文档库 最新最全的文档下载
当前位置:文档库 › 高中物理(教科版选修32课件+word文档+课时作业与单元测试+模块要点回眸)第二章交变电流(35份

高中物理(教科版选修32课件+word文档+课时作业与单元测试+模块要点回眸)第二章交变电流(35份

高中物理(教科版选修32课件+word文档+课时作业与单元测试+模块要点回眸)第二章交变电流(35份
高中物理(教科版选修32课件+word文档+课时作业与单元测试+模块要点回眸)第二章交变电流(35份

第7节 电能的输送

1.输电线上的功率损失P =________,降低输电损耗的两个途径为: __________________,________________________________.

2.远距离输电的基本原理:在发电站内用______变压器______电压,然后进行远距离输电,在用电区域通过______变压器______所需的电压.

3.现代的直流输电,只有__________这个环节使用直流.发电机发出的交流电,通过变压器升高电压,然后使用______设备使它成为直流电,用输电线把____________输送出去,到用电地点附近,再使用________把直流电变回到交流电并通过变压器降压后供用户使用(整流和逆变统称为换流).

4.下列关于电能输送的说法中正确的是( ) A .输送电能的基本要求是可靠、保质、经济

B .减小输电导线上功率损失的惟一办法是采用高压输电

C .减小输电导线上电压损失的惟一方法是增大输电线的横截面积

D .实际输电时,要综合考虑各种因素,如输电功率大小、距离远近、技术和经济条件等

5.输电导线的电阻为R ,输送电功率为P .现分别用U 1和U 2两种电压来输电,则两次输电线上损失的功率之比为( )

A .U 1∶U 2

B .U 2

1∶U 22

C .U 22∶U 2

1 D .U 2∶U 1 6.如图1所示为远距离高压输电的示意图.关于远距离输电,下列表述正确的是( )

图1

A .增加输电导线的横截面积有利于减少输电过程中的电能损失

B .高压输电是通过减小输电电流来减小电路的发热损耗

C .在输送电压一定时,输送的电功率越大,输电过程中的电能损失越小

D .高压输电必须综合考虑各种因素,不一定是电压越高越好

【概念规律练】

知识点一 线路损耗问题

1.发电厂发电机的输出电压为U 1,发电厂至学校的输电线电阻为R ,通过导线的电流为I ,学校输入电压为U 2,下列计算输电线损耗的式子中,正确的是( )

A.U 21

R B.(U 1-U 2)2R

C .I 2R

D .I (U 1-U 2)

2.某发电站采用高压输电向外输送电能.若输送的总功率为P 0,输电电压为U ,输电导线的总电阻为R .则下列说法正确的是( )

A .输电线上的电流I =U

R

B .输电线上的电流I =P 0

U

C .输电线上损失的功率P =(P 0

U

)2R

D .输电线上损失的功率P =U 2

R

知识点二 远距离输电线路各物理量的关系

3.一台发电机最大输出功率为4 000 kW ,电压为4 000 V ,经变压器T 1升压后向远方输电.输电线路总电阻R =1 kΩ.到目的地经变压器T 2降压,负载为多个正常发光的灯泡(220 V ,60 W).若在输电线路上消耗的功率为发电机输出功率的10%,变压器T 1和T 2的耗损可忽略,发电机处于满负荷工作状态,则( )

A .T 1原、副线圈电流分别为103 A 和20 A

B .T 2原、副线圈电压分别为1.8×105 V 和220 V

C .T 1和T 2的变压比分别为1∶50和40∶1

D .有6×104盏灯泡(220 V ,60 W)正常发光

4.某小型水电站的电能输送示意图如图2所示,发电机的输出电压为200 V ,输电线总电阻为r ,升压变压器原副线圈匝数分别为n 1、n 2,降压变压器原副线圈匝数分别为n 3、n 4(变压器均为理想变压器).要使额定电压为220 V 的用电器正常工作,则( )

图2

A.n 2n 1>n 3n 4

B.n 2n 1

C .升压变压器的输出电压等于降压变压器的输入电压

D .升压变压器的输出功率大于降压变压器的输入功率 【方法技巧练】

远距离输电的解题技巧

5.发电机的端电压220 V ,输出电功率44 kW ,输电导线的电阻为0.2 Ω,如果用初、次级匝数之比为1∶10的升压变压器升压,经输电线后,再用初、次级匝数比为10∶1的降压变压器降压供给用户.

(1)画出全过程的线路示意图. (2)求用户得到的电压和功率.

(3)若不经过变压而直接送到用户,求用户得到的电压和功率.

6.在远距离输电时,输送的电功率为P ,输电电压为U ,所用导线电阻率为ρ,横截面积为S ,总长度为L ,输电线损失的电功率为P ′,用户得到的电功率为P 用,则下列关系式正确的是( )

A .P ′=U 2S ρL

B .P ′=P 2ρL

U 2S

C .P 用=P -U 2S ρL

D .P 用=P (1-PρL

U 2S )

1.远距离输送交流电都采用高压输电.我国正在研究用比330 kV 高得多的电压进行输电.采用高压输电的优点是( )

A .可节省输电线的材料

B .可根据需要调节交流电的频率

C .可减小输电线上的能量损失

D .可加快输电的速度

2.在远距离输电中,当输电线的电阻和输送的电功率不变时,那么( ) A .输电线路上损失的电压与输送电流成正比 B .输电的电压越高,输电线路上损失的电压越大 C .输电线路上损失的功率跟输送电压的平方成反比 D .输电线路上损失的功率跟输电线上电流成正比

3.某用电器离供电电源的距离为L ,线路上的电流为I ,若要求线路上的电压降不超过U ,已知输电线的电阻率为ρ,该输电线的横截面积最小值是( )

A.ρL R

B.2ρLI U

C.U ρLI

D.2UL Iρ

4.在远距离输电时,若输送的功率不变,使输出电压升高为原来的n 倍,则输电线路上因电阻而产生的电能损失将变为原来的( )

A .n 2倍

B .n 倍 C.1n 2 D.1

n

5.在如图3所示的远距离输电电路图中,升压变压器和降压变压器均为理想变压器,发电厂的输出电压和输电线的电阻均不变.随着发电厂输出功率的增大,下列说法中正确的有( )

图3

A .升压变压器的输出电压增大

B .降压变压器的输出电压增大

C .输电线上损耗的功率增大

D .输电线上损耗的功率占总功率的比例增大

6.某农村水力发电站的发电机输出电压稳定,它发出的电先通过电站附近的升压变压器升压,然后用输电线路把电能输送到远处村寨附近的降压变压器.降低电压后,再用线路接到各用户,设两变压器都是理想变压器,那么在用电高峰期,白炽灯不够亮,但用电总功率增加,这时( )

A .升压变压器的副线圈的电压变大

B .高压输电线路的电压损失变大

C .降压变压器的副线圈上的电压变大

D .降压变压器的副线圈上的电压变小

7.某发电站用11 kV 交变电压输电,输送功率一定,输电线的电阻为R .现若用变压器将电压升高到220 kV 送电,下面哪个选项正确( )

A .因I =U

R ,所以输电线上的电流增为原来的20倍

B .因I =P U ,所以输电线上的电流减为原来的1

20

C .因P =U

2R

,所以输电线上损失的功率增为原来的400倍

D .若要使输电线上损失的功率不变,可将输电线的直径减为原来的1

阻为1 Ω,求输电线上损失的电功率和用户得到的功率分别是________,________.

9.水电站给远处山村送电的输出功率100 kW ,用2 000 V 的电压输电,线路上损失的功率是2.5×104 W ,如果用20 000 V 的高压输电,线路上损失的功率为________W.

10.对某一输电线路,线路架设情况已确定,现要求输送一定的电功率P ,若输电线上损失的功率占输送功率P 的百分比用η表示,输电线路总电阻用r 表示,输电电压用U 表示,则η、P 、U 、r 间满足什么关系?从中你能得出什么结论?

11.某发电站的输出功率为104 kW ,输出电压为4 kV ,通过理想变压器升压后向80 km

远处用户供电.已知输电导线的电阻率为ρ=2.4×10-8 Ω·m ,导线横截面积为1.5×10-

4 m 2,输电线路损失的功率为输出功率的4%,求:

(1)升压变压器的输出电压; (2)输电线路上的电压损失.

12.有一台内阻为1 Ω的发电机,供给一个学校照明用电,如图4所示,升压变压器的匝数比为1∶4,降压变压器的匝数比为4∶1,输电线的总电阻R =4 Ω,全校共22个班,每班有“220 V,40 W”的电灯6盏,若要保证电灯全部正常发光,求:

图4

(1)发电机输出功率;

(2)发电机电动势; (3)输电效率;

(4)若使用灯数减半且正常发光,发电机输出功率是否减半.

第7节 电能的输送 答案

课前预习练

1.I 2r 减小输电导线的电阻 减小输电导线中的电流 2.升压 升高 降压 降到

3.高压输电 整流 高压直流电 逆变器 4.AD

5.C [由P =UI ,P 损=I 2

R 可得P 损=P 2R U

2,所以输电线上损失的功率与输送电压的平

方成反比,C 项正确.]

6.ABD [导线的横截面积越大,导线的电阻越小,电能损失就越小,A 对;在输送功

率一定的前提下,提高输送电压U ,由I =P

U

知,能减小电流I ,从而减小发热损耗,B 对;

若输送电压一定,由I =P

U

知,输送的电功率P 越大,I 越大,发热损耗就越多,C 错;高压

输电时要综合考虑材料成本、技术、经济性等各种因素,不是电压越高越好,D 对.]

课堂探究练

1.BCD [输电线的损耗P 损=I 2

R 线=U 2线R 线

=IU 线

其中U 线=U 1-U 2,故B 、C 、D 正确.]

点评 计算功率损失常用公式P 损=I 2

线R 线和P 损=U 2线R 线,特别在利用P 损=U 2线R 线

时要注意U

线是R 线上的电压.

2.BC [输电线上的电流I 线=P 0U =U 线

R

故A 错误,B 正确;输电线上的功率损失P =I 2线

R =(P 0U )2R =U 2线

R

,故C 正确,D 错误.]

点评 由功率损失P =(P 输

U 输

)2R 线知:当输送功率P 输一定时减少输电线上功率损失的方

法为提高输电电压或减小输电导线的电阻.

3.ABD [输电线上消耗的功率P 线=I 22R =400 kW ,则I 2

= P 线

R

=20 A ,又P 1=U 1I 1,则I 1=P 1U 1=103 A ,故A 正确;T 1的变压比U 1U 2=I 2I 1=1

50,又P =U 1I 1=U 2I 2,得U 2=2×105 V ,

输电线上损失电压U 线=I 2R =2×104 V ,则T 2原线圈的输入电压U 3=U 2-U 线=1.8×105 V ,

又灯泡正常发光,T 2的副线圈的电压为220 V ,B 正确;T 2的变压比U 3U 4=1.8×105

220=9 000

11

C 错误;根据U 3I 2=60n ,解得n =6×104,

D 正确.]

点评 远距离输电线路图如下

各物理量有下列关系

①电压关系:U 发=U 1,U 1U 2=n 1n 2,U 2=U 3+U 损,U 3U 4=n 3

n 4

,U 4=U 用;

②电流关系:n 1I 1=n 2I 2,I 2=I 线=I 3,n 3I 3=n 4I 4;

③功率关系:P 发=P 1=P 2,P 2=P 3+P 损,P 3=P 4=P 用,P 损=I 2R 线,P 损=????P U 2

2

R 线,P

=IU 损.

4.AD [由于输电线上的功率损耗,故升压变压器的输出功率大于降压变压器的输入

功率.P 出-P 损=P 入,故D 正确.U 2U 1=n 2n 1,U 3U 4=n 3

n 4

,因为U 1=200 VU 3=

U 2-U 线,故n 2n 1>n 3

n 4

,选项A 正确.]

点评 在理解电压关系时,可把输电线路理解为三个闭合回路.如图

第一个回路发电机是电源,升压变压器的原线圈是用电器,若输电线电阻忽略则有U 发

=U 1;第二个回路升压变压器副线圈是电源,降压变压器的原线圈为用电器,则有U 2=U 线+U 3;第三个回路降压变压器副线圈为电源,用户为用电器,若输电线电阻忽略则有 U 4=U 用.

5.(1)见解析 (2)219.6 V 4.392×104 W (3)180 V 3.6×104 W

解析 (1)示意图如下图所示

(2)升压变压器次级的输出电压

U 2=n 2n 1U 1=10

1

×220 V =2 200 V

据升压变压器输出电功率等于输入电功率知,升压变压器次级输出电流

I 2=P U 2=44×103

2 200

A =20 A

输电线路上的电压损失和功率损失分别为 U R =I 2R =20×0.2 V =4 V

P R =I 22R =202

×0.2 W =80 W

加到降压变压器初级上的输入电流和电压为 I 3=I 2=20 A

U 3=U 2-U R =2 200 V -4 V =2 196 V 降压变压器次级的输出电压和电流为

U 4=n 4n 3·U 3=110×2 196 V =219.6 V

I 4=n 3n 4·I 3

=10×20 A =200 A

用户得到的功率为

P 4=I 4U 4=200×219.6 W =4.392×104 W

(3)若不采用高压输电,用220 V 低压直接供电时,电路如下图所示,则输电电流I =

P

U 1

=44×103

220

A =200 A ,输电线路上的电压损失

U R ′=IR =200×0.2 V =40 V 所以用户得到的电压为

U 4′=U 1-U R ′=220 V -40 V =180 V

用户得到的功率为P 4′=IU 4′=200×180 W =3.6×104 W

方法总结 (1)求解远距离输电的关键是熟悉输电线路图,并画出示意图,把需要的物理量都标在图中的相应位置上.

(2)分别在“三个回路”以及“两个变压器”上找各物理量的关系,特别注意以升压变压器的副线圈、输电线、降压变压器的原线圈组成的回路,在此回路中利用电路知识分析电压关系和功率关系.

6.BD [输电线电阻R =ρL S ,输电电流I =P

U

故输电线上损失的电功率为P ′=I 2R =????P U 2ρL S =P 2ρL U 2S

用户得到的电功率为P 用=P -P ′=P ???

?1-PρL

U 2S .故B 、D 正确.] 方法总结 在远距离输电问题中,也要时刻注意能量守恒这一线索,即发电机的总功率应等于线路上损失的热功率和用户得到的功率之和(在不考虑变压器自身的能量损失的条件下).

课后巩固练

1.AC [远距离输电,往往输送电功率一定,根据P =UI ,输送电压U 越高,则输送

电流I =P

U

越小,据P 线=I 2r 可知,当要求在输电线能量损耗一定的情况下,输电线电阻可

略大,导线可做得细一些或选择电阻率大的材料(非铜材);若输电线确定,即r 确定,则可减小线路上的能量损耗,故A 、C 项正确;而交流电的频率是一定的,不随输送电压的改变而改变,输电的速度就是电磁波的传播速度,也一定,故B 、D 项不正确.]

2.AC [U 损=IR 线,所以R 线一定时,U 损与I 成正比,A 正确.U 损=I ·R 线=P 输

U 输

·R 线,

所以P 输、R 线一定时,U 损与U 输成反比,B 错误.P 损=I 2

R 线=? ??

??P 输U 输2R 线,所以P 输、R 线一

定时,P 损与U 输的平方成反比,C 正确.P 损=I 2

R 线,所以P 损与I 2成正比,D 错误.]

3.B [由欧姆定律有R =U I ;由电阻定律有R =ρ2L S ,由以上两式解得:S =2ρLI

U

]

4.C [根据输电线上的功率损失的表达式:P 损=I 2R =(P

U

)2R ,电压升高为原来的n 倍,

则功率损失为原来的1

n

2.]

5.CD [对升压(或降压)变压器而言,由变压器电压比U 1∶U 2=n 1∶n 2知,输入电压不变,线圈匝数不变,输出电压不变,故A 选项不正确;由P =UI 知,U 不变,P 增大,故I 增大,使得输电线上的电压损耗U 损=I 2R 线增大,功率损耗P 损=I 22R 线增大,所以降压变压器上的输入电压减小,输出电压减小,所以B 不正确,C 正确;因为输电线上损耗的

功率占总功率的比例为P 损P 1=I 2

2R 线P 1=????P 1U 1·n 1n 22R 线P 1=P 1n 21R 线

U 21n 22

∝P 1,所以随发电厂输出功率变大,

该值变大,D 正确.]

6.BD [变压器的输入功率、输入电流的大小是由负载消耗的功率大小决定的,用电高峰期,白炽灯不够亮,消耗功率增大,输电线中的电流增大,线上电压增加,B 正确.发电机输出电压稳定,升压变压器的副线圈的电压不变,降压变压器的输出电压由升压变压器副线圈的电压与线上损耗电压之差决定,D 正确.]

7.BD [选项A 中,I 是输电线中的电流,R 是输电线的电阻,但是U 不是输电线上

损失的电压,而是总的输送电压(是输电线和负载上电压之和),所以不能用I =U

R

计算输电线

中的电流,在运用欧姆定律时,I 、R 、U 应该对应于同一部分导体.

因为输送的功率一定,由I =P

U

可知,当输送的电压增为原来的20倍时,电流减为原来

的1

20

,选项B 正确. 选项C 中,R 是输电线的电阻,而U 是总的输送电压,R 与U 又不对应,所以P =U 2

R

错误的.

输电线上损失的功率一般用P 损=I 2R 计算,从选项B 中已经知道电流减为了原来的1

20

.

若P 损不变,则输电线的电阻可增为原来的400倍,根据R =ρl

S

,在电阻率、长度不变的条

件下,那么导线的横截面积可减小为原来的1400,即导线的直径减为原来的1

20

,所以选项D

是正确的.]

8.3.9 kW 21.1 kW

解析 由P =IU ,可求出输电线中的电流为I 线=P U =25 000

400

A =62.5 A ,输电线上损失

的功率为P 损=I 2线R 线=62.52

×1 W =3 906.25 W ≈3.9 kW ,用户得到的功率为P 用=25 kW -3.9 kW =21.1 kW ,即输电线上损失的功率约为3.9 kW ,用户得到的电功率约为21.1 kW.

9.250

解析 线路上损失的功率P 损=I 2R 线,又I =P

U

所以P 损=????P U 2

R 线,代入数据,解得R 线=10 Ω,当用20 000 V 的高压输电时,P 损′=???

?P

U ′2R 线=250 W. 10.见解析

解析 输电线路上损失的功率P 损=ηP =I 2r ① 又P =UI ②

联立①②可得:ηP =????P U 2r ,即ηU 2=Pr ,当P 、r 确定时,有ηU 2

=定值,所以要减小η,必须提高输电电压U .

11.(1)8×104 V (2)3.2×103 V 解析 (1)导线电阻

r =ρ2l S =2.4×10-8×2×80×103

1.5×10-

4

Ω=25.6 Ω 输电线路损失功率为输出功率的4%,则 4%P =I 2r ,代入数据得:I =125 A 由理想变压器P 入=P 出及P =UI 得:

输出电压U =P I =107

125

V =8×104 V

(2)输电线路上电压损失

U ′=Ir =125×25.6 V =3.2×103 V

12.(1)5 424 W (2)250 V (3)97% (4)大于一半 解析 由于发电机至升压变压器、降压变压器至学校距离较短,不必考虑这两部分输电导线上的功率损耗,发电机的电动势E ,一部分降在电源内阻上,另一部分为发电机的路端电压U 1,升压变压器副线圈电压U 2的一部分降在输电线上,其余的就是降压变压器原线圈电压U 3,而U 4应为灯的额定电压U 额.

(1)对降压变压器:P 3=P 4=U 4I 4=nP 灯=22×6×40 W =5 280 W

而U 3=4

1

U 4=880 V

所以I 3=nP 灯U 3=5 280

880

A =6 A

对升压变压器:U 1I 1=U 2I 2=I 2线R +U 3I 3=I 23R +P 3=62

×4 W +5 280 W =5 424 W

所以,发电机的输出功率P 出=5 424 W

(2)因为U 2=U 3+I 线R =U 3+I 3R =880 V +6×4 V =904 V

所以U 1=14U 2=1

4

×904 V =226 V

又U 1I 1=U 2I 2

所以I 1=U 2I 2

U 1

=4I 2=4I 3=24 A

故E =U 1+I 1r =226 V +24×1 V =250 V

(3)η=P 3P 2×100%=5 2805 424×100%=97%

(4)电灯减少一半时

n ′P 灯=2 640 W ,I 3=n ′P 灯U 3=2 640

880

A =3 A

所以P 出=n ′P 灯+I 23R =2 640 W +32

×4 W =2 676 W .发电机输出功率减少一半还要

多,因输电线上的电流减少一半,输电线上电功率的损失减少到原来的1

4

.

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理选修32知识点详细汇总

电磁感应现象愣次定律 一、电磁感应 1.电磁感应现象 只要穿过闭合回路的磁通量发生变化,闭合回路中就有电流产生,这种利用磁场产生电流的现象叫做电磁感应。 产生的电流叫做感应电流. 2.产生感应电流的条件:闭合回路中磁通量发生变化 3. 磁通量变化的常见情况(Φ改变的方式): ①线圈所围面积发生变化,闭合电路中的部分导线做切割磁感线运动导致Φ变化;其实质也是B不变而S 增大或减小 ②线圈在磁场中转动导致Φ变化。线圈面积与磁感应强度二者之间夹角发生变化。如匀强磁场中转动的矩形线圈就是典型。 ③磁感应强度随时间(或位置)变化,磁感应强度是时间的函数;或闭合回路变化导致Φ变化 (Φ改变的结果):磁通量改变的最直接的结果是产生感应电动势,若线圈或线框是闭合的.则在线圈或线框中产生感应电流,因此产生感应电流的条件就是:穿过闭合回路的磁通量发生变化.4.产生感应电动势的条件: 无论回路是否闭合,只要穿过线圈的磁通量发生变化,线圈中就有感应电动势产生,产生感应电动势的那部分导体相当于电源. 电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,如果回路不闭合,则只能出现感应电动势, 而不会形成持续的电流.我们看变化是看回路中的磁通量变化,而不是看回路外面的磁通量变化 二、感应电流方向的判定 1.右手定则:伸开右手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿过手心,手 掌所在平面跟磁感线和导线所在平面垂直,大拇指指向导线运动的方向, 四指所指的方向即 为感应电流方向(电源). 用右手定则时应注意: ①主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定, ②右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直. ③当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向. ④若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势. ⑤“因电而动”用左手定则.“因动而电”用右手定则. ⑥应用时要特别注意:四指指向是电源内部电流的方向(负→正).因而也是电势升高的方向;即:四指指向正极。 导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例.用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便. 2.楞次定律 (1)楞次定律(判断感应电流方向):感应电流具有这样的方向,感应电流的磁场总是阻碍引起感应电流的磁通量的变化. (感应电流的) 磁场 (总是) 阻碍 (引起感应电流的磁通量的)变化原因产生结果;结果阻碍原因。 (定语) 主语 (状语) 谓语 (补语) 宾语 (2)对“阻碍”的理解注意“阻碍”不是阻止,这里是阻而未止。阻碍磁通量变化指: 磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用); 磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用),简称“增反减同”. (3)楞次定律另一种表达:感应电流的效果总是要阻碍 ...).产生感应电流的原因. (F安方向就起到阻 ..(.或反抗

高中物理选修3-3知识点归纳

选修3-3知识点归纳 2017-11-15 一、分子动理论 1、物体是由大量分子组成:阿伏伽德罗第一个认识到物体是由 分子组成的。 ①分子大小数量级10-10m ②A N M m 摩分子=(对固体液体气体) A N V V 摩分子=(对固体和液体) 摩摩物物V M V m ==ρ 2、油膜法估测分子的大小: ①S V d 纯油酸=,V 为纯油酸体积,而不能是油酸溶液体积。 ②实验的三个假设(或近似):分子呈球形;一个一个整齐地紧密排列;形成单分子层油膜。 3、分子热运动: ①物体内部大量分子的无规则运动称为热运动,在电子显微镜才能观察得到。 ②扩散现象和布朗运动证实分子永不停息作无规则运动,扩散现象还说明了分子间存在间隙。 ③布朗运动是固体小颗粒在液体或气体中的运动,反映了液体分子或气体分子无规则运动。颗粒越小、 温度越高,现象越明显。从阳光中看到教室中尘埃的运动不是布朗运动。 4、分子力: ①分子间同时存在引力和斥力,都随距离的增大而减小,随距离的减小而增大,斥力总比引力变化得快。 ②当r=r 0=10-10m 时,引力=斥力,分子力为零;当r>r 0,表现为引力;当r

高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第四章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω22 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I = = (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

高中物理选修32知识点详细讲解版

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为“感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。 (2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通量减少时,感应电流的磁场就与原磁场的方向相同,感应电流的磁场“补偿”原磁通量的减少。(“增反减同”) ②“阻碍”不等于“阻止”,而是“延缓”. 感应电流的磁场不能阻止原磁通量的变化,只是延缓了原磁通量的变化。当由于原磁通量的增加引

高中物理选修3-2知识点汇总

第一章电磁感应 1.磁通量 穿过某一面积的磁感线条数;标量,但有正负;Φ=BS·sinθ;单位Wb,1Wb=1T·m2。 2.电磁感应现象 利用磁场产生电流的现象;产生的电流叫感应电流,产生的电动势叫感应电动势;产生的条件是穿过闭合回路的磁通量发生变化。 3.感生电场 变化的磁场在周围激发的电场。 4.感应电动势 分为感生电动势和动生电动势;由感生电场产生的感应电动势称为感生电动势,由于导体运动而产生的感应电动势称为动生电动势;产生感应电动势的导体相当于电源。 5.楞次定律 感应电流的磁场总要阻碍引起感应电流的磁通量的变化;判定感应电流和感应电动势方向的一般方法;适用于各种情况的电磁感应现象。 6.右手定则 让磁感线垂直穿过手心,大拇指指向导体做切割磁感线运动的方向,四指的指向就是导体内部产生的感应电流或感应电动势的方向;仅适用导体切割磁感线的情况。 7.法拉第电磁感应定律 电路中感应电动势的大小跟穿过这一电路的磁通量的变化率

成正比;E=n t? ?Φ。 8.动生电动势的计算 法拉第电磁感应定律特殊情况;E=Blv·sinθ。 9.互感 两个相互靠近的线圈中,有一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感生电动势,这种现象叫做互感,这种电动势叫做互感电动势;变压器的原理。10.自感 由于导体本身的电流发生变化而产生的电磁感应现象。11.自感电动势 由于自感而产生的感应电动势;自感电动势阻碍导体自身电流的变化;大小正比于电流的变化率;E=L t I ? ?;日光灯的应用。12.自感系数 上式中的比例系数L叫做自感系数;简称自感或电感;正比于线圈的长度、横截面积、匝数;有铁芯比没有时要大得多。13.涡流 线圈中的电流变化时,在附近导体中产生的感应电流,这种电流在导体内自成闭合回路,很像水的漩涡,因此称作涡电流,简称涡流。 第二章直流电路 1.电流 电荷的定向移动;单位是安,符号A;规定正电荷定向移动的 方向为正方向;宏观定义I= t q;微观解释I=neSv,n为单位体积

高中物理选修3-2前三章知识点总结

第四章 电磁感应知识点总结 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ -=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω2 2 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I == (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉 b.金属探测器,飞机场火车站安全检查、扫雷、探矿 第五章 交变电流知识点总结 一、交变电流的产生 1、原理:电磁感应 2、两个特殊位置的比较: 中性面:线圈平面与磁感线垂直的平面。 ①线圈平面与中性面重合时(S ⊥B ):磁通量φ最大,0=??t φ ,e=0,i=0,感应电流方向改变。 ②线圈平面平行与磁感线时(S ∥B ):φ=0, t ??φ 最大,e 最大,i 最大,电流方向不变。 3、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面: 磁通量:t BS t m ωωφφcos cos == 电动势表达式:t NBS t E e m ωωωsin sin == 路端电压:t r R RE t U u m m ωωsin sin += = 电流:t r R E t I i m m ωωsin sin +== 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯泡A 逐渐变暗。

(完整版)高中物理选修3-2知识点总结

高中物理选修3-2知识点总结 第一章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥期特:电生磁 2.产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备 b ②产生感应电动势的那部分导体 相当于电源。 ③电源内部的电流从负极流向正 极。 3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容: b.表达式:t n E ??? =φ (2).计算感应电动势的公式 ①求平均值:t n E ??? =φ_ ②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω2 2 1BL E = ④闭合电路殴姆定律:)r (R I E +=感 5.感应电流的计算: 平均电流:t r R r R E I ?+?=+= )(_ φ 瞬时电流:r R BLV r R E I +=+= 6.安培力计算: (1)平均值: t BLq t r )(R BL L I B F ?=?+?= =φ_ _ (2). 瞬时值:r R V L B BIL F +==22 7.通过的电荷量:r R q t I +?= - = ??φ 注意:求电荷量只能用平均值,而不 能用瞬时值。 8.互感: 由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。这种现象叫互感。 9.自感现象: (1)定义:是指由于导体本身的电流发 生变化而产生的电磁感应现象。 (2)决定因素: 线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。 (3)类型: 通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微 亨(μH )。 10.涡流及其应用 (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流 (2)应用: a.新型炉灶——电磁炉。 b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。 第二章 交变电流 一.正弦交变电流 1.两个特殊的位置 a.中性面位置: 磁通量ф最大,磁通量的变化率为零,即感应电动势零。

物理选修32知识点总结(全)带对应例题

选修3-2知识点 56.电磁感应现象Ⅰ 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。 这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。 57.感应电流的产生条件Ⅱ 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 58.法拉第电磁感应定律 楞次定律Ⅱ ①电磁感应规律:感应电动势的大小由法拉第电磁感应定律确定。 ε=BLv ——当长L 的导线,以速度v ,在匀强磁场B 中,垂直切割磁感线,其两端间感应电动势的大小为ε。 如图所示。设产生的感应电流强度为I ,MN 间电动势为ε,则MN 受向左的安培力F BIL =,要保持MN 以v 匀速向右运动,所施外力F F BIL '==,当行进位移为S 时,外力功 W BI L S BILv t ==···。t 为所用时间。 而在t 时间内,电流做功W I t '=··ε,据能量转化关系, W W '=,则I t BILv t ···ε=。 ∴ε=BIv ,M 点电势高,N 点电势低。 此公式使用条件是B I v 、、方向相互垂直,如不垂直,则向垂直方向作投影。 εφ=n t · ??, 公式 εφ=n t ??/。注意: 1)该式普遍适用于求平均感应电动势。2)ε只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式二: εθ=Blv sin 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直(l ⊥B )。2)θ为v 与B 的夹角。l 为导体切割磁感线的有效长度(即l 为导体实际长度在垂直于B 方向上的投影)。 公式εφ =n t ??中 涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应 强度发生变化, 由??φ=BS , 此时ε=n B t S ??, 此式中的 ??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率??φ t 表示磁通量变化的快慢,

高中物理选修3-3知识点整理

选修3—3期末复习知识点汇总 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= ===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同 时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明 显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向 撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分 子做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间 斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。 分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距 离的增加,分子力先减小,后增加,再减小。。在图1图象中实 线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当 两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平 衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫

高中物理选修3-2知识点总结

高中3-2知识点总结 第一章 电磁感应 1.两个人物:a.法拉第:磁生电 b.奥期特:电生磁 2.产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备 b ②产生感应电动势的那部分导体 相当于电源。 ③电源内部的电流从负极流向正 极。 3.感应电流方向的叛定: (1).方法一:右手定则 (2).方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4. 感应电动势大小的计算: (1).法拉第电磁感应定律: a.内容: b.表达式:t n E ??? =φ (2).计算感应电动势的公式 ①求平均值:t n E ??? =φ_ ②求瞬时值:E=BLV (导线切割类) ③法拉第电机:ω2 2 1BL E = ④闭合电路殴姆定律:)r (R I E +=感 5.感应电流的计算: 平均电流:t r R r R E I ?+?=+= )(_ φ 瞬时电流:r R BLV r R E I +=+= 6.安培力计算: (1)平均值: t BLq t r )(R BL L I B F ?=?+?= =φ_ _ (2). 瞬时值:r R V L B BIL F +==22 7.通过的电荷量:r R q t I +?= - = ??φ 注意:求电荷量只能用平均值,而不 能用瞬时值。 8.互感: 由于线圈A 中电流的变化,它产生的磁通量发生变化,磁通量的变化在线圈B 中 激发了感应电动势。这种现象叫互感。 9.自感现象: (1)定义:是指由于导体本身的电流发 生变化而产生的电磁感应现象。 (2)决定因素: 线圈越长, 单位长度上的匝数越多, 截面积越大, 它的自感系数就越大。另外, 有铁心的线圈的自感系数比没有铁心时要大得多。 (3)类型: 通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH ),微 亨(μH )。 10.涡流及其应用 (1)定义:变压器在工作时,除了在原、副线圈产生感应电动势外,变化的磁通量也会在铁芯中产生感应电流。一般来说,只要空间有变化的磁通量,其中的导体就会产生感应电流,我们把这种感应电流叫做涡流 (2)应用: a.新型炉灶——电磁炉。 b.金属探测器:飞机场、火车站安全检查、扫雷、探矿。 第二章 交变电流 一.正弦交变电流 1.两个特殊的位置 a.中性面位置: 磁通量ф最大,磁通量的变化率为零,即感应电动势零。

高中物理选修3-3知识点

选修3-3 [规律要点] 一、分子动理论 1.分子动理论的内容 (1)物体是由大量分子组成的。 (2)分子永不停息地做无规则运动。 (3)分子间存在相互作用力。 2.物体是由大量分子组成的 (1)分子很小 ①直径数量级为10-10 m 。 ②质量数量级为10-27~10-26 kg 。 ③分子大小的实验测量:油膜法估测分子大小。 (2)阿伏加德罗常数N A =6.02×1023__mol -1。 (3)分子模型 ①球体模型:d = 36V mol πN A (固、液体一般用此模型),如图1甲。油膜法估测分子大小时d =V S ,S 为单分子油膜的面积,V 为滴到水中的纯油酸的体积。 图1 ②立方体模型:d = 3V mol N A ,气体一般用此模型,如图1乙。对气体,d 应理解为相邻分子间的平均距离。 (4)微观量的估算 ①分子的质量:m =M mol N A =ρV mol N A 。 ②分子的体积:V 0=V mol N A =M mol ρN A 。对于气体,V 0表示分子占据的空间。

③物体所含的分子数:n= V V mol N A= M ρV mol N A或n= M M mol N A= ρV M mol N A。 3.分子永不停息地做无规则热运动 (1)扩散现象:温度越高,扩散越快。 (2)布朗运动:发生原因是固体颗粒受到液体分子无规则撞击的不平衡性造成的。间接说明了液体或气体分子在永不停息地无规则运动。 4.分子间存在着相互作用力 (1)分子间同时存在引力和斥力,实际表现的分子力是它们的合力。引力和斥力都随分子间距离的增大而减小,随分子间距离的减小而增大,斥力比引力变化得更快。 (2)分子力和分子势能随分子间距变化的规律如下: 分子力F 分子势能E p 变化图象 随分子间距的变化情况 rr0 F引和F斥都随距离的增大而减 小,随距离的减小而增大,F 引 >F 斥 ,F表现为引力 r增大,分子力做负功,分子势 能增加;r减小,分子力做正功, 分子势能减小 r=r0F引=F斥,F=0分子势能最小,但不为零 r>10r0 (10-9m) F引和F斥都已十分微弱,可以 认为F=0 分子势能为零 二、温度和内能 1.温度:宏观上温度是表示物体冷热程度的物理量,微观上温度是分子平均动能的标志。 2.分子平均动能:温度是分子平均动能大小的标志。 3.分子势能:分子具有由它们的相对位置决定的能,即分子势能。

高中人教版物理选修32知识点及公式(非常齐全)

物理选修3-2知识点总结 一、电磁感应现象 只要穿过闭合回路中的磁通量发生变化,闭合回路中就会产生感应电流,如果电路不闭合只会产生感应电动势。 这种利用磁场产生电流的现象叫电磁感应,是1831年法拉第发现的。 二、感应电流的产生条件 1、回路中产生感应电动势和感应电流的条件是回路所围面积中的磁通量变化,因此研究磁通量的变化是关键,由磁通量的广义公式中φθ=B S ·sin (θ是B 与S 的夹角)看,磁通量的变化?φ可由面积的变化?S 引起;可由磁感应强度B 的变化?B 引起;可由B 与S 的夹角 θ的变化?θ引起;也可由B 、S 、θ中的两个量的变化,或三个量的同时变化引起。 2、闭合回路中的一部分导体在磁场中作切割磁感线运动时,可以产生感应电动势,感应电流,这是初中学过的,其本质也是闭合回路中磁通量发生变化。 3、产生感应电动势、感应电流的条件:穿过闭合电路的磁通量发生变化。 ▲三、法拉第电磁感应定律 公式一: εφ=n t ??/。注意: 1)该式普遍适用于求平均感应电动势。2)ε只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关。 公式εφ =n t ??中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: 1)回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时ε=n B t S ??, 此式中的??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 严格区别磁通量φ, 磁通量的变化量?φB 磁通量的变化率 ??φ t , 磁通量φ=B S ·, 表示穿过研究平面的磁感线的条数, 磁通量的变化量?φφφ=-21, 表示磁通量变化的多少, 磁通量的变化率 ??φ t 表示磁通量变化的快慢, 公式二: εθ=Blv sin 。要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂

高中物理选修3-3知识总结

高中物理3-3知识点总结 一、分子动理论 1、物体是由大量分子组成的 微观量:分子体积V 0、分子直径d 、分子质量m 0 宏观量:物质体积V 、摩尔体积V A 、物体质量m 、摩尔质量M 、物质密度ρ。 联系桥梁:阿伏加德罗常数(N A =6.02×1023mol -1) A V M V m ==ρ (1)分子质量:A A 0N V N M N m m A ρ=== (2)分子体积:A A 0N M N V N V V A ρ=== (对气体,V 0应为气体分子占据的空间大小) (3)分子大小:(数量级10-10m) ○1球体模型.30)2(34d N M N V V A A A πρ=== 直径306π V d =(固、液体一般用此模型) 油膜法估测分子大小:S V d = S —单分子油膜的面积,V —滴到水中的纯油酸的体积 ○2立方体模型.30=V d (气体一般用此模型;对气体,d 应理解为相邻分子间的平均距离) 注意:固体、液体分子可估算分子质量、大小(认为分子一个挨一个紧密排列); 气体分子间距很大,大小可忽略,不可估算大小,只能估算气体分子所占空间、分子质量。 (4)分子的数量:A A N M V N M m nN N A ρ=== 或者 A A N M V N V V nN N A A ρ=== 2、分子永不停息地做无规则运动 (1)扩散现象:不同物质彼此进入对方的现象。温度越高,扩散越快。直接说明了组成物体的分子总是不停地做无规则运动,温度越高分子运动越剧烈。 (2)布朗运动:悬浮在液体中的固体微粒的无规则运动。 发生原因是固体微粒受到包围微粒的液体分子无规则运动地撞击的不平衡性造成的.因而间接..说明了液体分子在永不停息地做无规则运动. ○ 1布朗运动是固体微粒的运动而不是固体微粒中分子的无规则运动. ②布朗运动反映液体分子的无规则运动但不是液体分子的运动. ③课本中所示的布朗运动路线,不是固体微粒运动的轨迹. ④微粒越小,布朗运动越明显;温度越高,布朗运动越明显. 3、分子间存在相互作用的引力和斥力 ①分子间引力和斥力一定同时存在,且都随分子间距离的增大而减小, 随分子间距离的减小而增大,但斥力变化快,实际表现出的分子力是分 子引力和分子斥力的合力 ②分子力的表现及变化,对于曲线注意两个距离,即平衡距离r 0(约10-10m )与10r 0。 (ⅰ)当分子间距离为r 0时,引力等于斥力,分子力为零。 (ⅱ)当分子间距r >r 0时,引力大于斥力,分子力表现为引力。当分子间距离由r 0增大时,分子力先增

重点高中物理选修33知识点整理

重点高中物理选修33知识点整理

————————————————————————————————作者:————————————————————————————————日期:

选修3—3考点汇编一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol任何物质含有的微粒数相同231 6.0210 A N mol- =? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 Ⅰ.微观量:分子体积V0、分子直径d、分子质量m0. Ⅱ.宏观量:物体的体积V、摩尔体积Vm,物体的质量m、摩尔质量M、物体的密度ρ a.分子质量: b.分子体积: c.分子数量: A A A A mol mol mol mol M v M v n N N N N M M V V ρ ρ ==== 特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。分子的体积V0=Vm/N A,仅适用于固 体和液体,对气体不适用,仅估算了气体分子所占的空间。 2、对于气体分子,d=3 V0的值并非气体分子的大小,而是两个相邻的气体分子之间的 平均距离. 2、分子永不停息的做无规则的热运动(布朗运动扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温 度越高, 布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物 体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈

高中物理选修3-2第一章知识点详解版35956

高中物理选修3-2第 一章知识点详解版 35956 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第一章电磁感应知识点总结 一、电磁感应现象 1、电磁感应现象与感应电流 . (1)利用磁场产生电流的现象,叫做电磁感应现象。 (2)由电磁感应现象产生的电流,叫做感应电流。 二、产生感应电流的条件 1、产生感应电流的条件:闭合电路 .......。 ....中磁通量发生变化 2、产生感应电流的方法 . (1)磁铁运动。 (2)闭合电路一部分运动。 (3)磁场强度B变化或有效面积S变化。 注:第(1)(2)种方法产生的电流叫“动生电流”,第(3)种方法产生的电流叫“感生电流”。不管是动生电流还是感生电流,我们都统称为 “感应电流”。 3、对“磁通量变化”需注意的两点 . (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否 发生变化。 4、分析是否产生感应电流的思路方法 . (1)判断是否产生感应电流,关键是抓住两个条件: ①回路是闭合导体回路。 ②穿过闭合回路的磁通量发生变化。 注意:第②点强调的是磁通量“变化”,如果穿过闭合导体回路的磁通量很大但不变化,那么不论低通量有多大,也不会产生感应电流。

(2)分析磁通量是否变化时,既要弄清楚磁场的磁感线分布,又要注意引起磁通量变化的三种情况: ①穿过闭合回路的磁场的磁感应强度B发生变化。 ②闭合回路的面积S发生变化。 ③磁感应强度B和面积S的夹角发生变化。 三、感应电流的方向 1、楞次定律. (1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 ①凡是由磁通量的增加引起的感应电流,它所激发的磁场阻碍原来磁通量的增加。 ②凡是由磁通量的减少引起的感应电流,它所激发的磁场阻碍原来磁通量的减少。 (2)楞次定律的因果关系: 闭合导体电路中磁通量的变化是产生感应电流的原因,而感应电流的磁场 的出现是感应电流存在的结果,简要地说,只有当闭合电路中的磁通量 发生变化时,才会有感应电流的磁场出现。 (3)“阻碍”的含义 . ①“阻碍”可能是“反抗”,也可能是“补偿”. 当引起感应电流的磁通量(原磁通量)增加时,感应电流的磁场就与原 磁场的方向相反,感应电流的磁场“反抗”原磁通量的增加;当原磁通

高中物理选修3-2知识点总结12630

……………………………………………………………最新资料推 荐………………………………………………… 第四章 电磁感应知识点总结 1.两个人物:a.法拉第:磁生电 b.奥斯特:电生磁 2.感应电流的产生条件:a.闭合电路 b.磁通量发生变化 注意:①产生感应电动势的条件是只具备b ②产生感应电动势的那部分导体相当于电源 ③电源内部的电流从负极流向正极 3.感应电流方向的判定: (1)方法一:右手定则 (2)方法二:楞次定律:(理解四种阻碍) ①阻碍原磁通量的变化(增反减同) ②阻碍导体间的相对运动(来拒去留) ③阻碍原电流的变化(增反减同) ④面积有扩大与缩小的趋势(增缩减扩) 4.感应电动势大小的计算: (1)法拉第电磁感应定律: A 、内容:闭合电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。 B 、表达式:t n E ??=φ (2)磁通量发生变化情况 ①B 不变,S 变,S B ?=?φ ②S 不变,B 变,BS ?=?φ ③B 和S 同时变,12φφφ-=? (3)计算感应电动势的公式 ①求平均值:t n E ??=φ ②求瞬时值:BLv E =(导线切割类) ③导体棒绕某端点旋转:ω2 2 1BL E = 5.感应电流的计算: 瞬时电流:总 总R BLv R E I == (瞬时切割) 6.安培力的计算: 瞬时值:r R v L B BIL F +==22 7.通过截面的电荷量:r R n t I q +?= ?=φ 注意:求电荷量只能用平均值,而不能用瞬时值 8.自感: (1)定义:是指由于导体本身的电流发生变化而产生的电磁感应现象。 (2)决定因素:线圈越长,单位长度上的匝数越多,截面积越大,它的自感系数就越大。另外,有铁芯的线圈自感系数比没有铁芯时大得多。 (3)类型:通电自感和断电自感 (4)单位:亨利(H )、毫亨(mH)、微亨(H μ) (5)涡流及其应用 ①定义:变压器在工作时,除了在原副线圈中产生感应电动势外,变化的磁通量也会在哎铁芯中产生感应电流。一般来说,只要空间里有变化的磁通量,其中的导体中就会产生感应电流,我们把这种感应电流叫做涡流 ②应用:a.电磁炉b.金属探测器,飞机场火车站安全检查、扫雷、探矿 第五章 交变电流知识点总结 一、交变电流的产生 1、原理:电磁感应 2、两个特殊位置的比较: 中性面:线圈平面与磁感线垂直的平面。 ①线圈平面与中性面重合时(S ⊥B ):磁通量φ最大,0=??t φ ,e=0,i=0,感应电流方向改变。 ②线圈平面平行与磁感线时(S ∥B ):φ=0, t ??φ 最大,e 最大,i 最大,电流方向不变。 3、穿过线圈的磁通量与产生的感应电动势、感应电流随时间变化的函数关系总是互余的: 取中性面为计时平面: 磁通量:t BS t m ωωφφcos cos == 电动势表达式:t NBS t E e m ωωωsin sin == 接通电源的瞬间,灯泡A 1较慢地亮起来。 断开开关的瞬间,灯 泡A 逐渐变暗。

相关文档
相关文档 最新文档