端行波测距方法进行故障仿真并对仿真结果分析,

2012年第2期 5

实现故障定位。通过小波熵法、小波变换模极大值法进行比较分析,对本文所提方法进行有效性的验证。

小波熵具有小波变换和信息熵的特点,对动态系统参数的微小变化具有独特的敏感性,它反映了暂态信号在时域和频域空间的能量分布信息,因此,用小波熵来分辨故障类型是可行的。行波故障信息具有暂态特性和不可重复性,故障后的暂态电流波形会有变化,主要体现在暂态电流的高频分量,利用小波的时频可变特性可以准确地捕捉到这种变化,通过小波熵可以提取该变化。现有行波测距选线方法的正确性和有效性己被现场试验和实际运行所证实,这说明了行波故障信息是可以利用的,同时又为行波保护的研究和实际应用提供了丰富的经验。

参考文献

[1] 付学文,魏智娟.内蒙古地区输电线路鸟害统计故障分

析及防治对策[J].内蒙古电力技术,2011,29(1):11-14. [2] 付学文,王培军,魏智娟.500kV 线路风偏事故分析及

防止对策[J].华北电力技术,2011,(4):5-8.

[3] DLT741-2001架空送电线路运行规程[S].北京:中国

电力出版社,2002. 2011,(4):5-8.

[4] 王志华.超高压线路故障行波定位及高压变频技术研

究[D].华中科技大学,2004.

[5] 王利.超高压输电线路的单端行波保护方案[D].西安

理工大学,2009.

[6] 葛耀中,董新洲,董杏丽.测距式行波距离保护的研究(一)

理论与实现技术[J].电力系统自动化,2002,26(6):34-40. [7] 董杏丽,葛耀中,董新洲.测距式行波距离保护的研究(二)

原理方案与仿真[J].电力系统自动化,2002,26 (9):53-58. [8] 董新洲.故障行波理论及其应用[C].中国水力发电工

程学会学术活动.2009

[9] 葛耀中.新型继电保护和故障测距的原理与技术[M].

西安:西安交通大学出版社,2007.

[10] G.K.Purushothama, A.U.Narendranath, D.Thukaram,

K.Parthasarathy. ANN applications in fault locators[J]. Electrical Power and Energy Systems,2001,23:491-506 [11] Jin Xianhe, Wang Changchang, Li Fuqi et al. Comparison

of PD Classification Capabilities for Transformer Failure and Typical Noise Models with Network Applications[C], 2000 Annual Report, Conference on Electrical Insulation and Dielectric Phenomena (CEIDP 2000),Victoria, Canada, Oct. 15-18, 2000, 288-291.

[12] 郭创新,朱传柏,曹一家等.电力系统故障诊断的研究现

状与发展趋势[J].电力系统自动化,2006,30(8):98-103.

[13] 毕天姝,倪以信,杨奇逊.人工智能技术在输电网络故障诊

断中的应用述评[J].电力系统自动化,2000,24(2):11-16. [14] 束洪,司大军,葛耀中等.人工神经网络应用于输电线

路故障测距研究[J].电工技术学报,2000, 15(6):61-64. [15] 苏进喜,罗承沐,解子凤等,基于GPS 双端同步采样的

输电线路故障定位的研究[J].清华大学学报(自然科学版)1999,39(9):47-50.

[16] 王昌长.李福祺,高胜友.电力设备的在线监测与故障

诊断[M].北京:清华大学出版社,2006.

[17] 何正友,刘志刚,钱清泉.小波熵理论及其在电力系统中

应用的可行性探讨[J].电网技术,2004, 28(21):17-21. [18] P.S.Bhowmik, P.Purkait, K.Bhattacharya. A novel

wavelet transform aided neural network based transmission line fault analysis method[J]. Electrical Power and Energy Systems,2009,31 :213–219. [19] 杨健维,罗国敏,何正友.基于小波熵权和支持向量

机的高压输电线路故障分类方法[J].电网技术, 2007, 31(23):22-26,32.

[20] MING-YU YANG , YU-KUN YANG .. A study of

transient-based protection using wavelet energy entropy for power system EHV transmission line[J].Proceedings of the 2010 International Conference on Wavelet Analysis and Pattern Recognition,2010:283-288.

[21] 董杏丽,董新洲,张言苍,等.基于小波变换的行波极性

比较式方向保护原理研究[J].电力系统自动化,2000, 24(14):11-15.

[22] 段建东,张保会,周艺.利用电流行波进行超高压输电

线路故障类型识别的研究[J].中国电机工程学报, 2005, 25(7):58-63.

[23] 段建东,张保会,李鹏,等.超高压输电线路新单端暂态量保护

元件的实用算法[J].中国电机工程学报,2007,27(7):45-51. [24] 符玲,何正友,钱清泉.超高压输电线路的故障暂态特

征提取及故障类型判断[J].中国电机工程学报,2010, 30(22):100-106.

[25] 贾清泉,刘连光,杨以涵,等.应用小波检测故障突变量

特性实现配电网小电流故障选线保护[J].中国电机工程学报, 2001,19(10):78-82.

作者简介

魏智娟(1984-),女,汉族,河北邯郸人,内蒙古工业大学电力学院硕士研究生,主要从事输电线路在线监测与故障诊断方面的研究。

500kV输电线路故障诊断方法综述_魏智娟

2012年第2期 1 500kV 输电线路故障诊断方法综述 魏智娟1 李春明2 付学文1 (1.内蒙古工业大学电力学院,呼和浩特 010080;2.内蒙古工业大学信息学院,呼和浩特 010080) 摘要 对近几年国内外具有代表的中外文献进行了学习研究,重点论述了输电线路故障诊断的四种方法:阻抗法,神经网络和模糊理论等智能算法,小波理论,行波法。综合输电线路的四种故障诊断方法,建议采用小波熵原理对输电线路故障模型进行故障类型识别,运用基于小波熵的单端行波测距方法实现故障定位。 关键词:故障诊断;阻抗法;智能算法;小波理论;行波法 The Survey on Fault Diagnosis in the 500kV Power Transmission Lines Wei Zhijuan 1 Li Chunming 2 Fu Xuewen 1 (1.The Power College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080; 2.The Information College of Inner Mongolia University of Technological, Inner Mongolia, Hohhot 010080) Abstract Based on the overview of typical literatures at home and abroad, this research focused on the four methods of failure diagnosis of transmission lines, namely, Impedance method, Intelligent method such as Neural Network Theory and Fuzzy Theory, Wavelet Theory and Traveling Wave method. And based on the synthesis of the four methods, this research suggested that simulation should be conducted to the failure models of transmission line by applying Wavelet Entropy Principle and the results of the simulation should be analyzed in order to identify the failure types; and the failure simulation should be conducted by the single traveling wave distance-testing method of wavelet entropy, and the results of the simulation should be analyzed in order to realize failure location. Key words :failure diagnosis ;impedance method ;intelligent algorithm ;the Wavelet Theory ;the traveling wave method 超高压输电线路是电力系统的命脉,它担负着传送电能的重任,其安全可靠运行是电网安全的根本保证。输电线路在实际运行中经常发生各种故障,如输电线路的鸟害故障[1]、输电线路的风偏故障等[2],及时准确地对输电线路进行故障诊断就显得非常重 要。国家电网公司架空送电线路运行规程明确规定 “220kV 及以上架空送电线路必须装设线路故障测 距装置”[3-4]。由于我国幅员辽阔,地形地貌的多样 性致使输电线路工作环境极为恶劣,输电线路发生 故障导致线路跳闸、电网停电,对电力系统安全运 行造成了很大威胁,所以,在线路发生故障后迅速 准确地进行故障诊断,减少因故障引起的停电损失, 降低寻找故障点的劳动强度,尽最大可能降低对整 个电力系统的扰动程度,确保电力系统的安全可靠稳定运行具有十分重要的意义。本文在总结前人的基础上,重点论述了超高压输电线路的4种故障诊断方法,建议采用小波熵原理对输电线路故障类型 进行故障识别,利用基于小波熵的单端行波测距方法实现故障定位。 1 输电线路故障诊断 当输电线路发生故障时,早先的故障定位通常是由经验丰富的运行人员在阅读故障录波图的基础上,综合电力用户提供的信息,进行预测、判断可能出现的故障位置,然后派巡线人员通过查线确认故障位置并及时排除故障。在电力市场竞争日渐激

电力系统故障诊断的研究现状与发展趋势 郑姝康

电力系统故障诊断的研究现状与发展趋势郑姝康 发表时间:2019-06-27T16:41:24.690Z 来源:《防护工程》2019年第6期作者:郑姝康 [导读] 电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。 国网内蒙古东部电力有限公司乌兰浩特市供电分公司内蒙古兴安盟 137400 摘要:电力系统故障诊断是近年来十分活跃的研究课题之一。主要包括系统故障诊断和元件故障诊断两个方向,系统级故障诊断是指通过分析电网中各级各类保护装置产生的报警信息、断路器的状态变位信息以及电压电流等电气量测量的特征,根据保护、断路器动作的逻辑和运行人员的经验来推断可能的故障元件和故障类型的过程。 关键词:电力系统;故障;发展趋势 引言 随着我国经济的发展和用电量的急速增加,整个电力系统所承受的压力也越来越大。我们的日常生活以及工农业的生产之所以能够正常的进行都是依赖于整个电力系统能够稳定的运行。所以安全可靠的电力系统是经济发展和人们正常生活最基本的保障。但是由于我国技术条件、气候以及周围环境的影响等造成电力系统出现故障,这都是无法避免的。但是在故障发生时,快速准确的判断故障发生的位置以及找出解决的办法并保证电路能够快速的恢复正常的运行以便将这种损失降到最小是对电力工作人员最基本的要求。现在我国电力系统的发展规模越来越大,随之复杂程度也越来越高,所以出现故障的概率也越来越高。因此,我国针对于电力系统中所出现的故障进行合理的快速的诊断很重要,并且针对这方面的研究也很有意义。 1 我国电力系统中经常出现的主要故障 我国的电力系统中存在的故障主要是指电力系统中的设备不能正常的实现它的功能,并且导致整个电力系统不能按照预期的指标进行正常的工作。在整个电力系统中任何一个设备或者元件出现故障,如果不能及时的解决都会造成的很大的损失。下面介绍我国电力系统中经常出现的主要故障问题。 首先介绍的是电力系统中输电线路的故障。在人们的日常生产和生活中存在的输电线路的问题主要是由于风吹日晒等原因造成输电线外露的绝缘体的破坏,再在遇到大风天气的时候引起线路的接触造成电路的短路,虽然当输电线分离开以后这些故障会暂时的解除,但是这种输电线的故障依然存在。其次是电力设备中变压器的故障。在整个电力系统之中变压器是核心。所以如果整个电力系统中变压器出现故障,那么这对于整个电力系统造成的危害是难以估计的,变压器所出现的故障主要是由于高电场强度所引起的。关于变压器的故障诊断是很复杂的。因此,电力系统的工作人员在日常工作中要高度重视变压器中存在的各种故障隐患,这不仅是因为变压器价格成本昂贵,更重要的是变压器在整个电力系统中的重要作用。最后介绍在电力系统存在的母线故障和全厂或者全所停电。电力系统中存在的母线故障主要包括母线的短路、母线中所存在的保护误动作等等。当电力系统中核心变电站出现母线故障的时候,会造成很严重的后果。比如:在使用这个电力系统的所有的用户都会停电,这种情况造成的损失时无法估计的。还有全所的停电、系统联络的跳闸等都会造成严重的损失。 2 电力系统故障诊断的研究现状 关于电力系统故障诊断的研究,国外进行的较早,早在上个世纪八十年代,美国就已经有了对电站的一些设备的故障诊断工作在进行,也是自此之后,美国关于电力系统故障诊断的研究逐渐成为各电力研究科研机构以及各发电站的研究项目,尤其是在发电站事故诊断和性能的检测方面,美国一直掌握着最先进的研究成果和技术。 相比美国,我国的电力系统故障诊断研究起步就较晚,与美国等发达国家的电力系统故障诊断研究相比几乎晚了近20~30年,也正因为此,我国的电力系统故障诊断研究工作很多方面都是在借鉴国外的研究成果基础上进行的研究。笔者认为,我国的电力系统故障诊断研究可以分为两个阶段,首先,第一个阶段是研究的起步阶段,大概从1980年到1990年,在这近10年代的时间里,主要是对国外电力故障诊断的一些基础技术和理论知识进行了系统的学习和认识,研究内容主要包括快速傅里叶变换、谱分析、信号处理等等,通过对这些基础的理论知识和技术的研究主要是为了更好的研究在线监测系统的应用。其次,第二个阶段主要是从1990年~1999年末,这一时期我国各项事业也经历了翻天覆地的发展变化,我国的工业化发展也取得了显著地成绩,各种先进的技术逐渐产生和并用,电力故障诊断技术也取得了较快的发展,包括故障分类、模式识别、智能化专家系统和电脑计算机的应用等等,在这一时期我国对电力系统已经可以独立的进行全面的故障诊断研究,同时也摆脱咯受国外基础理论和研究成果的限制,也在研究过程中逐渐形成了与我国电力事业发展相符合的故障诊断理论和技术。再次,就是现阶段的研究,我国的研究已经基本上跟上了世界的脚步,在研究内容上也与各国基本相同,主要是对专家系统、人工神经网络、优化技术、Perti网络、模糊集理论以及粗糙集理论等。 3 电力系统故障诊断所面临的问题与研究发展方向 目前针对电力系统故障诊断研究主要呈现出以下的几种趋势: 一是信息不完整情况下的电力系统故障诊断方法研究。现在的一些方法的更重要的情况是在很多是电力系统是不能满足的,应用这些方法必须给出一些假定,举例来说假定假定状态信息不可获取继电保护均处于未动作状态,这样做与真实情况可能会不相符的,有可能引起错误的诊断结果。到目前为止,对继电保护信息不完整情况下的电力系统故障诊断还没有提出比较系统的解决方法,这是电力系统诊断领域中有待解决的主要难题之一。 二是采用单一智能方法进行诊断存在着很大的局限性。将多种智能方法融合来实行故障诊断,将会变成故障诊断的一个趋势。比如可以采用多种智能的理论来构建电网诊断模型;在诊断知识提取(故障数据信息预处理)方面引入现在研究更多的数据挖掘理论、粗糙集理论等,以适应大量地故障信息、信息冗余以及被噪音污染等特性。 三是电网系统的复杂性使得从静态故障诊断到动态诊断成为故障诊断的一个发展趋势。同时,随着Internet的发展,基于网络的故障诊断将成为现实,通过对设备状态的远程检测和网络化跟踪,可以实现故障设备的早期诊断和及时维修。 四是电网故障诊断理论的实用化方面的研究。由于诊断理论大多数是基于智能化方法的,所以实用化进程的推进不仅针对诊断领域,

输电线路故障跳闸原因分析报告模板)

输电线路故障跳闸原因分析报告(模板) XX月XX日XXXkVXXX线路故障跳闸原因分析报告(模板) 1 线路概况 1.1 简介(电压等级、线路名称、线路变更情况、线路长度、杆塔数、海拔、地形、地质、建设日期、投运日期、资产单位、建设单位、设计单位、施工单位、运行单位) 1.2设计气象条件 1.3 故障点基本参数 1.3.1杆、塔型。 1.3.2导、地线型号。 1.3.3 绝缘子(生产厂家、生产日期、绝缘子型式、外绝缘配置) 。 1.3.4基础及接地。 1.3.5线路相序。 1.3.6线路通道内外部环境描述。 2 保护动作情况 保护动作描述、重合闸动作情况、保护测距情况、重合不成功强送电情况、抢修恢复时间。 3 故障情况 3.1 根据保护测距计算的故障点 3.2 现场实际发现的故障情况 3.3 现场测试情况 4 故障原因分析 4.1 近期运检情况 4.2 气象分析故障(当日天气情况) 4.3 故障点地形、地貌 4.4 测试分析(雷电定位、接地电阻测量、绝缘子检测、绝缘子盐密和灰密(绝缘子污秽程度) 、复合绝缘子憎水性、绝缘试验情况、在线监测等) 4.5设计校验(故障点基本参数、绝缘配置、防雷保护角、鸟刺加装、弧垂风偏校验) 4.6现场走访情况 (向故障点周边群众了解故障当时的天气、外部环境变化、异响、弧光等) 4.7其它故障排除情况(故障排除法) 5 故障分析结论 6 暴露的问题 7 防范措施 7.1 已采取措施 7.2 拟采取措施(具体措施、措施落实责任人、措施落实时限) 附件一:现场故障现象(故障周边环境、故障点受损部件、引发故障的外部物件)图片 附件二:现场故障测试图片 附件三:现场故障处理图片 附件四:相关资质单位的试验鉴定报告 附件五:保护动作及故障录波参数 附件六:参加故障分析人员名单 单位:日期:

电力系统故障的智能诊断综述

智能电网技术及装备专刊·2010年第8期 21 电力系统故障的智能诊断综述 李再华1 刘明昆2 (1.中国电力科学研究院,北京 100192;2.北京供电公司海淀供电分公司,北京 100086) 摘要 电力系统是人类制造的最复杂的系统,故障诊断是现代复杂工程技术系统中保障其可靠运行的非常重要的手段,故障的智能诊断是该领域的热点和难点。本文综述了电力系统故障的智能诊断技术的发展现状,总结了几种常用的智能技术在故障诊断应用中存在的若干问题以及解决这些问题的相关新技术。最后,展望了智能诊断技术的发展趋势:以专家系统为基础,融合其他先进的智能技术,以提高诊断的速度和准确度,及其对电力系统发展的适应性,逐步实现在线诊断。 关键词:电力系统;智能故障诊断;专家系统;发展趋势 Review of Intelligence Fault Diagnosis in Power System Li Zaihua 1 Liu Mingkun 2 (1.China Electric Power Research Institute ,Beijing 100192; 2. Haidian branch Company, Beijing Power Supply Company, Beijing 100086) Abstract Power system is the most complex system by man-made in the world, fault diagnosis is a kind of very important methods to ensure the reliable operation of modern complex engineering system. Intelligence fault diagnosis (IFD) is the hot and difficult subject in this field. The paper reviews the actual state of development of IFD in power system, and then summarizes some existing problems in application and new relation technology to resolve these problems. IFD technologies include expert system (ES), artificial neural network (ANN), decision-making tree (DT), data mining (DM), fuzzy theory (FT), Petri network (PN), support vector machine(SVM), bionic theory (BT), etc. To adopt these kinds of methods synthetically is very helpful to improve the intelligence of ES. At last, development trends of IFD are expected: based on ES, integrates with other advanced intelligence technologies, to heighten the speed and accuracy of fault diagnosis, and the adaptability to the development of power system, so as to realize online IFD gradually. Key words :power system ;intelligence fault diagnosis ;expert system ;development trend 1 引言 电网的发展和社会的进步都对电网的运行提出了更高的要求,加强对电网故障的诊断处理显得尤为重要。随着计算机技术、通信技术、网络技术等的发展,采用更为先进的智能技术来改善故障诊断系统的性能,具有重要的研究价值和实际意义。 故障的智能诊断技术也被称为智能故障诊断技 术,包括专家系统(Expert System ,ES )、人工神 经网络(Artificial Neural Network ,ANN )、决策树(Decision Tree ,DT )、数据挖掘(Data Mining , DM )、模糊论(Fuzzy Theory ,FT )、Petri 网理论(Petri Network Theory ,PNT )、支持向量机(Support Vector Machine ,SVM )、仿生学理论(Bionics Theory ,BT )的应用等,其中前四种技术得到了较多的研究,相对比较成熟和常用。本文对电力系统故障诊断领域的智能诊断技术的发展现状以及存在的问题进行综述,并对解决相关问题的方法进行了总结。 2 智能故障诊断技术发展现状 美国是对故障诊断技术进行系统研究最早的国家之一,1961年美国开始执行阿波罗计划后,出现了一系列设备故障,促使美国航天局和美国海军积

电力系统故障诊断算法概述

电力系统故障诊断算法概述 摘要:本文概述了目前电力系统故障诊断的算法研究现状,总结了当前的主流研究算法——专家系统法、模糊理论法、人工神经网络法、遗传算法、petri 网的方法、粗糙集理论、多代理系统、贝叶斯网络法以及近似熵算法,并对他们在电力系统故障诊断应用中存在的一些缺点做出了概括。 关键词:申力系统;故障诊断;专家系统;人工神经网络;溃传算法; 0引言 当前,电力系统在国民经济中的地位越来越突出,因而对电力系统的安全性、可靠性提出了更高的要求。现在电网的规模庞大,结构趋于复杂,区域之间的联系密切,对电力系统故障诊断的研究意义重大。电力系统故障诊断是通过各类保护装置产生的信息,基于一定的理论和经验来对故障发生的区段、故障元器件、故障性质作出快速、准确的处理。虽然国家电网的SCAD/EMS系统在电力系统故障的获取方面起到了一定的作用,但是电网故障时大量的信息远远超出了运行人员的能力,所以迫切的需要一套更加完整的智能电力系统故障诊断系统,实现对电网故障的自动快速诊断。 但是,电力系统中电力设备的种类繁多品种不一,保护装置配合的复杂性、电网结构的变化不确定性,导致了电网故障诊断是一个复杂的综合问题。近年来国内外许多学者提出了多种故障诊断的技术和方法,主要包括:专家系统法ES (Expert System)、模糊理论法ET(Fuzzy Theory)、人工神经网络法ANN (Artificial Neural Network)、遗传算法GA(Genetic Algorithms)、petri网法、粗糙集理论RST(Rough Set Theory)、多代理系统MAS(Multi-agentSystem)、贝叶斯法BN(belief network)以及近似熵算法。本文对上述方法归纳总结,阐述了各自在电力网中的故障诊断的应用,分析各种方法的特点,并对一些相关技术和方法的发展进行简要的介绍。 1电力系统故障诊断国内外研究发展现状 1.1基于专家系统的方法ES 专家系统ES(Expert System)是目前发展最早相对比较成熟的一种智能技术。它是一个智能计算机程序系统,内部含有大量的某个领域专家水平的知识与经验,具有大量的专业知识与经验的程序系统,利用人类专家的知识和解决问题的方法

高压输电线路故障诊断及预防措施

高压输电线路故障诊断及预防措施 高压线路作为电力系统非常重要的组成部分,其对电网运行的安全性和稳定性具有非常重要的影响。高压输电线路运行过程中极易受到外界因素的影响,一旦发生故障,则会对电力系统运行的安全带来较大的威胁,给电力企业带来严重的经济损失,所以需要做好高压输电线路故障诊断及预防工作,确保高压输电线路运行的安全性。文中从高压输电线路中常见的故障种类入手,分析了高压输电线路故障的诊断方法,并进一步对防止高压输电线路故障的有效措施进行了具体的阐述。 标签:高压输电线路;故障种类;诊断方法;措施 前言 高压输电线路多处于野外恶劣的环境,其在运行过程中受环境影响较大,而且运行时间一长,极易出现绝缘老化。高压输电线路在电力系统中具有非常重要的作用,一旦出现故障,则会直接威胁到电力系统的安全。所以需要针对高压输电线路中常见的故障采取切实可行的诊断方法,有效的防止高压输电线路故障的发生,确保高压输电线路运行的安全性和可靠性。 1 高压输电线路中常见的故障种类 运行过程中的高压输电线路,不仅线路自身可能存在故障隐患,而且在外界环境影响下输电线路也极易发生故障。从而导致局部供电受到破坏,给正常的工作和生活带来较大的影响。所以需要针对输电线路常见故障的种类采取切实可行的预防措施。 1.1 雷击故障 雷击是导致输电线路受到破坏的最主要因素,而且在雷击作用下,不仅输电线路破坏的程度较大,而且破坏的范围也很大。在雷击故障中,以第一片绝缘子对导线放电的现象较为常见。绝缘子具有较好的隔离功能,当主放电点在悬垂线夹出口外的导线上时,这时由于塔材还没有进入到横担以下,电弧则会直接绕到横担侧第一片绝缘子地表面处,钢帽则会被充电。而这时如果能够起到承载作用的瓷绝缘子数量较少时,则会在雷击作用下,部分绝缘子钢帽则会被击破,从而导致停电事故的发生。 1.2 风偏故障 风偏故障的发生具有明显的地域性特点。其在大风作用下,一定区域地段内的线路会处于高故障发生率的状态。部分地区由于风力强度较大,在强风作用下,导线会发生偏转及位移,在这种情况下,由于空间场强会变大,从而导致在导电金属的尖端与杆塔构件的尘端会有高场强产生,这些位置也是故障高发区,会导

电力系统故障诊断的研究现状与发展趋势

电力系统故障诊断的研究现状与发展趋势 随着我国经济建设的发展,电力的需求越来越大,电力系统的正常运行不仅关系到城乡百姓的生活质量,也关系到地区经济的发展。因此,提高电力系统故障诊断符合社会发展需求。本文将对电力系统故障诊断技术展开探讨,电力系统故障诊断现状和发展趋势进行分析。 标签:电力系统;故障诊断;现状;发展 电力系统故障产生的原因多种多样,气候的变化和人为因素都将导致电力系统故障的出现。今年来随着经济建设的发展,电网企业规模在不断扩大,电网结构越来越复杂,各个区域的联系也越来越紧密,故障的发生几率也在不断增加。加强电力系统故障诊断是确保电网企业正常运行的有效手段。 一、电力系统故障诊断概述 随着当前电网企业规模的不断扩大和业务量的增加,电网结构越来越复杂。在复杂的电网结构中,往往会由于各种因素的影响,在运行过程中发生各类故障。由于电网企业业务覆盖范围较大,故障的发生将给地区电力运营带来重要影响,因此,加强电力系统的故障诊断成为电网企业重要工作。变压器是电力系统的重要构成之一,是电力系统故障诊断中重点环节。在变压器故障诊断中,又有内部诊断和外部诊断之分,相比较而言,内部诊断更为复杂,主要对由于局部温度过高产生的故障和绝缘性能降低產生的故障进行诊断。 二、电力系统故障诊断的研究现状 从我国改革开放以来,我国电力系统故障诊断技术也在不断研究和探索中。由于我国此类工作开展较晚,依然存在较多的困难,但是在逐渐的探索中也取得了许多骄人的成绩,形成了一些符合我国电力系统实情的故障诊断理论。 (一)专家系统 1.专家系统的特点 我国电力系统诊断中专家系统理论被广泛应用,专家系统电力故障诊断利用了计算机技术,通过计算机程序对电力系统进行检测,具有较高的智能化特点,通过人工智能在一定的规则范围下进行推理,解决以往只有在专家层面才能够解决的现实问题。 2.专家系统的应用 随着我国电力技术的不断发展,电力系统所应用的设备越来越复杂,自动化程度越来越高,给电力系统故障诊断提出了更高的要求。专家系统充分发挥了自

对35kV及以上输电线路故障分析及处理方法研究

对35kV及以上输电线路故障分析及处理方法研究 发表时间:2016-12-02T14:54:23.710Z 来源:《电力设备》2016年第18期作者:吴志力 [导读] 本文对35kV及以上输电线路故障形式、故障原因做了分析并提出了可行性的处理方法。 (国网浙江省电力公司庆元县供电公司 323800) 摘要:输电是用变压器将发电机发出的电能升压后,再经断路器等控制设备接入输电线路来实现。输电线路在电力输送、联网过程中担任着重要的角色。输电线路故障分析工作对检修输电线路、确保输电网安全稳定运行具有重要的意义。本文对35kV及以上输电线路故障形式、故障原因做了分析并提出了可行性的处理方法。 关键词:输电线路;故障分析;处理方法 整个输变电过程包括:发电,升压,输电,降压。其中,输电作为转换、调配电能的重要组成部分,通过升压降压满足居民生活、一般工商业、大工业、农业生产等用电需求。输电线路分为架空输电线路、电缆线路,长时间暴露在外面,特别容易被外接因素干扰、破坏,进而影响供电的安全性、稳定性。供电单位可以根据输电线路故障分析结果,及时派遣工作人员对其检修、处理,最大程度的降低因线路故障造成的损失。 一、输电线路故障形式 随着我国对电力系统改革的不断深入,各种输电线路被广泛应用,尤其是35KV及以上的输电线路。输电线路在实际运行过程中,频繁受到各种不利因素的影响,导致输电线路屡屡发生故障。35KV及以上的输电线路故障形式主要有:开路型、低阻型、闪络型。 (一)开路型。电缆线路属于输电线路的一种,由线芯、绝缘层、屏蔽层、保护层四个部分组成。其中线芯是电缆的主要部分,其性能优劣影响着输电功能。例如:35KV高压输电线路,在导体绝缘层完好的情况下,线芯断开导致电能、电信号传输中断,造成电压值稳定性降低,严重影响着电网高效运行、电缆传输次序。 (二)低阻型。对电压高低的调控主要以电阻值为参数。输电线路采取架空、电缆的方式都会导致电阻偏低。电缆导体线芯阻值在低于正常值的情况下,会因无法承受高荷载而被烧坏。另外,电阻值过高,会导致电阻运行通道不顺畅,增加电能消耗。 (三)闪络型。这类形式的故障具有瞬时性的特点。在不利因素的影响下,会出现暂时性的故障。例如:架空线路在雷雨天气经常会被雷击,导致线路5-10s出现中断传输,进而影响到整个电网的运行秩序。闪络型故障出现频率高,影响输电线路的传输效率。 二、输电线路故障原因 (一)设备出现故障 设备故障主要包括:保护插件被损坏,绝缘体出现自爆现象导致出现单相接触地面的故障,跌落熔断器烧坏,合闸线圈等导致跳等,这些设备故障侧面反映了输电系统存在很多缺陷,应将本质安全落实到在设计、选型、制造等各个环节中。 (二)外力因素的破坏 偷盗、导线周边环境等都对输电线路产生外力破坏,其中割断盗走杆塔拉线引起倒杆断线、拉线接触地面等属于偷盗破坏,在外力破坏中占据着很大比例。另外,风筝、夯路机的吊臂等都会导致输电线路出现故障。 (三)鸟类动物破坏 鸟类动物会引起跳闸。由于鸟类生活习性,它们在群体迁移、活动频繁地时候,对输电线路造成压力。鸟类喜好停留在线路杆塔上面,容易引起电路故障。虽然近年来,电力管理单位将鸟害重点区扩大到整个线路,也安装了很多防鸟刺的同基塔杆等,但是仍然没有很好地预防效果[1]。采取综合预防措施防止鸟害,刻不容缓。 (四)雷击破坏 在下雨多雷的季节,雷击故障频频出现。雷击故障多表现为线路靠近边坡的导线相,双回线路在雷击的时候,故障甚为明显。 (五)输电线路上结冰 天气寒冷的时候,输电线路上面会存有很多结冰。覆盖线路的冰块会加重输电线路的负荷,导致导线下垂弧度增大,引起混线跳闸。此外,覆盖的冰还会引起绝缘子冰闪。大雾、雨夹雪等恶劣天气,都会引起输电线路表面结冰。电力相关部门应该加大输电线路的投资力度,从本质上提高防御覆冰的性能。 (六)其他因素的破坏 除了上述的破坏因素之外,保护动物、原因不明等也会造成输电线路故障。故障问题的存在,也表明了35KV设备的安全性能较低,线路大都存在安全问题。同时,在输电线路的运行、维护、故障检修等工作方面也存着很多不足。 三、35kV及以上输电线路故障及处理方法 (一)输电线路技术方面的保障 设备的质量好坏,关系到输电线路的稳定运行。为改善输电电线路故障,应加大技术层面的投资力度。 1、预防外力因素产生的破坏。通过安装杆塔防盗帽,将拉线深埋土壤或者用混凝土浇筑,提高人们保护输电线路意识,加强监管、打击力度等以杜绝偷盗行为。 2、预防鸟类的破坏。根据研究鸟类的季节习性、活动区域,采用可行性的综合性措施防止鸟害。例如:安装伞群各异的绝缘子,阻止“鸟粪导线”接地故障,安装惊鸟器、防鸟刺等阻止鸟类在杆塔部位休息、逗留,出动人力驱赶鸟等。 3、预防结冰造成输电线路故障[2]。在选择输电设备的时候,要注意其参数是否符合防结冰要求。如:在重度结冰的区域是否将输电线路三相导线水平排列;通过人力、技术对线路进行溶冰;设立专项资金,推动绝缘子等的研究。 4、预防雷击危害。在多雷的区域,以安装避雷器,降低接触地面的电阻值等方式,进行抵御雷击造成的输电故障。 (二)运行、检修保障 电力单位工作人员应恪尽职守,做好输电线路故障分析、检修等工作,及时清除隐患,为安全可靠供电奉献自己的力量。 1、做好信号收集工作。很多不利因素都能导致输电线路出现故障,为精确找到线路故障点,工作人员必须加强信号采集的各项工

故障诊断理论方法综述

故障诊断理论方法综述 故障诊断的主要任务有:故障检测、故障类型判断、故障定位及故障恢复等。其中:故障检测是指与系统建立连接后,周期性地向下位机发送检测信号,通过接收的响应数据帧,判断系统是否产生故障;故障类型判断就是系统在检测出故障之后,通过分析原因,判断出系统故障的类型;故障定位是在前两部的基础之上,细化故障种类,诊断出系统具体故障部位和故障原因,为故障恢复做准备;故障恢复是整个故障诊断过程中最后也是最重要的一个环节,需要根据故障原因,采取不同的措施,对系统故障进行恢复一、基于解析模型的方法 基于解析模型的故障诊断方法主要是通过构造观测器估计系统输出,然后将它与输出的测量值作比较从中取得故障信息。它还可进一步分为基于状态估计的方法和基于参数估计的方法,前者从真实系统的输出与状态观测器或者卡尔曼滤波器的输出比较形成残差,然后从残差中提取故障特征进而实行故障诊断;后者由机理分析确定系统的模型参数和物理元器件之间的关系方程,由实时辨识求得系统的实际模型参数,然后求解实际的物理元器件参数,与标称值比较而确定系统是否发生故障及故障的程度。基于解析模型的故障诊断方法都要求建立系统精确的数学模型,但随着现代设备的不断大型化、复杂化和非线性化,往往很难或者无法建立系统精确的数学模型,从而大大限制了基于解析模型的故障诊断方法的推广和应用。 二、基于信号处理的方法 当可以得到被控测对象的输入输出信号,但很难建立被控对象的解析数学模型时,可采用基于信号处理的方法。基于信号处理的方法是一种传统的故障诊断技术,通常利用信号模型,如相关函数、频谱、自回归滑动平均、小波变换等,直接分析可测信号,提取诸如方差、幅值、频率等特征值,识别和评价机械设备所处的状态。基于信号处理的方法又分为基于可测值或其变化趋势值检查的方法和基于可测信号处理的故障诊断方法等。基于可测值或其变化趋势值检查的方法根据系统的直接可测的输入输出信号及其变化趋势来进行故障诊断,当系统的输入输出信号或者变化超出允许的范围时,即认为系统发生了故障,根据异常的信号来判定故障的性质和发生的部位。基于可测信号处理的故障诊断方法利用系统的输出信号状态与一定故障源之间的相关性来判定和定位故障,具体有频谱分析方法等。 三、基于知识的方法 在解决实际的故障诊断问题时,经验丰富的专家进行故障诊断并不都是采用严格的数学算法从一串串计算结果中来查找问题。对于一个结构复杂的系统,当其运行过程发生故障时,人们容易获得的往往是一些涉及故障征兆的描述性知识以及各故障源与故障征兆之间关联性的知识。尽管这些知识大多是定性的而非定量的,但对准确分析故障能起到重要的作用。经验丰富的专家就是使用长期积累起来的这类经验知识,快速直接实现对系统故障的诊断。利用知识,通过符号推理的方法进行故障诊断,这是故障诊断技术的又一个分支——基于知识的故障诊断。基于知识的故障诊断是目前研究和应用的热点,国内外学者提出了很多方法。由于领域专家在基于知识的故障诊断中扮演重要角色,因此基于知识的故障诊断系统又称为故障诊断专家系统。如图1.1

架空输电线路故障诊断及故障点定位

架空输电线路故障诊断及故障点定位 摘要:电网的整体输电线路对于整个电力系统的正常工作是至关重要的,它的 正常工作与否直接影响到整个供电系统的安全性和稳定性。架空输电线路的运行 和维护管理受到多种因素、多个方面的影响,因此需要加强输电线路运行维护及 管理。同时如何及时、准确的对电力系统架空输电线路中故障的位置进行确定, 最大限度的提高恢复供电的效率,降低电力企业以及电网用户的损失。 关键词:架空输电线路;故障;诊断 引言 架空输电线路作为电网的重要环节,具有点多、面广、线长等特点,长期暴 露在野外,极易遭受各种外力的损害。因而,危及到整个架空输电线路的安全隐 患时有发生,部分线路甚至存在着极大的安全不确定性。例如一些来自偶然的虫 鸟危害、雷电的击打、冰雹等,这些自然因素都会对整个供电线路带来极大的危 害和威胁,并且这样的意外灾害的破坏力是极大的。故障发生后,由于线长面广,采用以往凭经验,分段、逐段、逐基杆塔检查等传统方法进行排查,费时费力, 停电范围大、时间长,很难快速、准确的查清,隔离故障区段。同时,由于大多 线路处在山坡、沟壑之上,故查找过程中人身安全风险系数增大。 1.输电线路故障分析原因 1.1短路故障的原因 产生短路故障的基本原因是不同电位的导体之间的绝缘击穿或者相互短接而 形成的。三相线路短路一般有如下原因:倒杆造成的三相接地短路、线路带地线 合闸、线路运行时间较长绝缘性能下降、受外力破坏等。两相短路故障的原因是:线弧垂大,遇到刮大风导线摆动,两根线相碰或绞线形成短路;外力作用,如杂 物搭在两根线上造成短路;受雷击形成短路,绝缘击穿,电路中不同电位的导体 间是相互绝缘的。 1.2断路故障的原因 断路为最常见的故障,其最基本的表现形式是回路不通。在某些情况下,断 路还会引起过电压,断路点产生的电弧还可能导致电气火灾和爆炸事故。断路点 电弧故障:电路断线,尤其是那些似断非断的点,在断开瞬间往往会产生电弧, 或者在断路点产生高温,电力线路中的电弧和高温可能会酿成火灾;三相电路中,如果发生一相断路故障,一则可能使三相电路不对称,各相电压发生变化,使其 中的相电压升高,造成事故;二来会使电动机因缺相运行而被烧毁。三相电路中,如果零线(中性线)断路,则单相负荷影响性更大。线路断路一般有如下原因: 架空输电线路的一相导线因故断开;导线接头接触不良或烧断;外力作用造成一 相断线;配电低压侧一相保险丝熔断等。 1.3线路接地故障原因 线路接地一般有如下原因:导线接头处氧化腐蚀脱落,导线断开落地;外力 破坏造成导线断开落地;线路附近的树枝等碰及导线。如在线路附近伐树到在线 路上,线跨越道路时汽车碰断等;电气元件绝缘能力下降,对附近物体放电。 1.4自然灾害引起的故障 (1)雷电危害。雷电的危害是引起电力危害的主要原因之一,雷电造成的输电线路故障情况时有发生,一般情况下的故障表现方式是变电跳闸,特别是在一 些地形极其复杂的地区,雷电天气比较多,输电线路遭受到雷电的损失更为巨大,遭遇雷电的次数更加频繁,雷电产生的故障率也格外的多。

工程机械故障诊断方法综述

工程机械故障诊断方法综述 谢祺 机0801-1 20080534 【摘要】:机械设备的检测诊断技术在现代工业生产中的作用不可忽视,从设备诊断的基本方法、内容和技术手段等多方面对我国机械设备诊断技术的现状进行了综述,并在此基础上分析并提出了该技术在今后的发展趋势。 【关键字】:机械设备诊断技术发展趋势 引言 随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。开展机械设备故障检测与诊断技术的研究具有重要的现实意义。本文试图对机械设备故障监测诊断的内容、方法的现状及发展趋势进行探讨。 1机械故障诊断技术的历史 早在60年代末,美国国家宇航局(NASA)就创立美国机械故障预防MFPG(Machinery Fault Prevention Group),英国成立了机械保健中心(UK,Machineral Health Monitoring Center)。由于诊断技术所产生的巨大的经济效益,从而得到迅速发展。但各个工程领域对故障诊断的敏感程度和需求迫切性并不相同。例如一台机械设备因故障停机检修并不导致全厂生产过程停顿,或对产品质量产生严重的影响,它对故障诊断的需求性就不那么迫切。反之,就非要有故障诊断技术不可。目前监视诊断技术主要用于连续生产系统或与产品质量有直接关系的关键设备。 机械故障诊断技术发展几十年来,产生了巨大的经济效益,成为各国研究的热点。从诊断技术的各分支技术来看,美国占有领先地位。美国的一些公司,如 Bently,HP等,他们的监测产品基本上代表了当今诊断技术的最高水平,不仅具有完善的监测功能,而且具有较强的诊断功能,在宇宙、军事、化工等方面具有广泛的应用。美国西屋公司的三套人工智能诊断软件(汽轮机TurbinAID,发电机GenAID,水化学ChemAID)对其所产机组的安全运行发挥了巨大的作用。还有美国通用电器公司研究的用于内燃电力机车故障排除的专家系统DELTA;美国NASA研制的用于动力系统诊断的专家系统;Delio Products公司研制的用于汽车发动机冷却系统噪声原因诊断的专家系统ENGING COOLING ADCISOR等。近年来,由于微机特别是便携机的迅速发展,基于便携机的在线、离线监测与诊断系统日益普及,如美国生产的M6000系列产品,得到了广泛的应用[2]。 英国于70年代初成立了机器保健与状态监测协会,到了80年代初在发展和推广设备诊断技术方面作了大量的工作,起到了积极的促进作用。英国曼彻斯特大学创立的沃森工业维修公司和斯旺西大学的摩擦磨损研究中心在诊断技术研究方面都有很高的声誉。英国原子能研究机构在核发电方面,利用噪声分析对炉体进行监测,以及对锅炉、压力容器、管道得无损检测等,起到了英国故障

电网故障诊断

电力变压器过热故障综合诊断 摘要:对电力变压器故障的常用诊断方法, 如油中溶解气体分析、绝缘试验、 油务试验及其它预防性试验等, 进行了全面论述, 重点分析和评价了这些故障诊断方法的有效性, 并对其未来发展方向, 提出了建议。 关键词:电力变压器故障诊断方法分析 引言 电力变压器是工矿企业中配电系统的枢纽设备,其运行可靠性直接关系到企业生产的安全与稳定。但由于电力变压器故障的原因复杂、多样且不明显,使得要准确地判断电力变压器故障类型相当困难。若能在电力变压器运行过程中通过某些检测和试验,及时有效的判断其状态,预先发现早期潜伏性故障,并避免某些重复、无必要的检修, 将对企业配电系统的安全经济运行产生重要的意义。DGA(油中溶解气体分析)方法作为一种有效的油浸式电力变压器异常监测手段得到广泛的应用。在1997年颁布执行的《电力设备预防性试验规程》把油中溶解气体色谱分析放到了首位。 变压器易发生的故障基本可分两大类:①电性故障;②热性故障。电力变压器故障,从发展过程上可分两大类,即突发性故障和潜伏性故障,突发性故障发展过程很快,瞬间就会造 成严重后果,如雷击、误操作、负荷突变等,突发性故障具有偶然性,只能通过避雷器、继电保护等手段,使突发性故障被限制在最小的范围内。潜伏性故障一般有三种,即变压器内部局部放电,局部过热和变压器绝缘的老化。故障诊断主要是针对这些潜伏性故障的诊断预测。 1 变压器运行状态的主要测试与监测手段 当前我国变压器运行状态监测在相当程度上主要依据传统的预防性试验来实现,包括:电气试验和油务试验 1.1电气试验 (1)直流电阻的测t:直流电阻虽然是一个测试方法比较简单的实验,但它比较直观地确认绕组、引线、调压开关等导电回路是否正常,能发现绕组导线的焊接质t,引线接头是否拧 紧接触是否良好,调压开关触头接触是否良好等等。 (2)绝缘性能测试:通过绝缘电阻、吸收比、极化指数、介损、电容t(包括电容套管)、泄诵测试等实验可掌握变压器的绕组绝缘水平和铁心对地绝缘。 (3)有载调压开关特性测试:通过有载调压开关切换时间、周期、切换的波形测f可以掌握变压器的有载调压开关的性能是否良好。 (4)绕组变形测试和低电压短路阻抗的测试。可以掌握变压器出口短路后变压器绕组有否变形和移位。 (5)铁心接地电流测试。可判断变压器是否多点接地。 (6)远红外测沮:通过红外线测温可以随时掌握各出线引 线接触是否良好。 1.2油务试验 定期对变压器充油设备的油采样进行油色谱分析,通过油色谱分析判断变压

输电线路运维管理制度1.doc

输电线路运维管理制度1 输电线路运维管理制度 高压输电线路担负着电网电能传输的重任,规范输电线路的运行维护是确保电网长期稳定运行的前提和保障。 输电线路巡视 一、巡视类型 (一)定期巡视:经常掌握线路各部件运行情况及沿线情况,及时发现设备缺陷和威胁线路安全运行的情况。其目的在于经常掌握线路各部件运行状况及沿线情况,并搞好群众护线工作,定期巡视由专责巡线员负责,一般每周期进行一次,其它巡视由运行单位根据具体情况确定,也可根据具体情况适当调整,巡视区段为全线。 (二)故障巡视:是为了查明线路发生故障(接地、跳闸)的原因,找出故障点并查明故障原因及故障情况,故障巡视应在发生故障后及时进行,一般巡视发生故障的区段或全线。 故障巡视中,巡线员应将所有的巡视区段全部巡完,不得中断或遗漏,对所发现的可能造成故障的所有物件均应搜集带回,并对故障现场情况做好详细记录,以作为事故分析的依据和参考。 (三)特殊巡视:是在气候剧烈变化(大雾、导线覆冰、大风、暴雨等)、自然灾害(地震、河水泛滥、森林起火等),线路过负荷和其它特殊情况时,对全线某几段或某些部件进行巡视,

以发现线路的异常现象及部件的变形损害。特殊巡视根据需要及时进行,一般巡视全线、某线段或某部件。 (四)夜间、交叉和诊断性巡视:是为了检查导线的连接器的发热 或绝缘子污秽放电情况。根据运行季节特点、线路的健康情况和环境特点确定重点。巡视根据运行情况及时进行,一般巡视全线、某线段或某部件。 (五)登杆塔巡查:是为了弥补地面巡视的不足,而对杆塔上部部件的巡查。 (六)监察巡视:运维检修部及以上单位的领导干部和技术人员了解线路运行情况,检查指导巡线人员的工作。监察巡视每年至少一次,一般巡视全线或某线段。 二、巡视要求 (一)输电技术组要严格按照2013年输电线路巡视计划执行,如有其他原因推迟巡视时间,输电技术组负责人应说清原因,并尽快安排时间继续巡视。 (二)巡视检查的内容应按《架空送电线路运行规程》(DL/T741)执行。运维检修部相关专责,应定期参加线路巡视,以了解线路运行情况并检查、指导巡视人员的工作。 (三)定期巡视在地形条件较好地段,可由有一定工作经验的巡视人员一人进行。特殊巡视、夜间巡视、故障巡视及登杆塔检查必须由二人或二人以上进行。运行人员在巡视时应做到“四

相关文档