文档库 最新最全的文档下载
当前位置:文档库 › 传感器原理复习总结

传感器原理复习总结

传感器原理复习总结
传感器原理复习总结

1.传感器的作用

传感器实际上是一种功能块,其作用是将来自外界的各种信号转换成电信号。

传感器所检测的信号品种极其繁多。为了对各种各样的信号进行检测、控制,就必须获得尽量简单易于处理的信号,这样的要求只有电信号能够满足。电信号能较容易地进行放大、反馈、滤波、微分、存贮、远距离操作等。

2.传感器(Transducer或Sensor)定义:

“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件组成”。传感器有时也叫换能器、变换器、变送器或探测器。从定义中可看出传感器有两个功能:既敏感和变换。

3. 传感器通常由敏感元件、转换元件二部分组成,有时也将测量电路及辅助电源作为传感器的组成部分。

4.传感器的输出—输入关系特性就是传感器的基本特性。

传感器的静态特性是指传感器在被测量处于稳定状态时(静态的输入信号)的输出—输入关系。

5衡量传感器静态特性的主要技术指标是:线性度、灵敏度、精确度、迟滞、重复性和分辨率等。

6线性误差(Linearity Error)

线性误差是指在规定条件下(利用一定等级的校准设备,对传感器进行反复循环测试)得出输出--输入特性曲线与拟合直线(fitting straight line)间最大偏差与满量程F·S—full span)输出值的百分比称为线性误差

7灵敏度是指传感器在稳态下输出变化量(增量)与输入变化量(增量)的比值,即

K=输出变化量/输入变化量=ΔY/ΔX

灵敏度越高,系统反映输入微小变化的能力就越强。在电子测量中,灵敏度越高往往容易引入噪声并影响系统的稳定性及测量范围,在同等输出范围的情况下,灵敏度越大测量范围越小,反之则越大。

8. 分辨力是指传感器可能感受到的被测量的最小变化的能力

9,是指在一定时间间隔内,传感器的输出存在着与被测量无关的、不需要的变化。漂移包括零点漂移和灵敏度漂移。

10.准确度指测量仪器给出的示值和真值的接近程度。

11传感器的动态特性是指传感器在测量动态信号时,输出对输入的响应特性

12传感器的发展趋势1)开发新型传感器2)开发新材料3)新工艺的采用4)集成化、多功能化5)智能化

第二章光电式传感器

1.将光量转换为电量的器件称为光电传感器或光电元件。光电式传感器的工作原理是:首先把被测量的变化转换成光信号的变化,然后通过光电转换元件变换成电信号。

光电检测方法具有精度高、反应快、非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此在检测和控制领域内得到广泛应用。

光电传感器的工作基础是光电效应。

2在光线作用下,物体内的电子逸出物体表面向外发射的现象称为外光电效应在光线作用下,物体的导电性能发生变化或产生光生电动势的效应称为内光电效应

3. 光敏二极管的基本特性包括光谱特性、伏安特性、光照特性、温度特性好响应特性。

光敏管的光谱特性是指在一定照度时,输出的光电流(或用相对灵敏度表示)与入射光波长的关系

伏安特性指在一定照度下的电流电压特性。当光照时,反向电流随着光照强度的增大而增大,在不同的照度下,伏安特性曲线几乎平行,所以只要没达到饱和值,它的输出实际上不受偏压大小的影响。

光照特性近于线性,即输出电流随光照线性增加。说明光敏二极管适合作检测元件

4. 2. 光敏电阻的主要参数

光敏电阻的主要参数有:(1) 暗电阻光敏电阻在不受光照射时的阻值称为暗电阻,此时流过的电流称为暗电流。(2) 亮电流光敏电阻在受光照射时的电阻称为亮电阻,此时流过的电流称为亮电流。(3) 光电流亮电流与暗电流之差称为光电流。

5光敏电阻的基本特性(1) 伏安特性在一定照度下,流过光敏电阻的电流与光敏电阻两端的电压的关系称为光敏电阻的伏安特性(2)光照特性光敏电阻的光照特性是描述光电流I和光照强度(光通量)之间的关系,不同材料的光照特性是不同的,绝大多数光敏电阻光照特性是非线性的。故光敏电阻不宜作定量检测元件,而常在自动控制中作光电开关。

(3) 光谱特性频率特性实验证明,光敏电阻的光电流不能随着光强改变而立刻变化,即光敏电阻产生的光电流有一定的惰性,这种惰性通常用时间常数表示6光敏电阻具有光谱特性好、允许的光电流大、灵敏度高、使用寿命长、体积小等优点,所以应用广泛。此外许多光敏电阻对红外线敏感,适宜于红外线光谱区工作。光敏电阻的缺点是型号相同的光敏电阻参数参差不齐,并且由于光照特性的非线性,不适宜于测量要求线性的场合,常用作开关式光电信号的传感元件。

7光电池是一种直接将光能转换为电能的光电器件。光电池在有光线作用时实质就是电源光电池的工作原理是基于“光生伏特效应

用光电池作为测量元件时,应把它当作电流源的形式来使用,不宜用作电压源。

开路电压随温度升高而下降的速度较快,而短路电流随温度升高而缓慢增加。由于温度对光电池的工作有很大影响,因此把它作为测量元件使用时,最好能保证温度恒定或采取温度补偿措施。

8光电池应用(1)将光电池作光伏器件使用,利用光伏作用直接将大阳能转换成电能,

即太阳能电池。(2)将光电池作光电转换器件应用,需要光电池具有灵敏度高、响应时间短等特性,但不必需要像太阳电池那样的光电转换效率

9 利用物质在光照射下发射电子的外光电效应而制成的光电器件,一般都是真空的或充气的光电器件,如光电管和光电倍增管。

光电器件的性能主要由伏安特性、光照特性、光谱特性、响应时间、峰值探测率和温度特性来描述

10光电倍增管(PMT)是光子技术器件中的一个重要产品,它是一种具有极高灵敏度和超快时间响应的光探测器件。可广泛应用于光子计数、极微弱光探测、化学发光、生物发光研究、极低能量射线探测、分光光度计、旋光仪、色度计、照度计、尘埃计、浊度计、光密度计、热释光量仪、辐射量热计、扫描电镜、生化分析仪等仪器设备中。

11 电荷耦合器件(CCD)

它以电荷作为信号, 基本功能是进行光电转换电荷的存储和电荷的转移输出。

广泛应用于自动控制和自动测量, 尤其适用于图像识别技术。

12.光纤的结构基本采用石英玻璃,主要由三部分组成中心——纤芯(5-75μm);外层——包层;护套——尼龙料,光导纤维的导光能力取决于纤芯和包层的性质

光纤的传光原理1)斯乃尔定理(Snell's Law)

当光由光密物质(折射率大)入射至光疏物质时发生折射,如图(a),其折射角大于入射角,即n1>n2时,θr>θi n1sinθi=n2sinθr

13光纤的数值孔径大小与几何尺寸无关,与纤芯—包层相对折射率有关

NA表示光纤的集光能力,无论光源的发射功率有多大,只要在2θi张角之内的入射光才能被光纤接收、传播。若入射角超出这一范围,光线会进入包层漏光。

一般NA越大集光能力越强,光纤与光源间耦合会更容易

光纤按照传输模式分为:

(1)单模光纤:纤芯直径很小,接受角小,传输模式很少。这类光纤传输性能好,频带宽,具有很好的线性和灵敏度,但制造困难。

(2)多模光纤:纤芯尺寸较大,传输模式多,容易制造,但性能较差,带宽较窄。

14(原理)光纤传感器则是一种把被测量的状态转变为可测的光信号的装置。由光发送器、敏感元件(光纤或非光纤的)、光接收器、信号处理系统以及光纤构成,由光发送器发出的光源经光纤引导至敏感元件。这时,光的某一性质受到被测量的调制,已调光经

接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。

15 光纤传感器分为功能型、非功能型和拾光型三大类

16 光纤传感器的应用(一)温度的检测光纤温度传感器有功能型和传光型两种。

(二)压力的检测

种类:强度调制型、相位调制型和偏振调制型三类(三)液位、流量、流速的检测

1、液位的检测技术(1)球面光纤液位传感器

17 激光传感器利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路

组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。

激光的特性:单色性好方向性强亮度强相干性好

按工作物质激光器分为固体激光器气体激光器液体激光器半导体激光器

应用举例 1.激光测距2.激光测流速、长度3.激光陀螺17核辐射传感器是基于被测物质对射线的吸收、反射、散射或射线对被测物质的电离激发作用而进行工作的。利用这些特性制成的传感器可用来测量物质的密度、厚度,分析气体成分,探测物体内部结构等,它是现代检测技术的重要部分

第3章数字式传感器

1 数字传感器的特点

(1)具有高的测量精度和分辨力,读数直观精确。

(2)测量行程范围大,直线位移可达数米至几十米。

(3)采用高电平数字信号时,对外部干扰(噪音的抑制能力强。

(4)稳定性好,易于微机接口,便于信号处理和自动化测量。

2 光栅的构成:

光栅通常是由在表面上按一定间隔制成透光和不透光的条纹的玻璃构成,称之为透射光栅,或在金属光洁的表面上按一定间隔制成全反射的条纹,称为反射光栅。利用光栅的一些特点可进行线位移和角位移的测量。测量线位移的光栅为矩形并随被测长度增加而加长,称之为长光栅;而测量角位移的光栅为圆形,称之为圆光栅。

二.光栅位移数字转换的基本原理

1. 光栅传感器输出信号波形

当光栅相对位移一个栅距时,莫尔条纹移动一个条纹宽度,相应照射在光电池上的光强度发生一个周期的变化,使输出电信号周期变化

3.2 磁栅传感器是利用磁栅与磁头的电磁作用进行测量的位移传感器。它是一种新型的

数字式传感器。

特点:

1 成本较低且便于安装和使用;

2 制作简单,复制方便

3 精度较高

4 测量范围宽

应用:磁栅作为检测元件可用在数控机床和其他测量机上

3.3 编码器

将机械转动的模拟量(位移)转换成以数字代码形式表示的电信号,这类传感器称为编码器。编码器以其高精度、高分辨率和高可靠性被广泛用于各种位移的测量。

3.3.1 接触式编码器

1 工作原理

编码盘或编码尺是一种按一定的编码形式,如二进制编码、二—十进制编码、格

莱码等,将一个圆盘或直尺分成若干等分,并利用电子、光电或电磁器件,把代表被测2 位移量大小的各等分上的编码转换成便于应用的其他二进制表达方式的测量装置。接触式编码盘的优点:简单,体积小,输出信号强,不需放大;

缺点:是存在电刷的磨损问题,故寿命短,转速不能太高(几十转/分),而且精度受到最高位(最内圈上)分段宽度的限制

3光学码盘式传感器--- 用光电方法将被测角位移转化成数字电信号特点:高精度、高分辨力、可靠性好

应用:小范围绝对位置测量---角度、直线位置;小范围位移、速度检测

3.4 频率式数字传感器

频率式数字传感器是能直接将被测非电量转换成与之相对应的、便于处理的频率信号

振弦的激振方式:间歇激发;连续激发

4.2 热敏电阻

热敏电阻是利用半导体的电阻值随温度显著变化这一特性制成的一种热敏元件,其特点是电阻率随温度而显著变化。

特点1)温度系数大→灵敏度高2)结构简单坚固,体积小→能承受较大的冲击、振动;可以测量点温度3)电阻率高、热惯性小,响应速度快→适于动态测温

(4)易于维护、使用寿命长→适于现场测温5)很好地与各种电路匹配,而且远距离测量时几乎无需考虑连线电阻的影响;6)成本低,应用广泛7)互换性差,非线性严重,精度低8)元件易老化,稳定性较差;(9)除特殊高温热敏电阻外,绝大多数热敏电阻仅适合0~150℃范围,使用时必须注意。

热电阻测温的优点是信号灵敏度高、易于连续测量、可以远传、无需参比温度;金属热电阻稳定性高、互换性好、准确度高,可以用作基准仪表。

热电阻主要缺点是需要电源激励、有(会影响测量精度)自热现象以及测量温度不能太高。

热电偶测温它的工作原理是基于热电效应

热点偶的工作原理

热电效应及基本定律两种不同材料的金属丝两端牢靠地接触在一起,组成闭合回路,当两个接触点(称为结点)温度t和t0不相同时,回路中既产生电势,并有电流流通,这种把热能转换成电能的现象称为热电效应。

当两个结点温度不相同时,回路中将产生电动势

那么热电势的大小为多少呢?以下两者之和:接触电势+ 温差电势

传感器标定就是利用精度高一级的标准器具对传感器进行定度的过程,从而确立其输出量和输入量之间的对应关系

标定的主要作用是:

▲①确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度值;

▲②确定仪器或测量系统的静态特性指标;

▲③消除系统误差,改善仪器或测量系统的正确度

传感器原理复习提纲及详细知识点(2016)

传感器原理复习提纲第一章绪论 1.检测系统的组成。 2.传感器的定义及组成。 3. 传感器的分类。 4.什么是传感器的静态特性和动态特性。

5.列出传感器的静态特性指标,并明确各指标的含义。 x输入量,y输出量,a0零点输出,a1理论灵敏度,a2非线性项系数 灵敏度传感器在稳态下,输出的变化量与引起该变化量的输入变化量之比。 表征传感器对输入量变化的反应能力 线性传感器非线性传感器 迟滞正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 产生迟滞的原因:由于传感器敏感元件材料的物理性质和机械另部件的缺陷 所造成的,如弹性敏感元件弹性滞后、运动部件摩擦、传动机构的间隙、 紧固件松动等。 线性度传感器的实际输入-输出曲线的线性程度。 4种典型特性曲线 非线性误差 % 100 max? ? ± = FS L Y L γ ,ΔLmax——最大非线性绝对误差,Y FS——满量程输出值。 直线拟合线性化:出发点→获得最小的非线性误差(最小二乘法:与校准曲线的残差平方和最小。) 例用最小二乘法求拟合直线。 设拟合直线y=kx+b 残差△i=yi-(kxi+b) k y x =?? % 100 2 max? ? = FS H Y H γ 最小 ∑? n i2

分别对k 和b 求一阶导数,并令其 =0,可求出b 和k 将k 和b 代入拟合直线方程,即可得到拟合直线,然后求出残差的最大值Lmax 即为非线性误差。 重复性 重复性是指传感器在输入量按同一方向作全量程连续多次变化时, 所得特性曲线不一致的程度。重复性误差属于随机误差,常用标准 差σ计算,也可用正反行程中最大重复差值计算,即 或 零点漂移 传感器无输入时,每隔一段时间进行读数,其输出偏离零值,即为零点漂移。 零漂=,式中ΔY0——最大零点偏差;Y FS ——满量程输出。 温度漂移 温度变化时,传感器输出量的偏移程度。一般以温度变化1度,输出最大偏差与满量程的百分比表示, 即温漂=Δmax ——输出最大偏差;ΔT ——温度变化值;YFS ——满量程输出。 6. 一阶特性的指标及相关计算。 一阶系统微分方程 τ:时间常数,k=1静态灵敏度 拉氏变换 )()()1(s X s Y s =+τ 传递函数 s s X s Y s H τ+= = 11 )()()( 频率响应函数 ωτ ωωωj j X j Y j H += = 11 )()()( 误差部分 7. 测量误差的相关概念及分类。 相关概念 (1)等精度测量(2)非等精度测量(3)真值(4)实际值(5)标称值(6)示值(7)测量误差 分类 系统误差 随机误差 粗大误差 %100)3~2(?± =FS R Y σ γ% 1002max ??± =FS R Y R γkx y dt dy =+τ

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 1.1什么是传感器?(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 1.2传感器特性在检测系统中起到什么作用? 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 1.3传感器由哪几部分组成?说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图1.1所示。 1.4传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意 义?动态参数有那些?应如何选择? 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 1.5某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 1.6某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、

传感器原理及工程应用考试复习总结

20XX 年传感器原理及工程应用考试复习总结—光通信071吴浩2007031062 此为我根据老师给的20XX 年复习大纲,采用老师09、10年课件、网络资料、课本书籍、以及光电子072班同学的复习资料综合整理的最终复习资料,仅供参考,部分内容可能有偏差,请大家找出并纠正及时发到群邮箱。注:由于很多资料课件上没有,但因为时间关系书中的资料就没有打上去,请同学们自己对应书页码查找。 一、考试题型 选择题: 10×3 = 30分 填空题: 2×15 = 30分 原理及测量电路分析: 2×10 = 22分 计算题: 1×10 = 10分 作图题: 1×8 = 8 分 二、范围及重点 第一章 (1) 在测量结果中进行修正;(2)消除系统误差的根源;(3)在测量系统中采用补偿措施;(4)实时反馈修正。 (1)实验对比法 ;(2)残余误差观察法 ;(3)准则检查法。 , 含义各异。主要包括5种:(1)绝对误差:Δ=x-L ;(2)相对误差:δ=Δ/ L ×100%;(3)引用误差:γ=Δ/(测量范围上限- 测量范围下限) ×100%;(4)基本误差;(5常用绝对误差来评定测量准确度;相对误差常用来表示和比较测量结果的准确度;引用误差是仪表中通用的一种误差表示方法,基本误差、附加误差适用于传感器或仪表中。 定方式变化着的误差,称为随机误差。随机误差的特点有:对称性,单峰性,抵偿性和有界性。 如:电磁场的微变、零件的摩擦、间隙,热起伏、空气扰动等、对测量值的综合影响造成的; 1).人为因素;2). 量具因素;3).力量因素;4).测量因素;5).环境因素. 第二章 1.静态特性概念、指标,时域动态特性指标 6个:时间常数τ、延迟时间d t 、上升时间r t 、峰值时间p t 、超调量σ、衰减比d 。 2.传感器的概念、动态特性概念

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

传感器原理与应用复习题及答案【精选】

《传感器原理与应用》试题及答案 一、名词解释 1.传感器2.传感器的线性度3.传感器的灵敏度4.传感器的迟滞5.绝对误差6.系统误差7.弹性滞后8.弹性后效9.应变效应10.压电效应11.霍尔效应12.热电效应13.光电效应14.莫尔条纹15.细分 二、填空题 1.传感器通常由、、三部分组成。 2.按工作原理可以分为、、、。 3.按输出量形类可分为、、。 4.误差按出现的规律分、、。 5.对传感器进行动态的主要目的是检测传感器的动态性能指标。 6.传感器的过载能力是指传感器在不致引起规定性能指标永久改变的条件下,允许超过的能力。 7.传感检测系统目前正迅速地由模拟式、数字式,向方向发展。 8.已知某传感器的灵敏度为K0,且灵敏度变化量为△K0,则该传感器的灵敏度误差计算公式为rs= 。 9.为了测得比栅距W更小的位移量,光栅传感器要采用技术。 10.在用带孔圆盘所做的光电扭矩测量仪中,利用孔的透光面积表示扭矩大小,透光面积减小,则表明扭矩。 11.电容式压力传感器是变型的。 12.一个半导体应变片的灵敏系数为180,半导体材料的弹性模量为1.8×105Mpa,其中压阻系数πL为Pa-1。 13.图像处理过程中直接检测图像灰度变化点的处理方法称为。 14.热敏电阻常数B大于零的是温度系数的热敏电阻。 15.若测量系统无接地点时,屏蔽导体应连接到信号源的。 16.目前应用于压电式传感器中的压电材料通常有、、。 17.根据电容式传感器的工作原理,电容式传感器有、、三种基本类型 18.热敏电阻按其对温度的不同反应可分为三类、、。 19.光电效应根据产生结果的不同,通常可分为、、三种类型。 20.传感器的灵敏度是指稳态标准条件下,输出与输入 的比值。对线性传感器来说,其灵敏度是。 21.用弹性元件和电阻应变片及一些附件可以组成应变片传感器,按用途划分用应变式传感器、应变式传感器等(任填两个)。 22.采用热电阻作为测量温度的元件是将的测量转换为的测量。23.单线圈螺线管式电感传感器主要由线圈、和可沿线圈轴向

传感器原理复习提纲(2016)

传感器原理复习提纲 第一章绪论 1.检测系统的组成。 2.传感器的定义及组成。 3.传感器的分类。 4.什么是传感器的静态特性和动态特性。 5.传感器的静态特性指标,并明确各指标的含义。 6.一阶特性的指标及相关计算。 误差部分 7.测量误差的相关概念及分类。 8.绝对误差,相对误差的概念及计算。 9.随机误差的评价指标和极限误差计算。 10.系统误差的发现,系统误差的减弱和消除方法。 11.粗大误差的判定及处理。 第二章电阻式传感器原理与应用 1.电阻式传感器的基本原理。 2.金属的应变效应。 3.应变片的横向效应。 4.应变片的温度误差产生的原因及其补偿方法。 5.应变电桥产生非线性的原因及消减非线性误差的措施。 6.单臂电桥,半桥差动电桥和全桥差动电桥测量电路及输出电压的推导, 得出结论。(计算) 7.半导体的压阻效应。 8.金属应变片与半导体应变片在工作机理上有何异同? 第三章变电抗式传感器原理与应用 电感式传感器 1.有哪三种自感式传感器? 2.自感式传感器的测量电路(看图分析测量电路)。 3.差动变压器的零点残余电压及其减小此电压的方法。 4.差动整流电路和相敏检波电路原理及其作用。(看图进行电路的推导和说 明) 5.比较差动式自感传感器和差动变压器在结构上及工作原理上的异同之 处。 6.什么叫电涡流效应?说明电涡流式传感器的基本结构与工作原理。 7.电涡流传感器的应用。 8.电感传感器可以测量哪些量。 电容式传感器

9.平板电容和桶装电容的电容量计算。 10.电容式传感器可分为哪几类?各自的主要用途是什么? 11.推导变极距型、变面积型和变介电常数型电容传感器的计算公式,并利 用公式进行计算。(会公式并进行计算) 12.电容传感器测量电路。 13.三种电容传感器各适合测量哪些量。 第四章光电式传感器 1.内光电效应,外光电效应和光生伏特效应。 2.光电管和光电倍增管的工作原理。 3.光敏电阻,光敏二极管,光敏晶体管及光电池的工作原理。 第五章电动势式传感器原理与应用 1.磁电式传感器的工作原理及其应用。 2.什么是霍尔效应?霍尔电势的大小与方向和哪些因素有关? 3.霍尔传感器有哪些用途? 4.霍尔元件的温度误差及其补偿。 5.什么是不等位电阻,不等位电势?霍尔元件不等位电势产生的原因有哪 些? 6.什么是正压电效应和逆压电效应? 7.常用的压电材料有哪些?比较几种常用压电材料的优缺点,说出各自适 用于什么场合? 8.石英晶体和压电陶瓷的压电效应原理。 9.为了提高压电式传感器的灵敏度,设计中常采用双晶片或多晶片组合, 试说明其组合的方式和适用场合。(能写出串、并联后等效电容值,以及 串并联适用的场合) 10.压电式传感器的等效电路。 11.电荷放大器有什么特点? 第六章温度检测 1.接触式测温方法的优点和缺点。(简答) 2.影响较大的两个经验温标。 3.常用的热电阻有哪几种?适用范围如何? 4.热敏电阻与热电阻相比较有什么优缺点? 5.根据热敏电阻随温度变化的特性不同,热敏电阻可以分为哪三种类型, 各有什么特点。 6.热敏电阻的线性化方法。 7.热电阻的三线制接法及其特点。 8.热敏电阻的应用。 9.什么是热电效应?热电偶测温回路的热电动势由哪两部分组成?由同一 种导体组成的闭合回路能产生热电势吗? 10.热电偶的结构形式有哪几种? 11.热电偶的基本定律。 12.什么是补偿导线?

传感器原理与应用心得

传感器原理与应用心得 张宝龙电信工二班201400121099 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电感式传感器的结构、工作原理及应用。 传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律

将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件和变换元件两部分组成,。 通过最近的学习,是我了解到在实际中使用传感器的选择一定要慎重。我们可以根据测量对象与测量环境确定传感器的类型。其次,当我们在选择传感器时要注意传感器的灵敏度,频率响应范围,线性范围,稳定性,精度等。 人们为了从外界获取信息,必须借助于感觉器官。而单靠人们自身的感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。 新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。 通过对这门课的学习开阔了我的视野,让我了解了以前没有了解的东西。在老师的指导下让我明白了学习要有自觉性,要自己积极主动地去学习。

传感器原理与检测技术复习题

《传感器原理及检测技术》复习题 一、选择题 1、传感器中直接感受被测量的部分是(B) A.转换元件 B.敏感元件 C.转换电路 D.调理电路 2、属于传感器静态特性指标的是(D) A.幅频特性 B.阻尼比 C.相频特性 D.灵敏度 3、属于传感器时域动态特性指标的是(A) A.阶跃响应 B.固有频率 C.临界频率 D.阻尼比 4、属于传感器动态特性指标的是(C) A.量程 B.灵敏度 C.阻尼比 D.重复性 5、传感器能感知的输入变化量越小,表示传感器的(D) A.线性度越好 B.迟滞越小 C.重复性越好 D.分辨力越高 6、衡量在同一工作条件下,对同一被测量进行多次连续测量所得结果之间的不一致程度的指标是(A) A.重复性 B.稳定性 C.线性度 D.灵敏度 7、一般以室温条件下经过一定的时间间隔后,传感器的输出与起始标定时输出的差异来表示传感器的(C) A.灵敏度 B.线性度 C.稳定性 D.重复性 8、传感器的线性范围愈宽,表明传感器工作在线性区域内且传感器的(A) A.工作量程愈大 B.工作量程愈小 C.精确度愈高 D.精确度愈低 9、表示传感器或传感检测系统对被测物理量变化的反应能力的量为(B) A.线性度 B.灵敏度 C.重复性 D.稳定性 10、在明确传感器输入/输出变换关系的前提下,利用某种标准器具产生已知的标准非电量输入,确定其输出电量与输入量之间关系的过程,称为(C) A.校准 B.测量 C.标定 D.审核 11、按传感器能量源分类,以下传感器不属于能量转换型的是(D) A.压电式传感器 B.热电式传感器 C.光电式传感器 D.压阻式传感器 12、某温度计测量范围是-20℃~+200℃,其量程为(B) A. 200℃ B. 220℃ C. 180℃ D. 240℃ 13、某温度测量仪的输入—输出特性为线性,被测温度为20℃时,输出电压为10mV,被测温度为25℃时,输出电压为15mV,则该传感器的灵敏度为(D) A. 5mv/℃ B. 10mv/℃ C. 2mv/℃ D. 1mv//℃ 14、热电偶的T端称为(C) A.参考端 B.自由端 C.工作端 D.冷端 15、随着温度的升高,NTC型热敏电阻的电阻率会(B) A.迅速增加 B.迅速减小 C.缓慢增加 D.缓慢减小 16、有一温度计,测量范围为0~200o C,精度为0.5级,该表可能出现的最大绝对误差为(A) A.1 o C B.0.5 o C C.10 o C D.200 o C 17、热电偶式温度传感器的工作原理是基于(B) A.压电效应 B.热电效应 C.应变效应 D.光电效应

传感器原理及应用期末复习资料

信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 1.什么是传感器? 广义:传感器是一种能把特定的信息按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准:定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 2.传感器由哪几个部分组成?分别起到什么作用? 传感器一般由敏感元件、转换原件和基本电路组成。敏感元件感受被测量,转换原件将其响应的被测量转换成电参量,基本电路把电参量接入电路转换成电量。传感器的核心部分是转换原件,转换原件决定传感器的工作原理。 3.传感器的总体发展趋势是什么?传感器的应用情况。 传感器正从传统的分立式朝着集成化、数字化、多功能化,微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。未来还会有更新的材料,如纳米材料,更有利于传感器的小型化。发展趋势主要体现在这几个方面:发展、利用新效应;开发新材料;提高传感器性能和检测范围;微型化与微功耗;集成化与多功能化;传感器的智能化;传感器的数字化和网络化。 4.了解传感器的分类方法。所学的传感器分别属于哪一类? 按传感器检测的范畴分类:物理量传感器、化学量传感器、生物量传感器按传感器的输出信号分类:模拟传感器、数字传感器 按传感器的结构分类:结构型传感器、物性型传感器、复合型传感器 按传感器的功能分类:单功能传感器、多功能传感器、智能传感器 按传感器的转换原理分类:机—电传感器、光—电传感器、热—电电传感器、磁—电传感器 电化学传感器 按传感器的能源分类:有源传感器、无源传感器 国标制定的传感器分类体系表将传感器分为:物理量、化学量、生物类传感器

传感器原理及应用_复习总结

传感器原理及应用总结 ?传感器一般由敏感元件、转换元件、转换电路三部分组成。 ?传感器的基本特性通常用其静态特性和动态特性来描述。 ?电阻传感器的基本原理是将各种被测非电量转为对电阻的变化量的测量,从而达到测量的目的。 ?金属丝电阻应变片与半导体应变片的工作原理主要区别在于前者利用导体形变引起电阻变化、后者利用半导体电阻率变化引起电阻变化。 ?金属丝在外力作用下发生机械形变时它的电阻值将发生变化,这种现象称应变效应;半导体或固体受到作用力后电阻率要发生变化,这种现象称压阻效应。直线的电阻丝绕成敏感栅后,长度相同但应变不同,圆弧部分使灵敏度K下降了,这种现象称为横向效应。 ?光电开关和光电断续器是开关式光电传感器的常用器件,主要用来检测物体的靠近、通过等状态。?光电式传感器由光源、光学元器件和光电元器件组成光路系统,结合相应的测量转换电路而构成。?硅光电池的光电特性中,光照度与其短路电流呈线性关系。 ?光敏二极管的结构与普通二级管类似。它是在反向电压下工作的。 ?压电传感元件是一种力敏感元件,它由压电传感元件和测量转换电路组成。 ?压电式传感器的工作原理是基于某些电介质材料的压电效应。它是典型的有源传感器。 ?压电材料在使用中一般是两片以上,在以电荷作为输出的地方一般是把压电元件并联起来,而当以电压作为输出的时候则一般是把压电元件串联起来。 ?差动电感式传感器与单线圈电感式传感器相比,线性好、灵感度提高一倍、测量精度高。 ?螺线管式差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电压不为零,我们把这个不为零的电压称为零点残余电压;利用差动变压器测量位移时如果要求区别位移方向(或正负)可采用相敏检波电路。 ?差动变压器式传感器理论上讲,衔铁位于中心位置时输出电压为零,而实际上差动变压器输出电

常用传感器的工作原理及应用

常用传感器的工作原理及应用

3.1.1电阻式传感器的工作原理 应变:物体在外部压力或拉力作用下发生形变的现象 弹性应变:当外力去除后,物体能够完全恢复其尺寸和形状的应变 弹性元件:具有弹性应变特性的物体 3.1.3电阻应变式传感器 电阻应变式传感器利用电阻应变片将应变转换为电阻值变化的传感器。 工作原理:当被测物理量作用于弹性元件上,弹性元件在力、力矩或压力等的作用下发生变形,产生相应的应变或位移,然后传递给与之相连的应变片,引起应变片的电阻值变化,通过测量电路变成电量输出。输出的电量大小反映被测量的大小。 结构:应变式传感器由弹性元件上粘贴电阻应变片构成。 应用:广泛用于力、力矩、压力、加速度、重量等参数的测量。 1.电阻应变效应 ○

电阻应变片的工作原理是基于应变效应,即导体或半导体材料在外界力的作用下产生机械变形时,其电阻值相应发生变化,这种现象称为“应变效应”。 2.电阻应变片的结构 基片 b l 电阻丝式敏感栅 金属电阻应变片的结构 4.电阻应变式传感器的应用 (1)应变式力传感器 被测物理量:荷重或力 一

二 主要用途:作为各种电子称与材料试验机的 测力元件、 发动机的推力测试、水坝坝体承载状况监测等。 力传感器的弹性元件:柱式、筒式、环式、悬臂式等 (2)应变式压力传感器 主要用来测量流动介质的动态或静态压力 应变片压力传感器大多采用膜片式或筒式 弹性元件。 (3)应变式容器内液体重量传感器 感压膜感受上面液体的压力。 (4)应变式加速度传感器 用于物体加速度的测量。 依据:a =F/m 。 3.2电容式传感器 3.2.1电容式传感器的工作原理 由绝缘介质分开的两个平行金属板组成的 平板电容器,如果不考虑边缘效应,其电容量为 当被测参数变化使得S 、d 或ε发生变化时, 电容量C 也随之变化。 d S C ε=

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

《传感器原理及应用》课后答案

第1章传感器基础理论思考题与习题答案 什么是传感器(传感器定义) 解:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件、转换元件和调节转换电路组成。 传感器特性在检测系统中起到什么作用 解:传感器的特性是指传感器的输入量和输出量之间的对应关系,所以它在检测系统中的作用非常重要。通常把传感器的特性分为两种:静态特性和动态特性。静态特性是指输入不随时间而变化的特性,它表示传感器在被测量各个值处于稳定状态下输入输出的关系。动态特性是指输入随时间而变化的特性,它表示传感器对随时间变化的输入量的响应特性。 传感器由哪几部分组成说明各部分的作用。 解:传感器通常由敏感元件、转换元件和调节转换电路三部分组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中能将敏感元件感受或响应的被测量转换成电信号的部分,调节转换电路是指将非适合电量进一步转换成适合电量的部分,如书中图所示。 传感器的性能参数反映了传感器的什么关系静态参数有哪些各种参数代表什么意义动态参数有那些应如何选择 解:在生产过程和科学实验中,要对各种各样的参数进行检测和控制,就要求传感器能感受被测非电量的变化并将其不失真地变换成相应的电量,这取决于传感器的基本特性,即输出—输入特性。衡量静态特性的重要指标是线性度、灵敏度,迟滞和重复性等。意义略(见书中)。动态参数有最大超调量、延迟时间、上升时间、响应时间等,应根据被测非电量的测量要求进行选择。 某位移传感器,在输入量变化5mm时,输出电压变化为300mV,求其灵敏度。 解:其灵敏度 3 3 30010 60 510 U k X - - ?? === ?? 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=℃、S2=mV、S3=V,求系统的总的灵敏度。 某线性位移测量仪,当被测位移由变到时,位移测量仪的输出电压由减至,求该仪器的灵敏度。

《传感器原理及应用》复习题

《传感器原理及应用》复习题 1.静态特性指标其中的线性度的定义是指 2.传感器的差动测量方法的优点是减小了非线性误差、提高了测量灵敏度。 3. 对于等臂半桥电路为了减小或消除非线性误差的方法可以采用提高桥臂比,采用差动电桥的方法。 4.高频反射式电涡流传感器实际是由线圈和被测体或导体两个部分组成的系统,两者之间通过电磁感应相互作用,因此,在能够构成电涡流传感器的应用场合中必须存在金属材料。 5. 霍尔元件需要进行温度补偿的原因是因为其霍尔系数和材料电阻 受温度影响大。使用霍尔传感器测量位移时,需要构造一个磁场。 6.热电阻最常用的材料是铂和铜,工业上被广泛用来测量中低温区的温度,在测量温度要求不高且温度较低的场合,铜热电阻得到了广泛应用。 7.现有霍尔式、电涡流式和光电式三种传感器,设计传送带上塑料零件的计数系统时,应选其中的光电传感器。需要测量某设备的外壳温度,已知其范围是300~400℃,要求实现高精度测量,应该在铂铑-铂热电偶、铂电阻和热敏电阻中选择铂电阻。 8. 一个二进制光学码盘式传感器,为了达到1″左右的分辨力,需要采用 或位码盘。一个刻划直径为400 mm的20位码盘,其外圈分别间隔为稍大于μm。 9.非功能型光纤传感器中的光纤仅仅起传输光信息的作用,功能型光纤传感器是把光纤作为敏感元件。光纤的NA值大表明集光能力强。 11.光照使半导体电阻率变化的现象称为内光电效应,基于此效应的器件除光敏电阻外还有处于反向偏置工作状态的光敏二极管。光敏器件的灵敏度可用光照特性表征,它反映光电器件的输入光量与输出光电流(电压)之间的关系。选择光电传感器的光源与光敏器件时主要依据器件的光谱特性。 12.传感器一般由敏感元件 _、转换元件 ___、测量电路及辅助电源四个部分组成。 13.传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化量的比值。对线性传感器来说,其灵敏度是一常数。

传感器原理与应用复习要点

第一章传感器的一般特性 1.传感器技术的三要素。传感器由哪3部分组成? 2.传感器的静态特性有哪些指标?并理解其意义。 3.画出传感器的组成方框图,理解各部分的作用。 4.什么是传感器的精度等级?一个0.5级电压表的测量范围是 0~100V,那么该仪表的最大绝对误差为多少伏? 5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、 非线性度? 第二章应变式传感器 6.应变片有那些种类?金属丝式、金属箔式、半导体式。 7.什么是压阻效应? 8.应变式传感器接成应变桥式电路的理解、输出信号计算。应变片 桥式传感器为什么应配差动放器? 9.掌握电子称的基本原理框图,以及各部分的作用。 10.电阻应变片/半导体应变片的工作原理各基于什么效应? 11.半导体应变片与金属应变片各有哪些特点。 第三章电容式传感器 12.电容式传感器按工作原理可分为哪3种? 13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电容 影响的方法有那些? 14.什么是电容电场的边缘效应?理解等位环的工作原理。 15.运算法电容传感器测量电路的原理及特点。 第四章电感式传感器 16.了解差动变压器的用途及特点。 17.差动变压器的零点残余电压产生的原因? 第五章压电式传感器 18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些? 19.压电传感器能否测量缓慢变化和静态信号?为什么? 20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放大 器、电荷放大器的作用。 第六章数字式传感器 21.光栅传感器的原理。采用什么技术可测量小于栅距的位移量? 22.振弦式传感器的工作原理。 第七章热电式传感器 23.热电偶的热电势由那几部分组成? 24.热电偶的三定律的理解。 25.掌握热电偶的热电效应。 26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。 27.铂电阻采用三线制接线方式的原理和特点? 28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作原 理。 29.集成温度传感器AD590的主要特点。 30.数字式集成温度传感器DS18B20的主要特点。 第八章固态传感器 31.霍尔效应 32.霍尔集成传感器——线性、开关两类内部构成。 33.探测微弱光应采用何种传感器? 34.什么是光电效应,什么是光电导效应和光生伏特效应? 35.什么是内/外光电效应?利用此效应制作的典型传感器有那些? 36.为什么光电池作光照度测量时要采用短路输出形式? 37.硅光电池的最大开路电压是多少? 38.硅光电池的光电转换效率理论最大值和实际值? 39.在电路中使用光敏二极管怎样偏置? 40.光电隔离耦合器的内部结构是怎样的? 41.气敏传感器的原理,掌握可燃气体报警电路工作原理。 42.用电阻式湿度传感器测量湿度时,所加的激励电源为什么应为交 流电源?。 43.用光敏传感器设计一个自动开关路灯的控制电路。 第九章光纤式传感器 44.光纤传感器的特点有哪些? 45.光纤传感器的分类? 第十章传感器的标定 46.什么是传感器的标定?何情况下需要标定?第一章传感器的一般特性 1.传感器技术的三要素。传感器由哪3部分组成? 2.传感器的静态特性有哪些?并理解其意义。 3.画出传感器的组成方框图,理解各部分的作用。 4.什么是传感器的精度等级?一个0.5级电压表的测量范围是 0~100V,那么该仪表的最大绝对误差为多少伏? 5.传感器工作在差动状态与非差动状态时的优点有哪些?灵敏度、 非线性度? 第二章应变式传感器 6.应变片有那些种类?金属丝式、金属箔式、半导体式。 7.什么是压阻效应? 8.应变式传感器接成应变桥式电路的理解、输出信号计算。应变片 桥式传感器为什么应配差动放器? 9.掌握电子称的基本原理框图,以及各部分的作用。 10.电阻应变片/半导体应变片的工作原理各基于什么效应? 11.半导体应变片与金属应变片各有哪些特点。 第三章电容式传感器 12.电容式传感器按工作原理可分为哪3种? 13.寄生电容和分布电容对电容式传感器有什么影响?解决电缆电 容影响的方法有那些? 14.什么是电容电场的边缘效应?理解等位环的工作原理。 15.运算法电容传感器测量电路的原理及特点。 第四章电感式传感器 16.了解差动变压器的用途及特点。 17.差动变压器的零点残余电压产生的原因? 第五章压电式传感器 18.什么是压电效应?什么是逆压电效应?常用压电材料有哪些? 19.压电传感器能否测量缓慢变化和静态信号?为什么? 20.压电传感器的前置放大器电路形式主要有哪两种?理解电压放 大器、电荷放大器的作用。 第六章数字式传感器 21.光栅传感器的原理。采用什么技术可测量小于栅距的位移量? 22.振弦式传感器的工作原理。 第七章热电式传感器 23.热电偶的热电势由那几部分组成? 24.热电偶的三定律的理解。 25.掌握热电偶的热电效应。 26.热电偶冷端补偿原理和必要性及补偿电桥法的补偿原理。 27.铂电阻采用三线制接线方式的原理和特点? 28.采用负温度系数热敏电阻稳定晶体管放大器静态工作点的工作 原理。 29.集成温度传感器AD590的主要特点。 30.数字式集成温度传感器DS18B20的主要特点。 第八章固态传感器 31.霍尔效应 32.霍尔集成传感器——线性、开关两类内部构成。 33.探测微弱光应采用何种传感器? 34.什么是光电效应,什么是光电导效应和光生伏特效应? 35.什么是内/外光电效应?利用此效应制作的典型传感器有那些? 36.为什么光电池作光照度测量时要采用短路输出形式? 37.硅光电池的最大开路电压是多少? 38.硅光电池的光电转换效率理论最大值和实际值? 39.在电路中使用光敏二极管怎样偏置? 40.光电隔离耦合器的内部结构是怎样的? 41.气敏传感器的原理,掌握可燃气体报警电路工作原理。 42.用电阻式湿度传感器测量湿度时,所加的激励电源为什么应为交 流电源?。 43.用光敏传感器设计一个自动开关路灯的控制电路。 第九章光纤式传感器 44.光纤传感器的特点有哪些? 45.光纤传感器的分类? 第十章传感器的标定 46.什么是传感器的标定?何情况下需要标定?

传感器原理及应用习题及答案

第1章 传感器的一般特性 1.1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。 1.2 简述传感器的作用和地位及其传感器技术的发展方向。 1.3 传感器的静态特性指什么?衡量它的性能指标主要有哪些? 1.4 传感器的动态特性指什么?常用的分析方法有哪几种? 1.5 传感器的标定有哪几种?为什么要对传感器进行标定? 1.6 某传感器给定精度为2%F·S ,满度值为50mV ,零位值为10mV ,求可能出现的最大误差δ(以mV 计)。当传感器使用在满量程的1/2和1/8时,计算可能产生的测量百分误差。由你的计算结果能得出什么结论? 解:满量程(F?S )为50﹣10=40(mV) 可能出现的最大误差为: δ=40?2%=0.8(mV) 当使用在1/2和1/8满量程时,其测量相对误差分别为: % 4%10021408.01=??=γ % 16%10081408 .02=??=γ 结论:测量值越接近传感器(仪表)的满量程,测量误差越小。 1.7 有两个传感器测量系统,其动态特性可以分别用下面两个微分方程描述,试求这两个系统的时间常数τ和静态灵敏度K 。 1) T y dt dy 5105.1330 -?=+ 式中, y ——输出电压,V ;T ——输入温度,℃。 2) x y dt dy 6.92.44 .1=+ 式中,y ——输出电压,μV ;x ——输入压力,Pa 。 解:根据题给传感器微分方程,得 (1) τ=30/3=10(s), K=1.5 10 5/3=0.5 10 5(V/℃); (2) τ=1.4/4.2=1/3(s), K=9.6/4.2=2.29(μV/Pa)。 1.8 已知一热电偶的时间常数τ=10s ,如果用它来测量一台炉子的温度,炉内温度在540℃至500℃之间接近正弦曲线波动,周期为80s ,静态灵敏度K=1。试求该热电偶输出的最大值和最小值。以及输入与输出之间的相位差和滞后时间。 解:依题意,炉内温度变化规律可表示为 x(t) =520+20sin(ωt)℃ 由周期T=80s ,则温度变化频率f =1/T ,其相应的圆频率 ω=2πf =2π/80=π/40; 温度传感器(热电偶)对炉内温度的响应y(t)为 y(t)=520+Bsin(ωt+?)℃ 热电偶为一阶传感器,其动态响应的幅频特性为 ()()786 010******** 2 2 .B A =??? ? ???π+= ωτ+== ω 因此,热电偶输出信号波动幅值为 B=20?A(ω)=20?0.786=15.7℃ 由此可得输出温度的最大值和最小值分别为 y(t)|m ax =520+B=520+15.7=535.7℃ y(t)|m in =520﹣B=520-15.7=504.3℃ 输出信号的相位差?为 ?(ω)= -arctan(ωτ)= -arctan(2π/80?10)= -38.2? 相应的时间滞后为

传感器原理学习心得

传感器原理学习心得 姓名:哥 08级电子信息科学与技术1班

传感器原理学习心得 传感器应用极其广泛,而且种类繁多,涉及的学科也很多,通过对传感器的学习让我基本了解了传感器的基本概念及传感器的静、动态特性电阻式、电容式、电感式、压电式、热电式、磁敏式、光电式传感器与光纤传感器的结构、工作原理及应用。传感器的特性主要是指输出入输入之间的关系。当输入量为常量或变化很慢时,其关系为静态特性。当输入量随时间变换较快时,其关系为动态特性。 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等 所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了

前者就能推定后者。最常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。 传感器的作用主要是感受和响应规定的被测量,并按一定规律将其转换成有用输出,特别是完成非电量到电量的转换。传感器的组成并无严格的规定。一般说来,可以把传感器看做由敏感元件(有时又称为预变换器)和变换元件(有时又称为变换器)两部分组成,。 敏感元件 在具体实现非电量到电量的变换时,并非所有的非电量都能利用现有的技术手段直接变换为电量,有些必须进行预变换,即先将待测的非电量变为易于转换成电量的另一种非电量。这种能完成预变换的器件称为敏感元件。 变换器 能将感受到的非电量变换为电量的器件称为变换器,例如,可以将位移量直接变换为电容、电阻及电感的电容变换器、电阻变换器及电感变换器,能直接把温度变换为电势的热电偶变换器。显然,变换器是传感器不可缺少的重要组成部分。 在实际情况中,由于有一些敏感元件直接就可以输出变换后的电信号,而一些传感器又不包括敏感元件在内,因此常常无法将敏感元件与变换器加以严格区别。 通过本学期的学习让我了解在实际使用中对传感器的选择的要

《传感器原理及应用》课程试题(A卷)

复习 一、填空(在下列括号中填入适当的词汇,使其原理成立) 1、传感器的灵敏度是指稳态标准条件下,输出变化量与输入变化量的比值。对线性传感器来说,其灵敏度是常数。 2.用石英晶体制作的压电式传感器中,晶面上产生的电荷与作用在晶面上的压强成正比,而与晶片几何尺寸和面积无关。 3、有源滤波器由集成运放和__ RC网络__ 组成。 4、采用热电阻作为测量温度的元件是将温度的测量转换为电阻的测量。 5、单线圈螺线管式电感传感器主要由线圈、铁磁性外壳和可沿线圈轴 向移动的活动铁心。 6、被测非电量的变化转换成线圈互感变化的互感式传感器是根据变压器 的基本原理制成的,其次级绕组都用同名端反向形式连接,所以又叫差动变压器式传感器。 7.闭磁路变隙式电感传感器工作时,衔铁与被测物体连接。当被测物体移动时,引起磁路中气隙尺寸发生相对变化,从而导致圈磁阻的变化。 8、动态标定的目的,是检验测试传感器的动态性能指标。 9、在电阻应变片公式,dR/R=(1+2μ)ε+λEε中,λ代表__ 材料压阻系数。 10、已知某铜热电阻在0℃时的阻值为50Ω,则其分度号是CU50 ,对于镍铬-镍硅热电偶其正极是镍铬。 11、红外图像传感器由红外敏感元件和电子扫描电路组成。 12、空气介质变隙式电容传感器中,提高灵敏度和减少非线性误差是矛盾的,为此实际中大都采用差动式电容传感器。 13、当半导体材料在某一方向承受应力时,它的电阻率发生显着变化的现象称为半导体压阻效应。 14.影响金属导电材料应变灵敏系数K。的主要因素是导电材料几何尺寸的变化。 15.为了测得比栅距W更小的位移量,光栅传感器要采用细分技术。 16.若测量系统无接地点时,屏蔽导体应连接到信号源的接地端 1、在以下几种传感器当中( 压电式)属于自发电型传感器。 2.下列被测物理量适合于使用红外传感器进行测量的是(温度)。 3、在热电偶测温回路中经常使用补偿导线的最主要的目的是( C )。 C.将热电偶冷端延长到远离高温区的地方 4、利用相邻双臂桥检测的应变式传感器,为使其灵敏度高、非线性误差小,( A )。 A.两个桥臂应当分别用应变量变化相反的工作应变片

相关文档
相关文档 最新文档